
Technical Report
Number 592

Computer Laboratory

UCAM-CL-TR-592
ISSN 1476-2986

Unwrapping the Chrysalis

Mike Bond, Daniel Cvrček, Steven J. Murdoch

June 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2004 Mike Bond, Daniel Cvrček, Steven J. Murdoch

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Abstract

We describe our experiences reverse engineering the Chrysalis-ITS Luna CA3 –

a PKCS#11 compliant cryptographic token. Emissions analysis and security API

attacks are viewed by many to be simpler and more efficient than a direct attack

on an HSM. But how difficult is it to actually “go in the front door”? We describe

how we unpicked the CA3 internal architecture and abused its low-level API to

impersonate a CA3 token in its cloning protocol – and extract PKCS#11 private

keys in the clear. We quantify the effort involved in developing and applying the

skills necessary for such a reverse-engineering attack. In the process, we discover

that the Luna CA3 has far more undocumented code and functionality than is

revealed to the end-user.

1 Introduction

The Luna CA3 is a Hardware Security Module (HSM) manufactured by Chrysalis-ITS [2],
widely used for secure storage of private keys in Certification Authorities and other cryp-
tographic applications. The Luna CA3 (seen in Figure 1) has a PCMCIA form-factor
which allows it to be easily removed and locked in a safe, and has been validated to FIPS
140-1 Level 3 [3]. Its external Security API is PKCS#11 – the de facto standard for the
majority of HSMs that are integrated with PKI software from vendors such as Entrust. In
addition to the standard PKCS#11 API calls, the CA3 has some vendor specific functions
that facilitate backup, redundancy, and secure key entry.

Figure 1: The Chrysalis-ITS Luna CA3 Cryptographic Token

We were interested in examining the vendor-specific functionality that Chrysalis had
added to the PKCS#11 API, in particular its cloning protocol, used for backup and
improving availability of key material. When one of our Luna tokens malfunctioned and

3



became non-responsive, it gave us the opportunity to consider a physical attack, with
very little to lose. We thus set out to analyse the device with several goals in mind:

• To learn about reverse-engineering and to gauge the effort and resources required
to attack an HSM.

• To analyse the cloning protocol and develop a method to extract all private keys
from the device in the clear, with the co-operation of the Security Officer in charge
of the device (migration of keys to another architecture or into the clear was not a
documented feature provided by Chrysalis).

• To analyse the Luna API for security at the tamper-resistant boundary, and learn
about internal HSM architecture.

• As a secondary consideration – to assess the quality of code with respect to conven-
tional vulnerabilities (for example, buffer overflows).

This paper tells the story of how we achieved the above goals, presenting the work
done chronologically, to capture the flow and spirit of the challenges involved in reverse-
engineering, and to work toward a quantitative picture of the effort involved. Section 2
introduces the Luna CA3 and explains the cloning protocol, which was of particular
interest to us. Sections 3, 4 and 5 describe how we located, understood, and eventually
adapted the cloning protocol to suit our own ends. Finally, we summarise in Section 7.

2 The Luna CA3

To access key material on a CA3 token, a conventional user first needs to log on using
a special Luna Pin Entry Device (PED), as shown in Figure 2. The user inserts a black

datakey containing some secret authorisation key material, and also types a numeric PIN
on the keypad of the PED. If the wrong key or PIN is supplied three times consecutively,
the user is locked out. A blue datakey is held by the Security Officer, who is in charge of
initialisation and fine-grain policy of the token, and can regenerate the access credentials
for the user. Of particular interest was the cloning facility mentioned in the manual,
which was orthogonal to the import and export mechanisms provided by PKCS#11. A
destination token had to be initialised into the same “domain” as the source, by providing
a common red datakey containing some domain-specific secret. The security officer could
then log on to each token, and use a command line utility to copy all the keys from source
to target token.

The Luna CA3 documentation made us aware that the token did not speak PKCS#11
across its tamper-resistant boundary, but a proprietary security API we called the “Luna
API”; PKCS#11 translation was performed in a higher-level library. We also knew that
this API had commands to support the cloning of key material between tokens for backup
and redundancy purposes, and that this protocol used public key cryptography to allow
the devices to exchange keys and set up a secure channel for communication of “application
keys”. We decided to use our non-functional token to learn more about the cloning
protocol. Our plan sounded quite simple:“Open up the card, reverse-engineer the flash,

find the cloning protocol, extract the device keys, then impersonate a token in the cloning

protocol”.

4



Figure 2: The Luna PIN Entry Device (PED)

3 Finding the cloning protocol

3.1 Disassembly

We disassembled the non-functional token, and to our immediate surprise found no potting
material, only a red glue-like substance possibly for structural integrity or heat dissipation.
A disassembled token is shown in Figure 3. The processor is a StrongARM, supported
by 256 KiB of static ram, and twin flash chips totalling 1 MiB of non-volatile storage. A
QuickLogic FPGA was also present, having an undetermined purpose. The flash chips
were removed in a couple of minutes using a hot air gun to melt the solder, placed in a
standard adaptor, and the contents read into a binary file using a reprogrammer.

Figure 3: A Luna CA3 token disassembled

5



3.2 Making sense of the code

We used the commercial tool IDA (the Interactive DisAssembler) [4] to reverse-engineer
the binary. About 300 KiB of the binary was 32-bit ARM code, 500 KiB high-entropy
data with some fairly regular structure visible, and the remainder was blank. An initial
automatic analysis using IDA split the code into subroutines, of which there were over
one thousand – the disassembly listing totalled approximately 1700 pages. In order to
discover the details of the Luna API functions, both to understand the cloning process
and to analyse their security, we needed to identify the command dispatcher. Our first
step toward this was to classify functions, and to chart their flow. One limitation was that
IDA’s graphing tool could not display conditional or calculated jumps in its diagrams. It
quickly became clear that the naming of functions should be carefully thought out, so as
to be of maximum help to the reverse-engineer.

A typical name viewed in the disassembly might be:

C5D2_30SER_BLEV_JANE_do_something_sub1

Subroutines were first named simply by their characteristics, and using their address
for unique identification (this was IDA’s default option). C5 would represent that the
subroutine was called from five locations, and D2 that its address appeared in data (pre-
sumably jump-tables) in two locations. Classification of subroutines into groups was also
useful: unusual constants returned in R0 after a subroutine were taken to be error codes,
and it quickly became clear that there was human logic behind their values. 30SER rep-
resented that error codes of the form 0x0030XXXX were commonly returned by that code.
Secondly, when a subroutine was called only once, or just a few times from the same
parent, it could be conceptually grouped together as part of its caller.

We reasoned that the command dispatcher would be easily identifiable through its
high fanout and probable use of case switches (implemented in ARM machine code as a
shifted add of an index to the Program Counter register).

ADDLS PC, PC, R0, LSL#2 ; switch 0xC ways

There were 47 different switch statements found ranging between five and more than
twenty cases. We found a page in the appendix of a Luna Security Policy document listing
the access permissions required for different Luna API commands – but most important
to us revealing their names, and classifying them into modules. However, none of the
subroutines with switch statements had both a neat correspondence between the number
of cases in the switch and the number of commands in a module, and an appropriate
fan-out of subroutines.

Working within a team, and trying to keep track of the vast number of unknowns,
took its toll. Though all the routines were characterised, the functionality of very few had
been identified – after several weeks only a couple of subroutines that adjusted parity on
DES key material had been identified. The stumbling block was trying to hold a mental
image of the interactions between the vast array of subroutines, and graphing was rather
ineffective when viewing the entire program structure. We soon realised the importance
of naming functions – not just by characteristic and discovered purpose, but also with
arbitrary but memorable names, such as common human first names. Binding partial
knowledge of functionality to names – FRED, GEORGE, JANE or JULIET – made human

6



memory much more effective, and aided team discussion (even if it did make for rather
bizarre conversation). We soon developed our own two golden rules of reverse-engineering:

• Do what you can.

• Give everything a name.

The command dispatcher was eventually found (and identified to be LUCY) through
persistence and fresh re-study of the same switch code. A suite of dispatchers was found,
corresponding to each module, but (crucially) with very different implementations of the
command code processing – this revealed our first clue to the mindset of the designers:
modules were written by different authors, with little supervisory architectural guidance
that would have yielded consistent implementations of the command decoders. Later on,
it transpired that second-guessing the mindset of the designers would become an impor-
tant reverse-engineering skill. In the mean-time, 90% of the commands were successfully
identified and named according to the Luna API command page, including those corre-
sponding to the cloning protocol.

4 Understanding the cloning protocol

We now had the code for three commands:

• LUNA_CLONE_AS_TARGET_INIT

• LUNA_CLONE_AS_TARGET

• LUNA_CLONE_AS_SOURCE

but as the lower-level resource subroutines beneath the commands were not at all
annotated, the code alone did not reveal much about the protocol. We prioritised the
understanding of the protocol (as the protocol design would have a profound impact
upon attack strategies for cloning), and decided to intercept communications between the
source and target cards, and use the captured data to try and understand the data flows
within the protocol, as well as illuminate the processing performed in the ARM code. To
this end, we used a trivially modified PCMCIA extender card (costing about US$100)
to present the bus pins of one card for interception, and hooked up a Tektronix TLA711
logic analyser.

There was no traffic on the bus whilst the device was idle. When triggered, the host
would assert 16 bits of data on the bus lines in each clock cycle, and the device would
reply with the constant “FTSI”, followed by the response data. We wrote some scripts
in Python to process the logic analyser traces, spot the FTSI signal, and format the data
in a human-readable form. Interception of the bus data proved very fruitful, especially
once the command codes had all been identified. It seemed that the cloning process was
driven by the host PC, and was repeated for each key copied. We discovered that the
cloning process contained more than just the challenge and response that was implied by
the three cloning commands. A list of commands performed during cloning is shown in
Table 1. In particular numerous calls to LUNA_GET with various parameters were observed,

7



Source Target

LUNA_FIND_OBJECTS LUNA_FIND_OBJECTS

LUNA_GET (slot 0xE) LUNA_DESTROY_OBJECT

LUNA_GET (slot 0xF) FIND_OBJECTS

LUNA_CLONE_AS_SOURCE LUNA_GET (slot 0xE)

LUNA_GET (slot 0xE) LUNA_GENERATE_KEY

LUNA_CLONE_AS_SOURCE LUNA_SET_UP_MASKING_KEY

LUNA_GET (slot 0xE) LUNA_DESTROY_OBJECT

LUNA_GENERATE_KEY_W_VALUE

LUNA_CLONE_AS_TARGET_INIT

LUNA_CLONE_AS_TARGET

LUNA_GET (slot 0xE)

Table 1: Commands called on source and target during cloning

and it soon became clear that the data returned from a LUNA_GET with parameter 0xF was
fed as an argument to LUNA_CLONE_AS_TARGET_INIT. The outputs of this command were
passed to LUNA_CLONE_AS_SOURCE, whose data was returned to LUNA_CLONE_AS_TARGET

– all in all three message passings.

In order to better understand the protocol, the focus now had to shift to understanding
the format of this data, and following through its interpretation, using the ARM disas-
sembly of the cloning commands. In parallel, we worked on annotating the cryptographic
subroutines in the device, which progressively illuminated the structure of the protocol.
After a week or so, our high-level guesses about the protocol had been corroborated.
Figure 4 shows the protocol in normal operation.

There are three distinct exchanges, though the latter two consist of two messages
each. All tokens store a public key internally, belonging to Chrysalis, which is used to
sign certificates attesting to the correspondence between a public key and a real-life Luna
CA3 token having a particular serial number. In the first message, the target is sent a
certificate held by the source, attesting to its public key, KS, where K−1

chrys is a signature
under Chrysalis’ private key.

In the second step, the target verifies the certificate, and then generates and sends a
nonce NT encrypted under the public key of the source token. It also forwards its own
certificate.

In the third step, the source verifies the authenticity of the target, then generates and
sends a nonce of its own NS. It then creates a one-time symmetric transport key using
both nonces and the secret data from the red “domain” datakey (which is provided to
the devices during initialisation). This symmetric transport key is used to encrypt the
application key (i.e. the particular PKCS#11 key currently being cloned), which is sent
in the final message. Finally the target then decrypts the nonce from the source and
re-creates the symmetric transport key, and decrypts the incoming application key.

It seemed intuitively clear at this stage that in order to use the cloning protocol to
extract keys in the clear or to migrate to another device, the private key corresponding
to the public key from the existing certificate had to be extracted from the disassembled
token. However, the location of this private key remained unknown.

8



LUNA GET (slot 0x0F)

LUNA CLONE AS TARGET INIT

LUNA CLONE AS SOURCE

LUNA CLONE AS TARGET

{KS}K
−1
chrys

{REQ , NT}KS

{KT}K
−1
chrys

{REP , NS}KT

{APP}KX

{KS}K
−1
chrys

{KT}K
−1
chrys

K−1
S

, Kchrys

K−1
T

, Kchrys

KX = NT ⊕ NS ⊕ KD ⊕ C

KX = NT ⊕ NS ⊕ KD ⊕ C

Figure 4: The cloning protocol

5 Breaking the cloning protocol

5.1 The Luna mysteries

The cloning routines were by now well-annotated, as well as the low-level cryptographic
primitives, but the encrypted and clear key material they used emerged from a tract of
unknown subroutine space. The subroutines were of course named, and two groups of
routines in particular (quite literally) held the key – LEELA and JADE.

LEELA was a suite of three or so functions which loaded and saved key material and
valuable device data from local buffers and transferred it to memory which lay outside our
incomplete understanding of the memory map of the device. LEELA took a slot identifier

as a parameter, then walked a data structure to find the corresponding data and copied it
into the local buffer. Many of the LUNA_GET calls corresponded very closely to retrieving
and dumping particular “LEELA slots” verbatim – for instance one of the slots was deduced
to contain the public key attestation certificate returned in a LUNA_GET (slot 0xF) call.

We reverse-engineered the part of the cloning routine that used the module private

9



key to decrypt the nonce sent from the other token, and found that it was stored in LEELA

slot 0xD (encrypted with a 3DES key returned by subroutine JADE). Our first suspicions
were that the slots were mapped into memory differently because they corresponded to a
sensitive data store separate from the system flash, for instance within the FPGA, whose
contents would have been much more difficult to extract than that of a conventional
memory chip. However, a colleague examining the LEELA save routine identified it as
characteristic of a incremental flash write – it would progressively store new versions of
“slots”, and garbage collect once the flash space was full. This implied that the slot data
really was present within the binary file we had extracted. This renewed our confidence,
and we decided to search the entire flash for data matching the LEELA characteristic – a
linked list, with an additional field containing values in the set of common slot IDs. We
were in luck: two areas matched the characteristic (the primary was at offset 0x88000).
We now had the ciphertext corresponding to the encrypted device private key.

However, JADE was even more mysterious than LEELA: it took no arguments at all,
and appeared to navigate a complex data structure held in RAM to retrieve the key. We
theorised that these routines accessed the main store of objects using an object handle
corresponding to some special device key. But without a sample of the data structure
in RAM, it would be very difficult to locate the code that created this object, as many
subroutines created objects for one reason or another. The solution lay in a logical guess
and some more high-level characterisation of the target code. We guessed that the login
routines might read this clear key straight from a data key and load it into RAM, maybe
after performing some PIN verification operation, and began to examine them closely.
The login routines turned out to be quite difficult to understand, because there appeared
to be several legacy modes of operation for login, for instance by sending the PIN directly
from the host; these made it difficult to see exactly which code was really being executed
in our live devices. The crucial breakthrough happened when we noted that the values of
the error codes returned by the JADE functions were unique (and did not map directly to
the usual GENERAL_ERROR PKCS#11 error code); we visually searched for similar value
error codes in the login code, and found our target.

5.2 First strategy: extracting the device private key

We had most of the data we needed, but a perfect re-implementation of the login cryptog-
raphy was required to extract a clear copy of the device private key. We started writing
our own code in C to operate upon the encrypted data successfully extracted from the
LEELA slots. A sub-component of LEELA slot 0xF contained an encrypted block that was
decrypted with a 3DES key to reveal the redundant string “GESC_FIX”, and the JADE

key. The key used to decrypt slot 0xF was derived from raw data returned by the PED,
but here we spotted something rather strange: the raw data was hashed sequentially five
times using MD5. This additional hashing appeared to be quite unnecessary, and it was
not clear whether it was performed to add obscurity, out of ignorance, or for some other
more mysterious purpose. We later found more evidence of unnecessary complexity added
to quite valid cryptographic techniques – for instance the exclusive-ORing of the 32-bit
constant 0xDEADBEEF into completely random key material. We soon began to informally
refer to any apparently unnecessary processing as “dead beef”.

We still needed to determine the content of the raw data from the PIN entry device,

10



so we intercepted and decoded the PED communications link using the logic analyser.
Understanding this protocol delayed us significantly: the link used a bizarre proprietary
protocol consisting of nibbles transmitted along a data line, with a sporadically asserted
“data valid” signal on a second line (we later discovered that this irregularity was be-
cause the serial protocol was implemented entirely in software, and the loop time was
data-dependent). Comparison of this data with that directly extracted from the data
keys (using a commercial datakey reader) revealed that the PIN entered at the PIN was
repeatedly XORed with the data on the datakey.

We began to implement decryption of the encrypted slot using the data from the blue
key, but soon realised there was a conundrum – if the private key belonging to the device
was held encrypted under the data on the blue key, how could it exist when the device
was uninitialised (and had no blue key)? We began to think that we may have entirely
misinterpreted the actions of JADE. However, the entirely undocumented grey datakey
which was only used during initialisation gave us the missing password – it contained a
default password for uninitialised tokens, which decrypted a backup copy of the private
key, adjacent to the one encrypted under the blue key in the LEELA slot.

Unfortunately, it proved very difficult to get our re-implementation to correctly decrypt
the JADE key (we could observe correct decryption by retrieving the string GESC_FIX).
There were simply too many unknowns that had to be guessed to completely define
the algorithm. Was the IV definitely all zeroes? Had we misinterpreted the repeated
MD5 hashing? Was the MD5 implementation bitwise perfect, or was it some modified
proprietary version?

5.3 Second strategy: customer verification keys

We considered emulating the decryption code using ARM Ltd.’s “ARMulator”, but taking
on board yet another new tool appeared a substantial undertaking with no guarantee of
success. Instead, we fell back to our first rule of reverse-engineering – “do what you
can” – and decided to take a look inside the host DLLs to try and find the routines
calling the cloning commands – maybe these could shed some light upon the process, and
after all, in order to complete the emulation of a token, we needed a way to intercept
and modify traffic going to the source token. We discovered that there were a number
of undocumented Chrysalis extensions to PKCS#11 that did other interesting things as
well as to permit cloning. In particular, we saw:

• CA_SetCloningDomain

• CA_SetTokenCertificateSignature

• CA_ClonePrivateKey

• CA_GenerateTokenKeys

CA_SetTokenCertificateSignature sounded most interesting – it had previously
not made any sense when we did not know the important role played by Chrysalis
device certificates in the cloning protocol. We reverse engineered the DLL and found
that a Luna call LUNA_LOAD_CUST_VERIFICATION_KEY was the essential result of calling
CA_SetTokenCertificateSignature. Our pragmatic approach of staying focused on the

11



protocol had meant that the loading of customer verification keys sounded irrelevant, and
quick inspection of the functionality of the command showed that all it did was to store
the data sent to it in a LEELA slot of unknown function. But this time we dug deeper, and
were quite amazed to find that the “Customer Verification Key” (CVK) was an alternative
public key which could be used for verifying the authenticity of a certificate attesting to
the destination token public key. And what was more, we could load a CVK of our choice
without it requiring any special authorisation, other than that of the Security Officer. A
new plan for key extraction developed, which ran as shown in Figure 5. The plan went
as follows:

1. Generate a known customer verification keypair – Kcust and K−1
cust.

2. Load the public half into the source token as the CVK.

3. Choose an arbitrary known nonce NT and send this to the source.

4. Generate a known emulated target device keypair – KT and K−1
T

.

5. Use K−1
cust to sign a certificate attesting to the validity of KT , and send this certificate

to the source also.

6. Receive the source nonce encrypted under the chosen KT .

7. Combine the nonces and red key to make KX and decrypt APP .

It seemed our task annotating the ARM code was almost done, and we now had
to participate in the protocol ourselves. We used the CA_ClonePrivateKey routine to
perform a cloning operation between a real source and target, but cautiously substituted
in our own messages to the source token, by pausing the debugger and changing the
contents of the memory. We progressively built our messages, exploiting the quite rich
set of error codes passed back by the Luna API to help us when we went wrong. The first
challenge was to encrypt a nonce of our own and substitute in this message. This was
easy to do as it only required knowledge of a public key.

Our next step was to modify the certificate from the target to include our own public
key, and observe everything working properly except for the signature failing to verify. Fi-
nally, we reverse-engineered the processing done by CA SetTokenCertificateSignature

and discovered that the public key to be loaded as a CVK could be provided in PKCS#11
attribute list form, and it would automatically flatten it down into a CVK entry. However,
we needed to execute the CA_SetTokenCertificateSignature command under a debug-
ger and with extreme caution, as it went on to call Luna API commands with unknown
purposes, firstly apparently loading some unknown certificate over the top of the existing
one in the source token (potentially damaging its ability to clone keys using the normal
method ever again), and then calling a Luna API command whose name and function
was entirely unknown!

Once the correct public key had been loaded as the CVK, we were pleasantly surprised
to find that the LUNA_CLONE_AS_SOURCE call terminated with no errors reported – the
application key was now encrypted under a target nonce of our choice, and the source
nonce encrypted under a known key. One final hurdle stood between us and correct
decryption of the application key – calculation of the “Key Cloning Vector” (KCV) from
the raw data on the red data key.

12



EMULATION

LUNA LOAD CVK

LUNA CLONE AS SOURCE

Kcust

{REQ , NT}KS

{KT}K
−1
cust

{REP , NS}KT

{APP}KX

KT

K−1
T

Kchrys

K−1
chrys

K−1
S

Kchrys

Kcust

KD

KD

KX = NT ⊕ NS ⊕ KD ⊕ C

KX = NT ⊕ NS ⊕ KD ⊕ C

Figure 5: Extracting to clear using the CVK

5.4 Making the key cloning vector

During initialisation of a Luna CA3 token, the PED gives the user the option to either
generate a new domain key (i.e. KCV), or to use an existing key. For cloning to be
possible, one token in a group must have generated a fresh domain key, and the rest must
be presented with it during initialisation to be admitted to the domain. We found the
code that processed data imported from a red datakey in the LUNA_INIT_TOKEN command,
but it was the most bizarre code yet. Figure 6 gives a flavour of the excessive processing
performed to translate 80 bytes of random data on the datakey to the 24 bytes of a 3-key
3DES key.

This was the probably the ultimate example of “dead beef”, and added approximately
a week to the time taken to re-implement the protocol. Two of our team made inde-
pendent implementations of the code according to the assembler, and cross checked them
against each other, gradually eliminating bugs and uncertainties until the implementa-
tions matched. We then used an ARM emulator to double check our answer. Finally,
in November 2003, we eliminated the last bug (counting a string terminator twice when

13



RAW KCV 80 bytes

64 bytes

48 bytes

24 bytes

36 bytes

24 bytes

MD5

MD5

SHA-1

SHA-1

0x01

0x02

0x3CC3A596
0xDEADBEEF
0x01234567
0x89ABCDEF

Figure 6: The KCV calculation algorithm

calculating the offset used to retrieve the source nonce from its data structure), and low
entropy data emerged from the 3DES decryption function. We had an application key in
the clear!

6 How long does it take to reverse-engineer an HSM?

Table 2 gives a breakdown of how our time reverse-engineering was spent. Surprisingly,
it took less than a day to complete the physical component of the attack on the Luna
CA3 – the device was not even potted. Lack of obfuscation of the processor operation
(for instance by permuting the address lines to obfuscate the RAM contents) also meant
this stage was very quick.

The effort involved in reverse-engineering the ARM code was substantial – it took
several months of work to become familiar with the code, find the command dispatcher,
and identify general structure in the code. During annotation of specific commands and
the cloning protocol, “security through obscurity” came into play. Approximately a third
of the effort spent during this period was spent dealing with dead beef or legacy code.
Dead beef code was not actually a large hurdle to understanding of the code, but it was
time-consuming to annotate, and very hard to re-implement accurately. The toughest

14



Task Duration

Disassembly Less than a day
Initial Mark-up of Code One month
Locating Command Dispatcher One week
Annotating Commands One month
Annotating Cloning Protocol One month
Annotating Crypto Routines One month
Intercepting PCMCIA Bus One month
Decoding PED Protocol Several days
Decrypting Private Key One week
Initial Mark-up of Host DLL Two weeks
Re-implementation of Protocol Three weeks
Total Seven months

Table 2: Estimate of time spent on reverse-engineering

code to understand was that including legacy modes of operation – as the redundant code
looked extremely plausible – it had once been the genuine code.

The peripheral activities to the ARM code analysis, namely intercepting buses, re-
implementing protocols and understanding the host driver software were not individually
large expenditures, but added up to a fair proportion of our total time. Learning exactly
when to invest time building tools to help with analysis is a crucial skill required to
maximise efficiency.

7 Summary

This work enables owners of key material stored in Chrysalis Luna CA3 products to extract
private key material to the clear, or to migrate them into other manufacturer’s devices.
Note that the authorisation of the device’s Security Officer remains an integral part of
the procedure. The work additionally provides a benchmark for the cost of bypassing
hardware lock-in. Forthcoming related work will explore the issues of security, validation
and trust that have been raised by this research.

References

[1] M. Bond, “Attacks on Cryptoprocessor Transaction Sets”, CHES 2001, Springer LNCS
2162, pp. 220–234

[2] Chrysalis-ITS Inc. http://www.chrysalis-its.com/

[3] FIPS 140-1 Validation Certificate No. 214, Luna CA3 by Chrysalis-ITS Incoprorated
(when operated in FIPS mode) http://csrc.nist.gov/cryptval/140-1/140crt/

140crt214.pdf

[4] The Interactive DisAssembler (IDA) http://www.datarescue.com/

15


