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Abstract

We present a new asynchronous Uniform Atomic Broadcast algorithm with a
delivery latency of two communication steps in optimistic settings, which is faster
than any other known algorithm and has been shown to be the lower bound. It also
has the weakest possible liveness requirements (the Ω failure detector and a majority
of correct processes) and achieves three new lower bounds presented in this paper.
Finally, we introduce a new notation and several new abstractions, which are used
to construct and present the algorithm in a clear and modular way.

1 Introduction

State machine replication [11] allows computer systems to achieve high fault-tolerance.
Several computers perform the same sequence of operations so that the system still pro-
vides service when some of its components become unavailable. The main difficulty with
this approach is to ensure that all participants perceive events in the same order. The
solution, Atomic Broadcast [11], has been studied extensively and many algorithms have
been proposed (see [7] for a survey).

In this paper, we consider Uniform Atomic Broadcast, in which safety properties hold
at all processes (including the faulty ones). Our goal is to maximize the performance of the
system by minimizing the delivery latency in failure-free runs. We present an algorithm
that is faster, in this respect, than any previously proposed one.

The definition of delivery latency in this context can be a source of confusion. In this
paper, we define it as the time between the atomic broadcast of a message and its atomic
delivery. Note that many papers (e.g., [8, 17]) ignore the first step, in which the sender
physically broadcasts the message to other processes; in that case one communication
step must be added to the reported delivery latency.

The algorithm presented in this paper is always safe and achieves several lower bounds.
Firstly, it requires a majority of correct processes and an Ω failure detector for liveness [4].
Secondly, in failure-free runs, it delivers messages sent by any process in two communi-
cation steps [5, 13]. Thirdly, the new lower bounds presented in Section 5 imply that
the conditions under which it achieves the two-step delivery latency cannot be weakened.
Finally, our algorithm is quiet, that is, no network messages are sent unless something is
actually atomically broadcast.
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An important contribution of this paper is the presentation of several new abstractions
that are used to construct the final algorithm in a modular way. In particular, we introduce
weaker versions of Interactive Consistency [18] and Atomic Broadcast. Also, we use a new
guard-based notation to make the presentation clearer.

This paper is structured in the following way. Section 2 introduces the system model,
and Section 3 introduces our notation. Section 4 is the core of the paper; it introduces
the definitions and implementations of several new abstractions and also presents our
algorithm. Section 5 presents the new lower bounds, Section 4.6 discusses possible opti-
mizations, and Section 6 concludes the paper.

1.1 Related work

A number of Uniform Atomic Broadcast protocols have been proposed in the literature
(see [7] for a comprehensive survey). All of them must ensure uniform agreement on the
order of message delivery, which requires two communication steps [5, 13]. Moreover, all
non-communication-history algorithms [7] need at least one additional step before the
agreement process can start. (This is necessary for acquiring the token, or sending the
message to the sequencer or to all destinations.) Therefore, all these protocols have the
delivery latency of at least three communication steps. Examples include Paxos [14],
Chandra-Toueg [4], and others [8, 9]. The optimal latency of two steps reported in [8,17]
results merely from not counting the first step.

One of our lower bounds states that no delivery latency below three communication
steps is possible if physical time is not used. The only communication history algorithm
in [7] that satisfies this criterion is HAS [6]. However, HAS bases its safety on timing
assumptions, which can lead to the violation of Total Order if they do not hold [7].

To the best of our knowledge, the method in [19] is the only Uniform Atomic Broadcast
algorithm proposed so far to break the barrier of three communication steps for delivery
latency in failure-free runs. There, all processes are equipped with perfectly synchro-
nized clocks and send messages every δ units of time even if nothing is being atomically
broadcast. The algorithm has a latency of min {2 + δ, 3}. In comparison, our algorithm
achieves a latency of 2, and does not require processes to send empty messages.

2 System model and problem statement

We consider a distributed system that consists of n processes p1, p2, . . . , pn. For safety
properties, we assume that processes can fail only by crashing and communicate through
asynchronous channels that cannot create or modify messages.

For liveness properties, we additionally assume correct-restricted reliable channels1

[10], an Ω failure detector [4], and a majority of correct processes. We say that Ω has
stabilized with process p if its output is p at all processes that have not crashed, and will
never change. Process p is called the eventual leader.

For all performance properties, we assume stable runs : all processes are correct,
equipped with perfectly synchronized clocks, and all network messages reach their desti-
nation within 1 time unit.

1These are channels that are reliable only if both the sender and the receiver are correct processes
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Action Guard Body

initp initp(leader), idemp proposep, idemp decidep —
leaderp once and proposeq(v) and p = leader decidep(v)
decidep decideq(v) decidep(v)

Figure 1: Simple Consensus: code for every process p.

Uniform Atomic Broadcast allows processes to broadcast and deliver messages, with
the following restrictions [7, 11]:

Uniform Agreement If a process delivers a message m, then all correct processes will
eventually deliver m.

Uniform Validity For any message m, every process delivers m at most once and only
if some process has broadcast m.

Uniform Total Order If a process delivers a message m′ after a message m then a
process that delivers m′ has previously delivered m.

Termination If a correct process broadcasts a message m, it every correct process will
eventually deliver m.

3 Notation

To allow the implementations of our algorithm maximum flexibility, we avoid the use of
a sequential pseudocode. Instead, we use a guard-based notation similar to that in [16].
This decision, we believe, improves clarity of presentation, makes formal proofs easier,
and in some cases also saves space. We will introduce the notation using the simple
fault-intolerant Consensus protocol from Figure 1 as an example. There, every process
p proposes a value vp by calling propose(vp) and the unique leader decides on one of
those values by calling decide(v). If a process notices that another process has decided,
it decides on the same value.

We specify the system as a collection of actions of the form (name, guard , body). Here,
name is the action name, guard is a boolean expression, and body is an atomic operation,
which is performed when the action is executed. We assume the following about action
execution. For safety properties: an action can be executed only if it is enabled (i.e., guard
is true). For liveness properties: an action enabled forever will eventually be executed at
least once. For performance properties: every enabled action that has not been executed
yet will be executed immediately. In our example, leaderp can be executed only if it has
not been executed before, only if some process has proposed v, and only by the leader. If
those three conditions are met, leaderp will eventually be executed.

Actions communicate with each other through local variables or correct-restricted
reliable channels. Processes use channels mainly internally as function calls and our
notation reflects this (propose, decide, and once are all channels). For every channel ch,
the operation put ch(m) inserts m into ch, and the predicate get ch(m) is true if m can
be extracted from ch. Whenever put ch(m) is executed, we say that ch(m) is invoked.
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For clarity, we drop the name of the operation (put or get) if it is obvious from the
context: ch(m) denotes get ch(m) in a guard and put ch(m) in an action body. The type
of x in ch(x) depends on the channel; in particular, for anonymous channels, x can only
take one value: tick. We say that an anonymous channel ch ticks if get ch becomes true.
Note that propose can be viewed either as a channel accepting values or as a collection of
anonymous channels indexed by those values.

There are two types of channels: idempotent and regular. Idempotent ones (propose
and decide in our example) do not distinguish identical elements. Those channels are
basically sets with “delayed insertion”: put ch(x) ensures that x will be eventually added
to the set, whereas get ch(x) tests for membership in this set. As a result, the number
of executions of put ch(x) does not matter and get ch(x) does not have any side-effects.
Only idempotent channels are used for interprocess communication in this paper.

Regular channels do distinguish identical elements by assigning a unique instance id
to each object. When an action that contains get ch(x) in its guard is executed, one
instance of x is removed from ch2. We use two special anonymous regular channels: once
and occ (for “occasional”), which allow a process to eventually extract, respectively, one
and infinitely many tick objects. Finally, fifo channels form a subtype of regular channels
in which the order of insertion and extraction is the same.

Actions and channels are identified by their classes and instances. For actions, the class
name consists of the action name and the process at which it is executed (e.g., leaderp).
The instance of a given action class is identified by the values of all free variables and
object instances extracted from all channels in the guard (in our case, q, v, and an instance
of tick from once). Each forever enabled action instance is executed at least once.

For channels, the class name consists of the channel name, which includes the owner
(e.g., decidep). An instance of a given channel class is identified by the action class in
which the channel appears. (All instances of the same action class share the same instance
of any channel class.) The get ch operation acts only on one instance of ch. On the other
hand, put ch acts simultaneously on all instances of class ch but can be invoked only by
the owner.

For example, adding once to the guard of decidep would ensure that each process
could execute decidep at most once. This is because (for fixed p and variable v) all
instances of decidep belong to the same class and share a single instance of the once
channel. Since each action class gets an independent instance of once, adding once to the
guard of decidep would neither mean that at most one process p would execute decidep
nor affect leaderp.

To save space, we assume that channel instances are created on demand. For any
channel class ch, the owner creates instances for all action classes whose guards contain
get ch. In Figure 1, every process creates an instance of propose for decidel at the leader
l, and an instance of decide for decidep at every process p.

We use the following conventions. All free variables in guards are single-letter and
all others are longer, except for p, which denotes the current process. We use p, q, r for
process names, v, w for proposed values, s, t for times, and m for messages. We subscript
all actions, channels, and variables with the name p of the process but we usually drop
it if p is obvious from the context (e.g., if p is the current process). Superscripts have no
semantic meaning, they are only used to refer to a particular occurrence of the name.

2For a formal treatment of predicates with side-effects see the notion of “action” in TLA+ [15].
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Figure 2: General structure of the algorithm.

Each object has a special init action, which is executed only once and before all other
actions. Its guard and body fields specify the types of channels used by the object and
initialize its local variables. For each parameter of the init channel, a local constant
with the same name and value is created. In our example, both propose and decide are
idempotent channels, and the leader is a constant with the value from the init channel.

4 Algorithm

Our algorithm is constructed in a modular way shown in Figure 2. Arrows represent
variables ( ) and channels: idempotent ( ), regular ( ), and regular fifo
( ). The main effort is put into Eventually Weak Atomic Broadcast, which is imple-
mented using a sequence of Eventually Weak Interactive Consistency objects. These two
new abstractions are “eventually weak” because some of their properties hold only for the
eventual leader. X-Register is a variant of the ♦Register from [2,3] which is particularly
efficient for writing a special symbol X to it.

4.1 Eventual Register

The Eventual Register is a shared “write-and-lock” register, which is initially undefined,
but once a write operation has succeeded, the contents of the register cannot be changed
any more. It is a slightly modified version of ♦Register [2,3] so that it has the owner – a
process whose writes are particularly fast.

The register can be accessed through two regular channels: propose and decide. To
propose (write) a value v, the caller invokes propose(v). When a value w has been
successfully written, the register invokes decide(w).

We say that a process has proposed or decided v if it has invoked propose(v) or
decide(v), respectively. All our abstractions assume that no process proposes two dif-
ferent values. In exchange, they guarantee that no two processes will decide on different
values. Formally, the Eventual Register satisfies the following properties:

Validity If decidep(v) has been invoked, then proposeq(v) has been invoked for some q.

Agreement If both decidep(v) and decideq(w) have been invoked, then v = w.
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Action Guard Body

init init(owner), regular propose, idemp decide ereg.init(owner)
propose propose(v) and p = owner ∨ v = X ereg.propose(v)
decide ereg.decide(v) decide1(v)
fast-decide proposeowner(X) decide2(X)

Figure 3: X-Register: code for process p.

Termination If eventually a single correct process p keeps invoking proposep infinitely
many times, then eventually decideq will be invoked at all correct processes q.

Performance If the owner invokes propose(v) at time t and no other process ever invokes
propose, then all processes will execute decide by time t+ 2.

Validity ensures that the value stored in the register could not have appeared there
out of the blue; it must have been proposed by some process. Agreement states that the
contents of the register perceived by different processes is the same. Termination says
that if a single correct process (e.g., the leader) keeps writing, it will eventually succeed.

Validity, Agreement, and Termination are the same as in ♦Register [2, 3]. The Per-
formance property is technically new, but the implementation of ♦Register in Figure 5
in [2] can be easily changed to accommodate that requirement. There, without loss of
generality we can assume that p1 is the owner of the register. Then, the first invocation of
propose(v) by p1 corresponds to the first round of Paxos. Thus, as shown in FastPaxos [1]
and ♦RegisterII [2], the read phase of this round can be omitted. This is because the
purpose of the read phase is to ensure that no value different than the proposed one has
been written by one of the previous rounds. Since for the first round no previous rounds
exist, omitting the read phase is safe.

4.2 X-Register

The X-Register is a version of the Eventual Register in which the special symbol X is
the only value can be proposed by processes other than the owner. As a result, a process
can decide on X as soon as it has learnt that the owner has invoked propose(X). This is
safe because as no value other than X could have been proposed, Validity implies that X
is the only possible decision value.

The implementation of X-Register shown in Figure 3 uses an Eventual Register object
ereg, a regular channel propose, and an idempotent decide. The guard of propose
requires v = X or the caller to be the owner. As a consequence, decide2(X) can be
invoked as soon as p knows that the owner has invoked propose(X), without violating
Agreement. Thus, the following additional performance property holds:

X-Performance. If the owner invokes propose(X) at time t, then all processes will have
invoked decide(X) by time t+ 1.

The Validity, Termination, and Performance properties of an Eventual Register triv-
ially hold for an X-Register. Moreover, as Figure 3 shows, if the (correct) owner proposes
X, the decision X will be reached by fast-decide without using ereg. Therefore, to
reduce network usage, propose should not be executed if p = owner and v = X.
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Action Guard Body

init init , idemp propose, decide, timeout xreg[i].init(pi) for all pi
propose once and p = pi and propose(v) xreg[i].propose1(v)
leader occ and p = leader = pi and propose(v) xreg[i].propose2(v)
timeout occ and p = leader 6= pi and timeout xreg[i].propose3(X)
decide xreg[i].decide(vi) for all pi decide([v1, . . . , vn])

Figure 4: Eventually Weak Interactive Consistency: code for process p.

4.3 Eventually Weak Interactive Consistency

The Eventually Weak Interactive Consistency (ewic) abstraction is based on Interactive
Consistency [18]. There, every process i invokes propose(vi) and decide([w1, w2, . . . , wn])
with the following properties: (i) wi ∈ {vi, X} for all pi, and (ii) wi = vi for all correct
pi. In the ewic abstraction, the latter condition is satisfied only in stable runs or if the
Ω failure detector has stabilized with pi.

The implementation shown in Figure 4 uses one X-Register xreg[i] for each process pi,
the variable leader (which is the output of Ω), and three idempotent channels: propose,
decide, and timeout. Process pi proposes v by invoking xreg[i].propose(v). The final
decision vector is composed from the decisions made by individual X-Registers.

To ensure termination even in runs with failures, we employ two mechanisms. Firstly,
the leader periodically repeats its proposal (leader). Secondly, if its timeout has ticked,
the leader starts to keep proposing X to X-Registers of other processes (timeout). In-
tuitively, timeout ticks when the decision would have been made if the run was stable.
In a typical implementation, timeout ticks ∆ units of time after propose was invoked, for
some ∆ > 0. We assume that ∆ is finite, so that if a process has proposed, its timeout
will eventually tick.

If process pi has invoked propose(v), then only v and X can be proposed to xreg[i].
Note that xreg[i].propose3(X) can be invoked only if timeout has ticked and pi is not the
leader, otherwise v is the only possible decision. The decision will eventually be reached
because the eventual leader will invoke xreg[i].propose2 or xreg[i].propose3 infinitely many
times and xreg[i].propose1 will be invoked at most once.

Formally, Eventually Weak Interactive Consistency has the following properties:

Validity Invoking decideq([v1, . . . , vn]) implies that propose(vi) must have been invoked
by process pi if (i) vi 6= X or (ii) before timeout ticked at any process either:
(a) decideq([v1, . . . , vn]) was invoked, or (b) Ω stabilized with pi.

Agreement If decidep([v1, . . . , vn]) and decideq([w1, . . . , wn]) have been invoked, then
[v1, . . . , vn] = [w1, . . . , wn].

Termination If the eventual leader has proposed, then every correct process will even-
tually decide.

Performance If (i) all processes proposed by t+1, and (ii) all processes pi with proposals
vi 6= X proposed by t, then by time t + 2 (i) all processes decided, or (ii) timeout
ticked at at least one process.
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Action Guard Body

init init , fifo abcast, fifo deliver ewic[t].init for all t ∈ T ; list← X
abcast abcast(m) add m to list
propose times(t) and time ≥ t ewic[t].propose(list); list← X
deliver times(t) and ewic[t].decide([v1, . . . , vn]) deliver(m) for all m ∈ v1, v2, . . . , vn

Figure 5: Simple Eventual Weak Atomic Broadcast: code for process p.

4.4 Eventually Weak Atomic Broadcast

Eventually Weak Atomic Broadcast (ewab) is a version of Atomic Broadcast, where in
non-stable runs only messages sent by the eventual leader are guaranteed to be delivered.

Let T be a subset set of all possible readings of the real-time clock time, for example,
T = {0, δ, 2δ, 3δ, . . .} for some small δ > 0. The implementation shown in Figure 5 uses
two regular fifo channels abcast and deliver. It also uses two copies of an extract-only
regular fifo channel times, which contains all elements of T in increasing order. For
each t ∈ T , we use a separate ewic object ewic[t].

Every message to be broadcast is added to the initially empty variable list. (We assume
that X is equivalent to the empty set ∅.) When the current time time passes the time t
extracted from times, the current value of list is proposed using ewic[t] and emptied. The
decisions of ewic[t] for successive t’s become the delivered messages3. In stable runs, all
processes propose at the same time, so taking any ∆ > 2 for the timeout implementation
in ewic will guarantee that all messages will be delivered.

The algorithm in Figure 5 satisfies Uniform Agreement, Uniform Validity, and Uniform
Total Order from Section 2, and

Termination Eventually, any message broadcast by the eventual leader will eventually
be delivered by every correct process.

Performance A message broadcast at time t will be delivered by t+ 2 + δ.

The Performance property states that the algorithm achieves the same delivery latency
of 2 + δ as the one in [19].

4.4.1 Quiet version

The implementation of ewab from Figure 5 uses one ewic object per element of T . This
results not only in memory waste but also in sending network messages even if no abcast
is ever invoked. In this section, we present a variant of ewab, in which the number of
ewic object depends on the number of broadcast messages, not on the size of T . As a
result, we can assume that T = R and thus achieve the delivery latency of 2.

The implementation in Figure 6 uses two new variables: lastp and lastd with the
following properties: ewic[t].propose has been invoked iff t ≤ lastp, and all messages
m ∈ v1, . . . , vn where ewic[t].decide([v1, . . . , vn]) have been delivered iff t ≤ lastd.

Splitting propose into active and passive defers invoking ewic[t].propose until nec-
essary. Now, it is invoked only if the current process has something to send (active) or it

3we assume that deliver always delivers the messages from [v1, . . . , vn] in the same order.
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Action Guard Body

init init , fifo abcast, fifo deliver, idemp active ewic[t].init for all t ∈ T ;
list← X; lastp← lastd← −∞

abcast abcast(m) add m to list

active list 6= X and t > lastp and t = time ewic[s].propose(X) for s ∈ (lastp, t)
ewic[t].propose(list); list← X
lastp← t
active(t)

passive list = X and t > lastp and activeq(t) ewic[s].propose(X) for s ∈ (lastp, t)
ewic[t].propose(X)
lastp← t

deliver ewic[s].decide([X, . . . , X]) for all s ∈ (lastd, t), deliver(m) for all m ∈ v1, v2, . . . , vn
ewic[t].decide([v1, . . . , vn]) and some vi 6= X lastd← t

Figure 6: Quiet Eventual Weak Atomic Broadcast: code for process p.

has already been invoked by another process (passive). The idempotent channel active
is used to inform other processes that time t is active, that is, there is a process that
has invoked ewic[t].propose(v 6= X). Note that since active clears list, the number A of
active times cannot exceed the number M of abcast messages.

Consider a stable run in which some processes execute active at time T = t, which
invokes ewic[t].propose. By T+1, all other processes will have invoked ewic[t].propose(X)
by executing active or passive with t ≥ T . Performance of ewic[t] implies that, by time
T + 2, all processes will have invoked ewic[t].decide and thus delivered the messages sent
at T (see the Appendix for the proofs).

To reduce the number of ewic objects, notice that ewic[t].propose is invoked only for
an active t or for all t ∈ (s, s′) where both s and s′ are active. As a result, if s and s′ are
consecutive active times, all ewic[t] objects with t ∈ (s, s′) can be simulated by one object
denoted by ewic(s, s′). Let t1, . . . , tA be the ordered sequence of all active times. Then,
the algorithm needs only 2A + 1 ewic objects corresponding to the following intervals:
(−∞, t1), [t1], (t1, t2), [t2], . . . , [tA], (tA,∞), where [ti] = {ti}.

Since the values of t1, . . . , tA are not known a priori, we have to use a divide and clone
technique. Each process starts with one object ewic(−∞,∞), which will be divided
into smaller intervals as requests arrive. At any time, each process maintains a list I of
intervals of the form (s1, s2), [s2], (s2, s3), [s3], . . . , [sk−1], (sk−1, sk) with s1 = −∞ and
sk =∞. If a request for all ewic[t] with t ∈ J arrives, some intervals in I are split so that
every member of I will be either a subinterval of J or disjoint with it. When an interval
is being split, the local state of the corresponding ewic object is cloned. Finally, the
request is applied to all elements of I that are subintervals of J . Note that the interval
lists I at different processes do not need to be the same.

As an example, assume that I = (−∞, 4), [4], (4,∞) and J = (3, 7). In this case, I
becomes (−∞, 3), [3], (3, 4), [4], (4, 7), [7], (7,∞). Object ewic(−∞, 4) is replaced by
ewic(−∞, 3), ewic[3], and ewic(3, 4), all with the same local state. Similarly, ewic(4,∞)
is transformed into ewic(4, 7), ewic[7], and ewic(7,−∞). The request is applied to
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Action Guard Body

init init , fifo abcast, fifo deliver, idemp active ewic[t].init for all t ∈ T ;
list← X; lastp← lastd← −∞

abcast abcast(m) add m to list

active list 6= X and t > lastp and t = time ewic[s].propose(X) for s ∈ (lastp, t)
ewic[t].propose(list); list← X
lastp← t
active(t)

passive list = X and t > lastp and active(t) ewic[s].propose(X) for s ∈ (lastp, t)
ewic[t].propose(X)
lastp← t

relay activeq(t) active(t)
decide ewic[t].decide([v1, . . . , vn]) and vi 6= X active(t)

deliver ewic[s].decide([X, . . . , X]) for all s ∈ (lastd, t), deliver(m) for all m ∈ v1, v2, . . . , vn
ewic[t].decide([v1, . . . , vn]) with some vi 6= X, and lastd← t
activeq(t) for a majority of processes q

Figure 7: Pingless Quiet Eventual Weak Atomic Broadcast: code for process p.

ewic(3, 4), ewic[4], and ewic(4, 7).
In order to achieve Uniform Agreement, the algorithm assumes that one of the correct

processes atomically broadcasts infinitely many messages: occasional pings, for example.
In comparison to the algorithm from Figure 5, the one in Figure 6 has a smaller delivery
latency in stable runs. Moreover, since ewic[s].propose is invoked only if there is an active
t ≥ s, the algorithm is also quiet:

Quietness If no process invokes abcast(m), then no network messages are sent.

Performance A message broadcast at time t will be delivered by t+ 2.

4.4.2 Pingless quiet version

The ewab from Figure 6 requires at least one correct process to broadcast infinitely many
times in order to achieve Uniform Agreement. In this section, we show how to waive this
requirement.

Figure 7 shows the improved version. Additional actions relay and decide ensure that
active(t) is invoked if another process has invoked it or ewic[t] has decided on [v1, . . . , vn] 6=
[X, . . . , X]. Action deliver can be now executed executed only if a majority of processes
has invoked active(t). This ensures that at least one correct process have invoked active(t),
and eventually all correct processes will do so.

Consider a stable run. If time t is active, then at least one process invokes active(t)
at time t, which implies that all processes will invoke active(t) in relay by time t + 1.
Therefore, by t + 2 the activeq(t) condition in the guard of deliver will hold, so all
messages sent at t will be delivered by t+2. Moreover, since all processes invoke active(t)
by time t + 1, the invocation of active(t) in decide, which is usually executed at t + 2,
does not send any messages.
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Action Guard Body

init init, fifo abcast, fifo deliver ewab.init; blist ← ∅
abcast abcast(m) ewab.abcast({m})
store abcastq(m) add m to blist
liveness occ and blist 6= ∅ ewab.abcast(blist)
deliver ewab.deliver(v) deliver(m) for every m ∈ v

Figure 8: Atomic Broadcast: code for process p.

4.5 Atomic Broadcast

Figure 8 shows how to use ewab from Section 4.4 to implement standard Atomic Broad-
cast, in which a message sent by any correct process is eventually delivered. Whenever
a correct process p atomically broadcasts m, it just invokes ewab.abcast({m}), which is
sufficient in stable runs. To guarantee eventual delivery of m in any run, every process
keeps a sequence blist of all messages broadcast in the system and periodically invokes
ewab.abcast(blist). Action store ensures that m will eventually belong to blist l at the
eventual leader l. Since l periodically broadcasts its blist (action liveness), the Termi-
nation property of ewab implies that m will eventually be delivered. To avoid delivering
the same message twice we assume that the deliver channel automatically eliminates du-
plicates. In addition to all properties of ewab, this algorithm satisfies the Termination
property from Section 2:

Termination If a correct process broadcasts a message m, then every correct process
will eventually deliver m.

4.6 Optimizations

A number of standard optimization techniques can be applied to reduce the message and
memory complexity of our algorithm. First, when a decision is reached, all propose-and-
decide objects should broadcast it to all participants, destroy all their subobjects, and
stop operating. Similarly, once deliver in ewab has been executed for a given t, all
ewic[s] for s ≤ t can be destroyed (provided that all delivered messages have been fifo-
broadcast to other processes). In stable runs, this will limit the number of ewic objects
by the number of messages broadcast in the last two communication steps. Finally, in
Figure 8, delivered messages can be removed from blist (duplicates can still be detected
using sequence numbers).

To maximize the performance, the ticking frequency of various occ channels can be
(adaptively) adjusted to the current conditions. Also, executing ewic[t].timeout if pi 6=
leader was suspected to have crashed at any time after t−∆ (for some ∆) will limit the
influence of crashed process on the performance.

5 Optimality results

The algorithm presented in Section 4 achieves the two-communication-step lower bound
for Uniform Consensus in failure-free runs [5, 13]. Since Atomic Broadcast can be solved
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using Consensus with no additional message delay [4], the same lower bound applies to
Atomic Broadcast. In this section, we will prove three new lower bounds for Atomic
Broadcast that are achieved by our algorithm.

Firstly, in order to guarantee atomic delivery in two steps, our algorithm assumes
that all processes are correct. This condition cannot be weakened, even if we assume
synchronous settings and consider only scenarios in which one, non-leader process can
fail. This should be contrasted with three-step Atomic Broadcast protocols such as [4,14],
which require only a majority of correct processes.

Secondly, even if only one of the non-leader processes crashes, our algorithm would
not be live in purely asynchronous settings (recall that we use a timeout failure detector,
which is accurate in stable runs and always complete). We have shown that no two-
communication-step Atomic Broadcast protocol can guarantee liveness in such circum-
stances. This bound does not hold for synchronous settings, where a perfectly complete
and accurate timeout mechanism can be implemented.

Finally, two-step delivery latency cannot be achieved without perfectly synchronized
clocks. Any asynchronous Atomic Broadcast algorithm that does not use physical time
must base the delivery order on causal dependencies only. We have shown that this implies
that there are stable runs where message delivery takes 3− ε time for any ε > 0.

5.1 Correct leader

In many Atomic Broadcast and Consensus protocols (esp. asynchronous ones), a single
distinguished process called the leader or coordinator plays an important role [4, 14]. As
a result, a failure this process has much more severe consequences for the performance of
the algorithm than a failure of any other process. In this section, we will consider Atomic
Broadcast algorithms that achieve a two-step delivery latency in failure-free runs. We will
investigate their performance in runs where at most one non-leader process fails.

We define Exclusive Consensus as a variant of Uniform Consensus in which the leader
does not propose. Note that as long as there is at least one correct non-leader process,
Exclusive Consensus can be easily solved using Atomic Broadcast with no additional
message delay; all processes except for the leader atomically broadcast their proposals
and the first delivered message is adopted as the decision. Therefore, all latency bounds
on Exclusive Consensus also hold for Atomic Broadcast.

5.1.1 Synchronous settings

In this section, we will investigate Exclusive Consensus in synchronous settings. Consider
an algorithm that decides in two steps in all scenarios in which (i) the leader does not
crash, and (ii) at most one process crashes. We will show that such an algorithm does
not exist.

Consider a system consisting of n processes 1, . . . , n. We use the layering technique
and notation from [12]. Action (i, [k]), where 1 ≤ i ≤ n and 0 ≤ k ≤ n, defines a round
in which process i permanently fails and all messages sent by i to processes 1, . . . , k are
lost. Action (0, [0]) models a round without failures. For a given (global) state x, we
define L′(x) to be the set of all states obtained from x by applying one action of the form
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(i, [k]), where process 1 (the leader) does not crash. Formally,

L′(x) = {x · (i, [k]) : i 6= 1 and (i, [k]) is applicable to x }.

Lemma 5.1. Let Init be the set of possible initial states. Then, L′(Init) is similarity-
connected.

Proof. Set Init can be easily proved to be similarity-connected [13]. To prove the asser-
tion, we can use the proof of Lemma 2.3 from [12] provided that we do not consider states
in which the leader has crashed. The first part of that proof, which shows that L′(x) is
similarity-connected for any x ∈ Init, works without modifications. Consider the second
part, which proves that that for any x ∼ x′ (for x 6= x) there are similar states y ∈ L′(x)
and y′ ∈ L′(x′). Here, no modifications are necessary either because x and x′ cannot differ
in the state of the leader. This is because the leader has no state at the beginning (it
does not propose anything).

Since L′(Init) is similarity-connected (Lemma 5.1), Lemma 2.2 from [12] implies that
there is at least one run in which the algorithm does not decide in two communication
steps.

5.1.2 Asynchronous settings

In asynchronous settings with correct-restricted reliable channels [10], the result from
Section 5.1.1 can be strengthened. Consider any Exclusive Consensus algorithm that
decides in two steps in failure free runs. We will show that there is a scenario with only
one (non-leader) process failure, in which the algorithm never decides. This result should
be contrasted with three-step Atomic Broadcast protocols such as [4, 14]. There, each
message is first broadcast to the leader, who can atomically broadcast it if at least half
of the processes are correct.

Definition 5.2. A run r is an execution of the algorithm with a given latency function
Lr. The value of Lr(i, j, t) > 0 specifies the latency of the message sent by process i to
process j at time t ≥ 0. (Infinite latency means that the message will never reach its
destination.)

To precisely define “two communication rounds” in asynchronous settings we use the
notion of communication level.

Definition 5.3. The communication level of process i at time t in run r is a non-negative
integer denoted by Cr(i, t). All processes start at level 0, and progress to the next level
once they could have received current-level messages from all processes. In other words,
Cr(i, t) ≥ 0 and

Cr(i, t) ≥ k + 1
def⇐⇒ ∀ j : ∃ s : Cr(j, s) ≥ k ∧ Lr(j, i, s) + s ≤ t for all k ≥ 0. (1)

The communication level Cr(i, t) is defined as the smallest number allowed by (1).
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Note that the communication level is defined in terms of messages that could be sent.
For example, if Lr(i, j, t) ≡ 1, then at time 1 all processes will have the communication
level of 1, even if no messages are actually sent. This way, algorithms cannot keep the
communication level artificially low by not sending messages.

For the rest of the section assume that A is an Exclusive Consensus algorithm with the
following properties. Firstly, all processes decide as soon as they reach the communication
level of 2. Secondly, if the leader does not crash, all correct processes will eventually decide.
Finally, if a decision has been made by any process, then a global observer will always be
able to deduce its value from local states of all correct processes4. (It does not have to
be able to determine whether a decision has been made or not.) This assumption implies
the following lemma.

Lemma 5.4. Let r and r′ be runs, in which process i decides. If r and r′ are indistin-
guishable to processes other than i, then the decision in both runs must be the same.

Definition 5.5. A run r dominates run r′, which we denote as r � r′, if all message
latencies in r are not higher than those in r′. Formally,

r � r′
def⇐⇒ ∀ i, j, t : Lr(i, j, t) ≤ Lr′(i, j, t)

Lemma 5.6. If r � r′, then Cr′(i, t) ≥ k =⇒ Cr(i, t) ≥ k for all i, t, and k.

Proof. By induction on k. Since Cr(i, t) ≥ 0, the base case is obvious. Assuming the
inequality holds for k, we will prove it for k + 1:

Cr′(i, t) ≥ k + 1 =⇒ ∀ j : ∃ s : Cr′(j, s) ≥ k ∧ Lr′(j, i, s) + s ≤ t =⇒
∀ j : ∃ s : Cr(j, s) ≥ k ∧ Lr(j, i, s) + s ≤ t =⇒ Cr(i, t) ≥ k + 1.

Corollary 5.7. If r � r′, then Cr(i, t) ≥ Cr′(i, t) for all i and t.

Definition 5.8. For any run r, let r′ = r ⊕ lost(j, t) be a run identical to r except that
all messages sent by process j to other processes after or at time t are lost. Formally
Lr′ = Lr except that Lr′(j, k, s) =∞ for j 6= k and s ≥ t.

Lemma 5.9. Let d be the lower bound for message latency. For any run r and process i,
run r ⊕ lost(i, t) is indistinguishable from r to i before time t+ 2d.

Proof. Run r and r ⊕ lost(i, t) are identical before time t. Since any message takes at
least d time to reach its destination, these runs are indistinguishable to processes other
than i before time t+ d. For the same reason, r and r⊕ lost(i, t) are indistinguishable to
i before t+ 2d.

4Without this assumption the following algorithm would work. All processes send their proposals to
the leader, which decides on the first proposal it has received, and broadcasts it. Unfortunately, if the
leader crashes, even a global observer cannot ensure Uniform Agreement and Termination.
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Consider the following family of runs. For any process i, let Ri(j, t) be a run in which
all messages travel two units of time except for those sent by process i to other processes.
These require t ≥ 2 units to reach processes k > j and t + 1 to reach processes k ≤ j.
In other words,

LRi(j,t)(i
′, j′, t′) =





2 if i′ 6= i or i = j

t if i′ = i 6= j and j ′ > j,

t+ 1 if i′ = i 6= j and j ′ ≤ j.

Lemma 5.10. Consider Ri(n, t)⊕ lost(j, 1) for i 6= j. Then, the following holds:

1. C(i, 2) ≥ 1,

2. C(k, t+ 1) ≥ 1 for all processes k,

3. C(j, t+ 3) ≥ 2.

Proof. 1. Follows from the fact that L(l, i, 0) = 2 for all l.

2. Follows from the fact that L(l, k, 0) ≤ t+ 1 for all l.

3. Follows from

(a) C(i, 2) ≥ 1 and L(i, j, 2) ≤ t+ 1, and

(b) C(k, t+ 1) ≥ 1 and L(k, j, 2) = 2 for all k 6= i.

Theorem 5.11. The algorithm for Exclusive Consensus with the desired properties does
not exist.

Proof. For sake of contradiction assume that the algorithm exists. Then, if i is not the
leader, there will be a decision in Ri(j, t) for any j and t. We will first show that that
decisions in Ri(j − 1, t) and Ri(j, t) are identical.

If j = i, then Ri(j − 1, t) = Ri(j, t), so we will assume i 6= j. Since Ri(j, t) �
Ri(n, t)⊕ lost(j, 1), Lemma 5.10 implies that j will decide by t+ 3 on some value, say d.
Runs Ri(j, t) and Ri(j, t) ⊕ lost(j, t) are indistinguishable to j until t + 4 (Lemma 5.9),
so j will decide by t + 3 on d in Ri(j, t) ⊕ lost(j, t) too. By the same argument, in runs
Ri(j − 1) and Ri(j − 1, t) ⊕ lost(j, t), process j will reach will reach same decision d′ by
time t+ 3. Now, runs Ri(j, t)⊕ lost(j, t) and Ri(j − 1, t)⊕ lost(j, t) are indistinguishable
to processes other than i, so Lemma 5.4 implies d = d′.

It is now easy to prove by induction on j that the decisions Ri(0, t) and Ri(n, t) =
Ri(0, t+ 1) will be the same. By induction on t, we conclude that the decision in Ri(j, t)
does not depend on j or t.

Let R be Ri(0, 2), which is the same for all i. Let every process propose a different
value and let i be the process whose proposal was adopted as the decision in R = Ri(0, 2).
Since i is not the leader (who cannot propose anything), a decision will eventually be
made even in run Ri(0, 2) ⊕ lost(i, 0), in which i does not send any messages. Assume
that the leader decided at time t. Notice two facts: (i) Ri(0, 2)⊕ lost(i, 0) and Ri(0, t+ 1)
are indistinguishable to the leader before time t + 1, and (ii) the decision in Ri(0, t + 1)
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Figure 9: Runs R(0) and R′

and Ri(0, 2) is the same. Therefore, the decision in Ri(0, 2) ⊕ lost(i, 0) is the same as
in R = Ri(0, 2). On the other hand, since in Ri(0, 2) ⊕ lost(i, 0) all messages from i are
lost, the leader has no way of knowing i’s proposal, which is the decision in R. This is a
contradiction.

5.2 Physical clocks

Consider stable runs in which no process fails and all network messages are delivered
within one unit of time. Assume that there is an Atomic Broadcast algorithm that does
not use physical clocks yet in stable runs atomically delivers all messages withinM = 3−6ε
units of time. We will show that such an assumption leads to a contradiction.

In our model, each message carries the complete state of the sender. We assume that
processes can send messages only if their state changes because of an external action
(such as a reception of a network message or an atomic broadcast request). This does not
restrict the generality of our proof because all internal actions can be inferred by other
processes, which know the complete state of the sender.

Consider a simple latency function L, in which all messages sent no later than 2 take
1 unit of time to reach their destinations, and all the others are lost. Formally,

L(i, j, t) =

{
1 if t ≤ 2,

∞ if t > 2.

Consider a family of runs R(k), in which processes p and q broadcast two messages mp

and mq, respectively, at time 1, and no other process broadcasts anything. The latency
function LR(k) is the same as L, except for all t ≤ 1 we have

LR(k)(i, j, t) =

{
1− ε for i = p and j > k,

1− ε for i = q and j ≤ k.

We will prove that, in R(k) and R(k − 1), messages mp and mq are delivered in the
same order . Lemma 5.9 implies that R(k) and R(k)⊕ lost(k, 2− ε) are indistinguishable
to k until 4− 3ε > 1 +M . Therefore, in both runs, k delivers the same message m first.
Similarly, k delivers the same message m′ first in both R(k−1) and R(k−1)⊕lost(k, 2− ε).
Since R(k)⊕ lost(k, 2− ε) and R(k−1)⊕ lost(k, 2− ε), are indistinguishable for processes
other than k, Lemma 5.4 implies that m = m′.
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It follows that the same message is delivered first in R(0) and R(n). Since those runs
are symmetrical with respect to p and q, without loss of generality we may assume that
mq is delivered first in all those runs. Consider a run R′ with the same latency function
as R(0), in which p send mp at 3ε instead of 1. Note that processes do not have access
to physical time clocks and all causal dependencies in R′ and R(0) are the same (see
Figure 9), so the same message (mq) is delivered first in both runs. However, mq cannot
be delivered faster than in two communication steps [5, 13], that is, before 3 − 2ε. Since
mp is delivered after mq, its delivery latency will be at least 3 − 5ε > M . Finally, note
that to no process is R′ distinguishable from a stable run before time 3, which proves the
assertion.

Since the above argument works for any ε > 0, it follows that no protocol can guarantee
a delivery latency smaller than three communication steps unless it uses physical clocks.

6 Conclusion

In this paper, we introduced several new distributed agreement abstractions and showed
how to use them to implement Atomic Broadcast efficiently. Our implementation uses
Eventually Weak Atomic Broadcast, which is based on a sequence of Eventually Weak
Interactive Consistency objects, which, in turn, use one X-Register per process.

Processes use their own X-Registers to propose messages to be atomically broadcast.
These registers decide in two communication steps. One step after the messages are
broadcast, all other processes learn of this and propose a special symbol X. Recall that
for this symbol, X-Registers take only one step to decide. Therefore, all X-Registers will
decide two steps after the broadcast, and the messages will be delivered then.

This algorithm is quiet and achieves the optimum [5,13] delivery latency of two com-
munication steps. It also achieves three new lower bounds presented in this paper. In the
future, we plan to design other two-step Atomic Broadcast algorithms which gracefully
handle non-leader process failures when no two processes broadcast at the same time.
This assumption allows one to circumvent the second impossibility result from Section 5.
Finally, we would like to formalize our notation as a TLA+ module [15].
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A Proofs

A.2 X-Register

Theorem A.1 (Agreement). If both decidep(v) and decideq(w) have been invoked, then
v = w.

Proof. Without loss of generality we can assume v 6= X, so process p has invoked
decide1(v). Therefore, the owner must have invoked propose(v 6= X), so decide2

q has not
been invoked. Therefore, q has invoked decide1

q(w), in which case the assertion follows
from the Agreement property of ereg.

Theorem A.2 (X-Performance). If the owner invokes propose(X) at time t, then all
processes will have invoked decide(X) by time t+ 1.

Proof. The assumption implies that all processes will have get proposeowner(X) by time
t+ 1 and thus invoke decide2(X).

Validity, Termination, and Performance follow from the analogous properties of the
Eventual Register.

A.3 Eventually Weak Interactive Consistency

Theorem A.3 (Well-formedness). A given process p invokes xreg[i].propose(v) for at
most one v.

Proof. If p = pi, then propose(v) has been invoked. If p 6= pi, then v = X.

Theorem A.4 (Validity). Invoking decideq([v1, . . . , vn]) implies that propose(vi) has
been invoked by process pi if (i) vi 6= X or (ii) before timeout ticked at any process
either: (a) decideq([v1, . . . , vn]) was invoked, or (b) Ω stabilized with pi.

Proof. If q has invoked xreg[i].decide(vi), then Validity of xreg[i] implies that some pro-
cess p must have invoked xreg[i].proposek(vi) for some k ∈ {1, 2, 3}. To conclude that
p = pi we must prove that k 6= 3. This is implied by each of the following conditions:
(i) vi 6= X, (ii) (a) decideq was invoked before timeoutp, so xreg[i].proposekp(vi) was
invoked before timeoutp, (b) timeoutp and leaderp 6= pi are never true at the same time.

Theorem A.5 (Agreement). If decidep([v1, . . . , vn]) and decideq([w1, . . . , wn]) have been
invoked, then [v1, . . . , vn] = [w1, . . . , wn].

Proof. Follows from Agreement of xreg[i] for all pi.

Theorem A.6 (Termination). If the eventual leader has proposed, then every correct
process will eventually decide.
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Proof. Assume that all proposep actions are disabled and will remain disabled forever
(this must eventually happen). Also, assume that Ω has stabilized with l. Then, for any
i, process l is the only one able to invoke xreg[i].propose. We need to prove that l will
keep invoking xreg[i].propose forever for every pi. If pi = l, then since l has proposed,
leaderl will be executed infinitely many times. Similarly, if pi 6= l, then timeoutl will
eventually tick and timeoutl will be executed infinitely many times.

Theorem A.7 (Performance). If (i) all processes proposed by t + 1, and (ii) all pro-
cesses with proposals v 6= X proposed by t, then by time t+ 2 (i) all processes decided, or
(ii) timeout ticked at at least one process.

Proof (Performance). Consider the execution of the system until time t + 2 and assume
timeout does not tick at any process. Then, for no pi is timeoutpi ever executed, so
xreg[i].propose is only invoked by pi. Assume that pi has proposed vi. If vi 6= X, then
Performance of xreg[i] implies that xreg[i].decide will be invoked at all processes by t+ 2
. On the other hand, if vi = X, then X-Performance of xreg[i] implies that xreg[i].decide
will be also invoked at all processes by (t+ 1) + 1 = t+ 2.

A.4 Eventually Weak Atomic Broadcast

We use action(v) to denote the instance of action action where the value of the free
variable “v” in the guard of action is v. For example, deliverp(t) denotes the instance
of deliverp with the specified value of t.

We make two technical assumptions about ewic[t].timeout. First, at any time, there
is t such that for no s > t has ewic[s].timeout ticked at any process. Second, in stable
runs, ewic[t].timeoutq does not tick earlier than ∆ > 2 units of time after ewic[t].propose
was invoked. We also assume that the value time of the current time is increased after
each action execution.

Theorem A.8 (Well-formedness). For any process p and time t, ewic[t].proposep is
invoked at most once.

Proof. Follows from the fact that getp times(t) can be executed only once.

Lemma A.9. Action deliver(t) will eventually be executed for every t at every correct
process p.

Proof. Assume that Ω has stabilized with l, which will (eventually) invoke ewic[t].propose.
Then, Termination of ewic[t] ensures that ewic[t].decidep will eventually be invoked, which
implies the assertion.

Theorem A.10 (Termination). Let l be the eventual leader. Eventually, every message
sent by l will eventually be delivered by every correct process.

Proof. Assume Ω stabilized at time s. Let T > s be a time for which no ewic[T ′].timeout
with T ′ > T ticked before time s at any process. Assume that l invoked abcast(m) after
time T . Then, m will eventually be added to listl and eventually ewic[t].proposel(listl 3
m) will be invoked for some t > T . Note that at no process did ewic[t].timeout tick
before time s. Therefore, Validity of ewic[t] implies that any ewic[t].decide([v1, . . . , vn])
will have m ∈ vl. Lemma A.9 implies that deliver(t) will eventually be executed, so m
will be delivered.
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Theorem A.11 (Uniform Agreement). If a process delivers a message m, then all
correct processes will eventually deliver m.

Proof. The assumption implies that there is t such that ewic[t].decide([v1, . . . , vn]) has
been invoked with some vi 3 m. Agreement of ewic[t] implies that any invocation of
ewic[t].decide([w1, . . . , wn]) will have wi = vi 3 m. Lemma A.9 implies the assertion.

Theorem A.12 (Performance). A message broadcast at time t will be delivered to all
processes by t+ 2 + δ.

Proof (Performance). For any time s, all processes invoke ewic[s].propose at time s.
Therefore, assuming ∆ > 2 in the ewic[s].timeout implementation, Performance of ewic[s]
implies all processes will invoke ewic[s].decide by s + 2. Therefore, all processes will ex-
ecute deliver(s) by s + 2. If process p invokes abcast(m) at time t, then it invokes
ewic[s].propose(list 3 m) at s < t + δ. As a result, m will be delivered by all processes
by s+ 2 < t+ 2 + δ.

For the proof of Uniform Validity and Uniform Total Order see Appendix A.4.1.

A.4.1 Quiet version

Lemma A.13. Assume that lastd ≥ t and ewic[t].decide([v1, . . . , vn]) with some vi 6= X
has been invoked, then deliver(t) has been executed.

Proof. Consider the instance of deliver(t′′) that increased lastd from t′ < t to t′′ ≥ t.
Since ewic[s].decide([X, . . . , X]) for all s ∈ (t′, t′′), we have t /∈ (t′, t′′). Since t ∈ (t′, t′′],
we have t = t′′.

Theorem A.14 (Uniform Validity). For any message m, every process delivers m at
most once and only if some process has broadcast m.

Proof. Assume abcast(m) is called at most once, say by process p. Then m is added to
listp at most once, and never to listq for processes q 6= p. Since active empties list,
there is at most one pair (p, t) such that ewic[t].proposep(list 3 m) is invoked. Therefore,
by Validity of ewic, only for this (p, t) can ewic[t].decide([v1, . . . , vn]) be invoked with
vp 3 m. Similarly, if no process has ever broadcast m, then there will be no (p, t) with
that property.

Lemma A.15. If a correct process p invokes active(t) at time t′, then any correct process
q will eventually (by t′ + 1 in stable runs) invoke ewic[s].propose for all s ≤ t.

Proof. Eventually (by t′+1 in stable runs), process q will have timeq > t and getq activep(t).
If listq = X, then after a potential execution of passive, we will have t ≤ lastpq. If
list 6= X, then a potential execution of active will also result in t < timeq ≤ lastpq. The
assertion follows from the meaning of lastpq.

Lemma A.16. If ewic[t].decide([v1, . . . , vn]) with some vi 6= X is invoked, then t is ac-
tive.
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Proof. By Validity of ewic[t], process pi has invoked ewic[t].propose(vi 6= X).

Since for any time t, there are only a finite number of active times earlier than t, the
following lemma allows us to use induction on lastp and lastd.

Lemma A.17. If not equal to −∞, variables lastp and lastd are active times.

Proof. The former follows from the body of active and the guard of passive. The latter
is implied by Lemma A.16.

Lemma A.18. Let t be a time. If a correct process p invokes ewic[s].decide([vs1, . . . , vsn])
for all s ≤ t and vti 6= X for some pi, then (eventually in non-stable runs) lastd ≥ t.

Proof. For the sake of contradiction assume that time s < t is the maximum value
lastd ever achieves. Also let t′ > s be the earliest time for which process p has in-
voked ewic[t′].decide([v1, . . . , vn]) with some vi 6= X. Obviously, t′ ≤ t so deliver(t′) will
(eventually in non-stable runs) be executed. Therefore, the value of lastd will be increased
from s to t′, which contradicts the assumption.

Lemma A.19. Assume that, for some time t, message m, and process pi, all invocations
of ewic[t].decide([v1, . . . , vn]) have m ∈ vi. If a correct process p invokes active(t′) with
t′ ≥ t, then eventually every correct process q delivers m.

Proof. Assume that Ω has stabilized with l. Lemma A.15 implies that l will (eventu-
ally) invoke ewic[s].propose for all s ≤ t ≤ t′. Then, Termination ewic[s] implies that
ewic[s].decideq([vs1, . . . , vsn]) will eventually be invoked. From the assumption, we have
m ∈ vti, so Lemma A.18 implies that eventually lastdq ≥ t. Therefore, Lemma A.13
proves the assertion.

Theorem A.20 (Termination). Eventually, any message broadcast by the eventual leader
l will eventually be delivered by every correct process q.

Proof. Assume Ω stabilized at time s. Let T > s be such that no ewic[T ′].timeout with
T ′ > T ticked before time s at any process. Assume that l invoked abcast(m) after
T . Then, m will eventually be added to listl. Therefore, activel for some t > T will
eventually be executed, resulting in invoking activel(t) and ewic[t].proposel(listl 3 m).
Note that at no process did ewic[t].timeout tick before time s. Therefore, Validity of
ewic[t] implies that any ewic[t].decide([v1, . . . , vn]) will have m ∈ vl. Lemma A.19 proves
the assertion.

Lemma A.21. If a process has executed deliver(t), then eventually a correct process will
invoke active(t′) with t′ ≥ t.

Proof. Follows from the fact that at least one correct process invokes abcast infinitely
many times. (The assumption about deliver(t) is not necessary in this version of ewab.)

Theorem A.22 (Uniform Agreement). If a process p delivers a message m, then ev-
ery correct process q will eventually deliver m.

25



Proof. The assumption implies that process p has executed deliver(t) and also invoked
ewic[t].decide([v1, . . . , vn]) with some vi 3 m. Lemma A.21 ensures that eventually a
correct process will invoke active(t′) with t′ ≥ t. Agreement of ewic[t] and Lemma A.19
prove the assertion.

Theorem A.23 (Uniform Total Order). If a process p delivers a message m′ after a
message m then a process q that delivers m′ has previously delivered m.

Proof. For r ∈ {p, q}, let tr be the earliest time, for which action deliverr(tr) delivers
m′. Assume tp > tq, so eventually lastdp ≥ tp > tq. Then, Agreement of ewic[tq] and
Lemma A.13 imply that deliverp(tq) must have been executed and m′ delivered, which
contradicts the definition of tp. Therefore, tp ≤ tq, so eventually tp ≤ tq ≤ lastdq.

Assume m is first delivered at p by deliver(t) for t ≤ tp ≤ lastdq. By Agreement of
ewic[t] and Lemma A.13, action deliver(t) is also executed at q and delivers m. This
implies the assertion because t ≤ tp ≤ tq (if t = tp = tq, then note that deliver(t) delivers
messages m and m′ in same order at p and q).

Lemma A.24. In stable runs, lastp ≤ time.

Proof. The variable lastp gets updated by active and passive. The former obviously
preserves the invariant. Since we assume synchronized clocks, activeq(t) in the guard of
passive cannot become true before active(t) is invoked at q, which happens at time t.
Therefore, t ≤ time, so the invariant is preserved as well.

Lemma A.25. Let s be a time and t be the earliest active time not earlier than s. In
stable runs, at no process p will ewic[s].timeout tick before t+ 2.

Proof. Consider the moment when ewic[s].propose was invoked at p by active or passive.
After the execution of the action we have lastp ≥ s, so lastp ≥ t because of Lemma A.17.
Lemma A.24 implies that time ≥ lastp ≥ t, which means that ewic[s].propose could not
have been invoked before time t. Therefore, assuming that ∆ > 2 in the ewic timeout
implementation, ewic[s].timeout will not tick before t+ 2.

Lemma A.26. Let s be a time and t be the earliest active time not earlier than s. In
stable runs, all processes invoke ewic[s].decide by time t+ 2.

Proof. Action active is the only place where ewic[s].propose(v 6= X) can be invoked,
so all ewic[s].propose(v 6= X) were invoked at time s ≤ t. Since t is active, at least one
process invoked ewic[t].propose(v 6= X) and active(t), so Lemma A.15 implies that by t+1
all processes have invoked ewic[s].propose. Therefore, Lemma A.25 and the Performance
property of ewic[s] imply the assertion.

Theorem A.27 (Performance). A message broadcast at time t will be delivered at all
processes by time t+ 2.
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Proof. Since time is increased after each action execution, Lemma A.24 implies that
active is enabled whenever list 6= X. Assume pi invokes abcast(m) at time t, which
adds m to list and enables active, which is immediately executed. As a consequence,
ewic[t].propose(list 3 m) is invoked.

Let s ≤ t be a time and t′ be the earliest active time not earlier than s. Since time t is
active, we have t′ < t and Lemma A.26 implies that all processes will invoke ewic[s].decide
by t′ + 2 ≤ t+ 2. In particular, Lemma A.25 and the Validity condition of ewic[t] imply
ewic[t].decide([v1, . . . , vn]) will have m ∈ vi. Therefore, Lemmata A.18 and A.13 imply
that deliver(t) will be executed by time t+ 2 and deliver m.

A.4.2 Pingless version

Lemma A.28. If active(t) has been invoked, then t is active.

Proof. If invoked in active, then obviously true. If in decide, it follows from Lemma A.16.
Action relay is executed only if active(t) has been invoked before.

Lemma A.29. If a correct process p invokes ewic[t].decide([v1, . . . , vn]) with some vi 6=
X, then each correct process will eventually invoke active(t).

Proof. Process p will execute decide(t), which will invoke active(t), so eventually all
correct processes will execute relay(t).

Lemma A.30. Let t be a time. If a correct process p invokes ewic[s].decide([vs1, . . . , vsn])
for all s ≤ t and there is vti 6= X, then (eventually in non-stable runs) lastd ≥ t.
(Lemma A.18)

Proof. For the sake of contradiction assume that time s < t is the maximum value
lastd ever achieves. Also, let t′ > s be the earliest time for which p has invoked
ewic[t′].decide([v1, . . . , vn]) with some vi 6= X. Obviously, we have t′ ≤ t and from
Lemma A.29 used for t′ we can conclude that deliver(t′) will eventually be executed.
Therefore, the value of lastd will be increased s to t′, which contradicts the assumption.

Lemma A.31. If a process has executed deliver(t), then eventually a correct process will
invoke active(t′) with t′ ≥ t. (Lemma A.21)

Proof. The assumption implies that a majority of processes have invoked active(t), which
includes at least one correct process.

Theorem A.32 (Performance). A message broadcast at time t will be delivered at all
processes by t+ 2.

Proof. The assumption implies that active(t) is invoked by the sender at time t. Therefore,
all processes will invoke active(t) at time t + 1 (action relay). Therefore, at time t + 2
every process will know that active(t) has been invoked at every process, so Theorem A.27
implies the assertion.

All other proofs from Appendix A.4.1 can be used for the pingless version of ewab.
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A.5 Atomic Broadcast

Theorem A.33 (Uniform Validity). For any message m, every process delivers m at
most once and only if some process has broadcast m.

Proof. Follows from fact that deliver eliminates duplicates and Uniform Validity of ewab.

Theorem A.34 (Termination). If a correct process p broadcasts a message m, every
correct process q will eventually deliver m.

Proof. Assume that l is the eventual leader. If process p invokes abcast(m), then even-
tually m is permanently added to blist l. Therefore, l will invoke ewab.abcast(blist 3 m)
infinitely many times. Hence, by Termination of ewab, action deliver with v 3 m will
eventually be executed at every correct process and m will be delivered.

Uniform Agreement, Uniform Total Order, Performance, and Quietness follow from
the analogous properties of ewab.

28


