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Abstract

The paper reports on experiences of mechanizing various proposals for
compositional reasoning in concurrent systems. The work uses the UNITY
formalism and the Isabelle proof tool. The proposals investigated include ex-
istential/universal properties, guarantees properties and progress sets. The
paper mentions some alternative proposals that are also worth of investiga-
tion. The conclusions are that many of these methods work and are suitable
candidates for further development.
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1 Background

Compositional reasoning means proving properties of a system from the prop-
erties of its components without reference to the components’ implementations.
Much research has concentrated on how to verify simple program units. Model
checkers can cope with complex systems, which are formalized as monolithic
units. Nonetheless, without compositional reasoning, we shall quickly exceed
any verification tool’s capacity. In the future, program components will increas-
ingly be reused and combined to form complex systems—which we hope can be
verified.

The present work is in the context of concurrent systems and uses the UNITY
formalism [3]. Concurrent systems are becoming ubiquitous: the cash machine
network is a giant concurrent system, and common desktop applications such as
Web browsers and file explorers are multi-threaded. Concurrent systems are dif-
ficult to get right because of their inherent nondeterminism: even known faults
can be difficult to reproduce. UNITY is an extremely simple formalism for con-
currency. It supports reasoning about abstract implementations, but it also allows
reasoning about programs on the basis of specifications alone. It has no claim
to be sophisticated enough to support the verification of real-world programs; in-
stead, its simplicity makes it easy to mechanize using mechanical proof tools.
Its meta-theory is straightforward and easy to verify mechanically. UNITY is an
ideal basis for experimenting with new techniques such as those for compositional
reasoning. Lessons learned from UNITY can then be transferred to more sophis-
ticated temporal formalisms.

This paper summarises several years of research into mechanizing composi-
tional reasoning in UNITY. The common thread is the transfer of pencil and
paper methods to computer based proof tools: specifically, Isabelle [24]. Pencil
and paper methods rely on informal mathematics, but computer-based tools must
inevitably use formal logic. Some of the assumptions implicit to the pencil and
paper world are not easily accommodated in formal logic; moreover, because they
are implicit, their importance can be underestimated and their very existence can
be overlooked.

This paper reports experiments involving several techniques for compositional
reasoning:

• existential and universal properties

• the guarantees relation, which is part of the previous technique [4, 7]

• progress sets [16]

Some of this work is in collaboration with my colleague Sidi Ehmety. We have had
mixed results with these methods and attempt to summarise our findings below.
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In the interests of brevity, this paper keeps details to a minimum. Please refer to
cited papers for complete descriptions of the various experiments.

Before continuing, I should address Leslie Lamport’s points in his paper
“Composition: a way to make proofs harder” [14]. His paper actually devotes
little of its 21 pages to composition. Much of the paper is an exposition of Lam-
port’s temporal logic of actions (TLA) [13]. This formalism is a sophisticated
rival to UNITY that has had some acceptance in industry. Lamport notes that to
decompose a monolithic system into components is unnecessary when the original
system can be verified using a model checker. In other words, he is talking about
decomposition: the act of adding structure to an existing program. He does not
consider composition (as is understood in the present paper) until his penultimate
section, where he refers to reusable software and notes that engineers rarely verify
the systems they build at present (1997 in his paper). They still do not verify their
systems in 2003, and one objective of this research is to allow future engineers to
do so.

Paper outline: we begin with a brief overview of the UNITY formalism (§2)
followed by an outline of Isabelle/UNITY (§3), which is an UNITY implemen-
tation using the Isabelle proof tool [24]. Then we consider three techniques for
compositional reasoning in turn: existential/universal properties (§4), guarantees
reasoning (§5), and progress sets (§6). We briefly consider some alternative tech-
niques (§7) that other researchers might investigate, and finally present brief con-
clusions (§8).

2 The UNITY Formalism

A UNITY program is a set of atomic actions that operate upon a shared program
state [20, 21]. An execution step applies an action to the current state, result-
ing in a new state. Among the actions must be skip, which leaves the state un-
changed: these are called stuttering steps. This requirement simplifies the theory.
Actions are chosen nondeterministically. Although traditionally actions have been
assumed to be deterministic and total, both of these assumptions are unnecessary:
an action can be an arbitrary relation over pairs of states. Intuitively, a program
state is simply a map from variables to their values. Formalizing this intuition is
difficult: for example, it may require committing ourselves to a particular defini-
tion of “value.”

Execution of a program F begins in a state satisfying the initial condition,
written Init F . The primitive safety operator is constrains, which is abbreviated
as co. A constrains assertion is like a Hoare triple; a program satisfies A co B
provided that each of its actions takes any state in A to some state in B. The stable
assertion stable A abbreviates A co A: once execution enters the set A it can never
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leave. An invariant assertion is one that holds initially and that is preserved by all
actions: invariant A means that A is stable and all initial states belong to A.

A state predicate—such as A or B above—is simply a set of states. Program
properties such as A co B can also be formalized as sets, identifying a property
with the set of programs satisfying it. Thus, F ∈ A co B means that the program
F satisfies the property A co B. We can define stable and invariant in terms of
co as follows:

stable A , A co A

invariant A , {F | Init F ⊆ A ∧ F ∈ stable A}

Liveness and progress properties are proved under some fairness constraint.
Weak fairness is the standard choice. It requires that if some action is continuously
enabled (in other words, it could be executed) then the action will be executed in-
finitely often [20]. In a private communication, Ernie Cohen has recommended
unconditional fairness. It simply requires that each action must be executed in-
finitely often. If all actions are total, then weak fairness and unconditional fairness
coincide. Non-total actions exhibit behaviour that cannot be implemented. At the
extreme is the empty action. Unconditional fairness insists that it be executed
infinitely often, which is impossible; therefore, there are no fair traces, and all
liveness properties hold vacuously. Non-total actions are analogous to imaginary
numbers: we may not know what to do with them, but they lead to interesting
mathematics. We have a precedent for them in the “miraculous statements” of
the refinement calculus [23]. The choice of unconditional fairness simplifies the
theory while increasing its expressiveness.

The primitive progress properties are transient, ensures and 7→ (“leads-to”).
A program satisfies transient A if some action takes A to A, the complement of A:
intuitively, the action falsifies A. The program satisfies A ensures B if it takes
A to B by an atomic action. It is expressed as follows, where A r B abbreviates
A ∩ B:

A ensures B , transient(A r B) ∩ ((A r B) co (A ∪ B))

The set satisfying A ensures B is the intersection of two other sets of programs:

• transient(A r B) is the set of programs that cannot stay in A r B forever.

• (A r B) co (A ∪ B) is the set of programs that stay in A until they enter B.

The leads-to relation, written A 7→ B, is the transitive and disjunctive closure of
the ensures relation. Disjunctive closure means that if F ∈ Ai 7→ B for all i in I
then F ∈ (

⋃
i∈I Ai) 7→ B.
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UNITY’s substitution axiom allows any program invariant to be conjoined
with state formulas in any UNITY assertion. The intuition is that if, for example,
x is always an even number, we can use this fact in proofs. Sanders [28] has
shown the original form of the axiom to be unsound, but a similar effect can be
obtained using rather obvious definitions. Let reachable(F) denote the set of
states reachable in the program F . Weak forms of the various program properties
are defined by restricting the original versions to reachable states:

A cow B , {F | F ∈ (reachable(F) ∩ A) co B}

stablew A , A cow A

always A , {F | Init F ⊆ A ∧ F ∈ stablew A}

A 7→w B , {F | F ∈ (reachable(F) ∩ A) 7→ B}

These weak properties satisfy many of the same laws as the strong ones, but are
less amenable to compositional reasoning.

The UNITY theory comprises a large number of laws that follow from the
definitions and that can be used to reason about programs. Among these is the
progress-safety-progress (PSP) law:

F ∈ A 7→ A′ F ∈ B co B ′

F ∈ (A ∩ B) 7→ ((A′ ∩ B) ∪ (B ′
r B))

Unfortunately, temporal reasoning is often unintuitive. Consider the program
whose sole action is x := x+1. Obviously, if the current value of x is k then
eventually that variable’s value will be k + 1. However, the formal proof of
x = k 7→ x = k + 1 requires an application of PSP, combining a proof that
x = k must eventually be falsified with a proof that if x = k now then the next
state must satisfy x = k or x = k + 1. The blame for this convoluted proof lies
not with UNITY but with the intrinsic complexity of concurrent systems. Proving
x = 0 7→ x = k is much harder still.

3 UNITY in Isabelle

Isabelle [24] is an interactive proof tool providing a high degree of automation.
The simplifier performs conditional rewriting and arithmetic reasoning; the clas-
sical reasoner proves subgoals using tableau methods. Isabelle’s Isar language
allows proofs to be expressed either in an imperative tactic style, or as readable
structured arguments. Its document preparation system automatically typesets for-
mal developments using LATEX.
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Isabelle supports reasoning in a number of different logics. Isabelle/HOL is
its instantiation to higher-order logic, while Isabelle/ZF is its instantiation to ax-
iomatic set theory [27]. Higher-order logic is an outstanding formalism for ma-
chine verification because of its polymorphic type system. Set theory provides
an untyped formalism. Types have been a source of difficulties in our UNITY
experiments, so we have built UNITY environments on top of both HOL and ZF.

UNITY is traditionally presented as an axiomatic theory. When it comes to
mechanizing the theory for a proof tool, it is best to proceed by formalizing the
operational semantics, proving the “axioms” as theorems. Most other researchers
also follow this approach [1, 12]. The same mechanisms that let Isabelle support
multiple logics also allow the derived UNITY theorems to be used as if they were
primitive rules of inference.

Both of the Isabelle UNITY formalizations represent state predicates as sets
of states, program actions as relations on states and program properties (such as
A 7→ B) as sets of programs. I have previously described a mechanization of
UNITY using Isabelle/HOL [25]; the Isabelle/ZF mechanization was derived from
the Isabelle/HOL one, so naturally the two versions have much in common. As of
this writing, the Isabelle/ZF one is undocumented.

The concept of program state is deliberately left underspecified so that it can
be tailored to specific examples. In the Isabelle/HOL version, the entire UNITY
theory is polymorphic, which lets each program component define its own type
of states. In the Isabelle/ZF version, the UNITY theory refers to an abstract set
of states, which users constrain later by asserting axioms to specify the types of
variables as they are introduced. Any use of axioms runs the risk of introducing
a contradiction, in this case giving a variable two different types. While the risk
might be unacceptable in a commercial verification project, it is tolerable for the
purposes of research.

4 Existential and Universal Properties

Let X be a program property, perhaps expressing safety or progress. Property X
is existential when it holds in each system some of whose components satisfy X .
The property is universal when it holds in each system all of whose components
satisfy X . These concepts are not specific to UNITY and can be defined for any
notion of system composed of parts. Charpentier and Chandy [6] illustrate them
on bags of coloured balls. In the realm of cooking, the property gluten-free is
universal: for a meal to count as gluten-free, all its ingredients must be organic.
The property contaminated is obviously existential.

Let us transfer these concepts to UNITY systems. The composition F t G
of programs F and G is the program whose set of actions is the union of those
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of F and G and whose set of initial condition is the conjunction of those of F
and G [18]. Composition is only defined if F and G are compatible, a concept
that we need not elaborate here. With this definition, composition is obviously
commutative and associative. It also has an identity element: the trivial program
whose sole action is skip and whose initial condition is true. We can analogously
define the composition

⊔
i∈I Fi of the family {F}i∈I of programs indexed by the

finite, non-empty set I .
Strong safety properties are compositional. If F ∈ A co B and G ∈ A co B

then F t G ∈ A co B, since an action of F t G is either an action of F or an
action of G and therefore takes the precondition A to the postcondition B. The
converse direction holds too: we have the equivalence

F t G ∈ A co B ⇐⇒ (F ∈ A co B) ∧ (G ∈ A co B).

Among the other safety properties is the inheritance of strong invariants:

F ∈ invariant A G ∈ invariant A
F t G ∈ invariant A

Thus, A co B and invariant A are universal properties.
Unfortunately, weak safety properties are not compositional [25, §9.4]. The

difficulty is the lack of a simple expression for reachable(F t G) in terms of
reachable(F) and reachable(G).

Progress properties are not compositional in general. We cannot infer F tG ∈

A 7→ B from F ∈ A 7→ B and G ∈ A 7→ B for the obvious reason that the
programs F and G might interfere with one another. However, transient properties
are compositional:

F t G ∈ transient A ⇐⇒ (F ∈ transient A) ∨ (G ∈ transient A)

Thus, transient A is an existential property.
Chandy and Sanders [4, §7.2] describe a simple way to obtain compositional

reasoning for progress. They abandon UNITY’s traditional primitive progress
property, the ensures relation. Since ensures is a combination of transient and
constrains, it is neither existential or universal. As an alternative base case, they
suggest the following:

F ∈ transient A
F ∈ A 7→ A

Because transient is an existential property, this inference supports compositional
reasoning. The leads-to properties can be combined using transitive and disjunc-
tive closure and using the PSP law mentioned above. However, removing ensures
from our vocabulary is but a small advance.
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The primary problem with relying on existential and universal properties is
identifying such properties in the first place. Charpentier and Chandy [6, §4]
have shown that for every property X there exists a weakest existential prop-
erty WE(X) that implies X . This is the best we could hope for: an existential
property that is strong enough to imply X and no stronger. They define WE(X)

to be the union of all existential properties that are stronger than X ; the union is
obviously stronger than X , and the point is that it is also an existential property.
Charpentier also shows that there is no weakest universal operator. Coming up
with universal properties therefore requires creativity. In a separate paper, Char-
pentier and Chandy [5] present two proofs involving universal properties in order
to demonstrate this creative process.

• Their first proof concerns a toy example. There is a set of components, each
with a separate counter but also sharing a global counter. We must prove a
safety property: that the global counter equals the sum of the local counters.

• The other verification, which is more complicated, concerns a system of
processes with conflicting priorities. A directed graph represents the con-
straints. We must prove a liveness property: that every process will eventu-
ally get the top priority.

My colleague Sidi Ehmety has mechanized all this material using Isa-
belle/UNITY [11]. The theory of the weakest existential property was almost
trivial to mechanize: several pages of hand proofs collapsed down to a few lines
of Isabelle proof script. The examples involving universal properties were also
easy to mechanize. The proof script for the toy example comprises 15 theorems,
each proved using one or two commands. Many of the proofs are simple induc-
tions or immediate from the definitions. The final compositional proof is trivial,
as the authors intended it should be. The priority system example rests on a theory
that defines basic concepts of graphs. Not counting this preliminary theory, the
development of comprises 30 theorems. Again most of them are proved using one
or two commands, although few of the proofs are a bit longer. The compositional
part of the reasoning comprises three lemmas whose statements and proofs fit on
single screen. Thus, the complicated example turns out to be only slightly more
difficult to handle than the toy one.

Our experience with existential and universal properties is positive. The dra-
matic collapse in proof length in the theory of weakest existentials is not unusual
in mechanical developments of meta-theory. It would be nice if we could see such
a reduction in verifications of actual systems, but at least no special difficulties
emerged.
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5 Guarantees and the Allocator Example

If X and Y are program properties, then so is X guarantees Y . The program F
satisfies X guarantees Y provided for every program G, if F t G satisfies X then
F t G also satisfies Y . Charpentier and Chandy have shown that guarantees can
also be expressed in using the weakest existential operator: X guarantees Y is
the weakest existential property that is stronger than X implies Y . Formally, if
we regard program properties as sets of programs, then X guarantees Y equals
WE(X ∪ Y ).

Since the guarantees operator is just an example of an existential property, one
might think that the previous section has covered all relevant issues. This view
would be incorrect for two reasons: first, the guarantees operator has a specialised
theory of its own, and second, the main example demonstrating its use highlights
several other issues that are relevant to compositional reasoning as a whole.

The example is Chandy and Charpentier’s token allocation system [2]. A fam-
ily of clients request tokens from a central allocator, which attempts to meet those
requests from the remaining supply of tokens. Requests and responses are deliv-
ered over a network. The family of clients can be presented to the central allocator
as a single, virtual client: merging and distribution networks channel messages to
and from the real clients. The components are assumed to be well-behaved: they
never make unreasonable requests and they respond to all reasonable requests.
The objective is to prove that the system as a whole is well-behaved. All client re-
quests should eventually be met, and the number of tokens allocated should never
exceed the maximum allowed to exist.

Compared with any real-world system, this resource allocation example is still
a toy. Nevertheless, it is much more complicated than most other examples in the
literature. The issues it raises include the following:

• The representation of component states. Each component has some pri-
vate variables and therefore has its particular view of the state. Imposing
a uniform state on all programs is undesirable, especially if we hope that
components can be re-used. If there is no uniform state representation, then
we need a means of establishing a common one for the system at hand.

• The replication of components. There is a family of clients, each client
with a unique identity, but otherwise alike. It is natural to specify a single
client and to generate the family by replication. This is easy if each system
component has its own state representation, because the state representation
of a family of components is a function space. However, with a global state
representation, replication seems to require some form of subscripting.
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Ehmety and I have spent months grappling with these problems. There are a
number of different approaches, but they fall into one of two categories:

• Each component can have its own state representation, and they are com-
bined as the system is assembled. Program properties must be transferred
between a component’s state representation and the system one. If we are to
use a property of the form X guarantees Y , then we must be able to trans-
fer both X and Y from system states to component states and back again.
The difficulty lies in performing these transfers.

• A uniform, global state representation is imposed. The difficulty is that
the formal definitions may be overly rigid, allowing only a predetermined
collection of data types.

The simplest approach is strongly typed and represents each component’s state
by a record enumerating that component’s variables [26]. The system state will
be a similar record, but with more variables. Because the representations dif-
fer, not all program properties can be transferred. Those that can be transferred
include safety properties, both weak and strong. Liveness properties are diffi-
cult to transfer. It helps to adopt unconditional fairness, which defines the same
behaviour as weak fairness on real programs while having better theoretical prop-
erties. It allows liveness properties to be transferred from component states to sys-
tem states,1 although not in the opposite direction. It follows that we can handle
X guarantees Y where Y involves liveness, although X can only involve safety.
This restriction is serious and precludes a successful treatment of the allocator
example.

A variation on this strongly typed approach is to include in each record a
dummy variable polymorphic type [26]. This variable models the unknown part
of the state and is instantiated appropriately as the components are assembled. In
effect, all components share the common state representation. Program properties
can be transferred without restriction, including guarantees properties.

To adopt a uniform state representation, we can define a state to be a map from
variable names to values. Many researchers working with hand proofs take this
representation for granted, but I find it neither natural nor convenient. However,
Ehmety and I have built a UNITY environment using Isabelle/ZF to support this
state representation. We set out to improve upon Vos [29], who gave an earlier
formalization with a uniform state representation. Because ZF is untyped, we did
not have to define a value space using disjoint sums, with their attendant injection
and projection functions. Although Vos worked in higher-order logic, her use of

1We can interpret this result as saying that liveness properties can similarly be transferred even
under weak fairness, for programs containing only total actions—that is, for all real programs.
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a disjoint sum made her formalization untyped in spirit: every variable had type
Val.

In our ZF/UNITY environment, users do not have to specify types of variables
initially. A variable’s “type” can be any ZF set, such as the set of natural numbers.
Ehmety has found an ingenious method of making well-typing implicit, eliminat-
ing the need to conjoin all state predicates with a well-typing predicate. Despite
this device, proofs are more difficult in the ZF version of UNITY than they are in
the HOL version. Compared with Isabelle/ZF, Isabelle/HOL has better arithmetic
support and bigger lemma libraries, and it benefits from strong typing.

Ehmety [10] has investigated an unusual approach that combines a global state
representation with strong typing. The idea is due to Stefan Merz [17], who used
it in his implementation of TLA in Isabelle. It involves regarding the state space
as an abstract type with a coalgebraic structure. Instead of defining a specific
state type, we describe its desired properties axiomatically. Each variable is a
state inspector and the axioms ensure that variables can be updated independently.
We performed some experiments using this approach, but found the axioms too
unintuitive.

Our conclusion is that reasoning about guarantees is straightforward, but re-
solving the problem of state representation is not. On balance, the best approaches
are (1) individual state representations with polymorphic dummy variables, or (2)
Merz’s abstract state types. Both of these suggestions require complicated, unin-
tuitive definitions. This problem can be addressed by building a front end that ac-
cepts some verification formalism. We have conducted all our experiments using
pure logic. If we wish to make this work available to a wider class of users, then it
needs to be integrated with a development environment, which could take care of
the ugly details. Such an environment would be based not on UNITY—which is
too simple for use in real-world development—but on some richer temporal logic.

6 Proving Non-Interference with Progress Sets

Traditionally, compositional reasoning has often meant showing that a program
continues to satisfy a certain property even when it is composed with another
program. A recent contribution to this tradition is the method of progress sets,
due to Meier and Sanders [15, 16]. A progress set is a set of state predicates:
in other words, a set of set of states. It must be a complete lattice (closed under
intersections and unions) and satisfy a number of closure conditions. Among
the parameters in the definition of progress set is the state predicate T , which
identifies the set of program states currently of interest. The point of the method
is the progress set union theorem, whose premises are as follows:

• F is a program that satisfies the progress property A 7→ B ′
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• C is a progress set for the parameters F , T and B

• B ⊆ B ′ and B ′ ∈ C

• F satisfies stable T , meaning that no F-action leaves T

• G satisfies (X r B) co X for all X ∈ C

The conclusion is that F t G satisfies T ∩ A 7→ B ′.
This is a traditional non-interference result: if F makes progress and G satis-

fies a safety property, then their composition F t G satisfies something close to
the original progress property. Obviously G must contribute liveness properties
to F t G, since otherwise it serves no purpose. Sometimes F makes progress
and G has to wait, while other times G makes progress and F has to wait. The
parameter T facilitates this reasoning by identifying the condition under which it
is F’s turn to make progress. In order to reason about the progress made by G, we
must exchange the roles of F and G in the theorem. We eventually obtain several
leads-to properties about F t G that we can combine in order to derive the desired
properties of the system. Compared with guarantees, which can relate arbitrarily
complex program properties, reasoning by non-interference is rather low-level.

I have mechanized the theory of progress sets using Isabelle/HOL, along with
an underlying theory of predicate transformers for UNITY. The mechanization
was straightforward, although not trivial. I found some errors in the proofs and
even in the definitions. Unfortunately, the papers on progress sets [15, 16] include
no interesting examples. The only nontrivial example is a generalisation of the
dining philosophers problem, and its treatment is only sketched.

The main advantage of the progress set method is that it subsumes a number
of other methods for proving non-interference. Although I have mechanized the
formal development, I cannot claim to have grasped the intuitions behind progress
sets and I have no idea how to apply them in a program proof. An expository paper
by the method’s advocates would remedy this situation.

7 Methods Not Investigated

This section briefly discusses a number of methods for compositional reasoning
that—for a variety of reasons—were not deeply investigated.

The conditional properties of Misra [18] represent the traditional
rely/guarantee or assumption/commitment reasoning. If X and Y are arbitrary
program properties, then a typical conditional property for a program F states
that for every G that satisfies X , the combined program F t G satisfies Y . Recall
that a Chandy-Sanders guarantee is slightly different: if F t G satisfies X then
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F t G satisfies Y . Such guarantees are easier to use because all reasoning refers
to the complete system F t G. The advantage becomes clearer when we consider
a system of the form F1 t F2 t . . . t Fk: assumption/commitment forces us to
consider the k “environments” F2 t . . . t Fk , etc.

Assumption/commitment guarantees yield a natural style of reasoning. Count-
less researchers have investigated it, which is one reason for us not to do the
same. At a formal level, the rules governing assumption/commitment guarantees
are similar to those for Chandy-Sanders guarantees. Our experience is that the
latter works quite well with mechanical proof tools and is safe to assume that
the former type of guarantee would work equally well. It is also clear that the
state representation issues discussed above are equally pertinent with both types
of guarantees property.

Misra has proposed closure properties [19] as providing a more convenient
style of reasoning than assumption/commitment guarantees. Let X be a program
property. Then to say that F satisfies the closure of X is to say that F t G sat-
isfies X for all G. The closure of X is simply true guarantees X , with either
interpretation of guarantees. In fact, the closure of X is equivalent to WE(X), the
weakest existential property stronger than X . Thus, closure properties appear to
be subsumed by the forms of compositional reasoning that we have investigated.
However, Misra’s concept includes various type-checking and linking procedures
that may introduce additional expressive power.

Continuing with the work of Misra, we come to his programming language
Seuss [22], whose purpose is to ensure that concurrent programs behave no dif-
ferently from sequential ones:

Seuss fosters a discipline of programming that makes it possible to
understand a program execution as a single thread of control, yet it
permits program implementation through multiple threads. . . . A cen-
tral theorem establishes that multiple execution threads implement
single execution threads, i.e., any property proven for the latter is a
property of the former as well.

Recall that our project is concerned with compositional reasoning about con-
current systems. Seuss has no explicit concurrency primitives: its objective is to
demonte concurrency from a programming concept to an implementation detail.2

For this reason, Seuss lies outside the scope of our project.
Possibly worth investigating is the achievement property proposed by Ernie

Cohen [8]. Achievement is related to leads-to: the concepts coincide when the
postcondition is stable. The main advantage of achievement is that under certain
conditions, a system inherits the achievement properties of its components. The

2More information is availble from http://www.cs.utexas.edu/users/psp/welcome.html.
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theory is relatively straightforward and it should not be difficult to mechanize.
However, this work is for the future.

8 Conclusions

We have investigated several proposals for compositional reasoning about concur-
rent programs, focusing on their suitability for use with mechanical proof tools.
Many of our difficulties stem from assumptions prevalent in the world of hand
proofs that are not appropriate for machine proof. The representation of program
states remains a major issue: the requirement for a global program state is not eas-
ily achieved with mechanical proof tools. However, it certainly can be achieved if
enough effort is invested.

One unnecessary obstacle to progress is that many UNITY researchers use the
notation and proof style of Dijkstra and Scholten [9]. This notation does address
a real issue, namely that while predicate transformers act upon sets, sometimes
one would rather work with formulas. This issue could easily be addressed by
introducing a simple abbreviation for the set determined by a given formula, say
[p] to abbreviate {s | s satisfies p}. Instead, we are expected to use a notation in
which logical symbols sometimes behave as set operators and sometimes not, de-
pending upon their context. For example, A ⇒ B might mean A → B (Boolean
implication), A ⊆ B (the subset relation) or even A ∪ B. More than once I have
discovered that, after decipherment, the underlying formula is a well-known law
of set-theory and the accompanying proof is redundant. The dogma also demands
that all proofs be written in a linear fashion, whether it suits them or not; the result
can be baffling. If the UNITY community is to grow, the first step is to adopt
standard mathematical notation and terminology.

Many of the proposed methods for compositional reasoning appear to work.
They may not be convenient when expressed in the logic of a theorem prover, but
with a little implementation effort, the underlying complications can be hidden.
Much of the effort in this project has gone to addressing other problems. One
of the main problems is simply that temporal reasoning for program components
is counter-intuitive. We have come full circle: having come to a reasonable un-
derstanding of reasoning about monolithic programs, we have investigated ways
of reasoning about systems of programs. These reasoning methods work accept-
ably well, in that most of our time has been spent trying to prove properties of
the components. In other words, we should be focusing on more intuitive and
more productive ways of reasoning about program components, especially prov-
ing progress properties of components. We also need more examples. The Allo-
cation System is the only big example we have investigated, and other examples
might highlight other problems.
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