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Summary

Current research into Active Networks, Open Signalling and other forms of mobile code
have made use of the ability to execute user-supplied code at locations within the network
infrastructure, in order to avoid the inherent latency associated with wide area networks or to
avoid sending excessive amounts of data across bottleneck links or nodes. Existing research
has addressed the design and evaluation of programming environments, and testbeds have
been implemented on traditional operating systems. Such work has deferred issues regarding
resource control; this has been reasonable, since this research has been conducted in a closed
environment.

In an open environment, which is required for widespread deployment of such technologies,
the code supplied to the network nodes may not be from a trusted source. Thus, it cannot be
assumed that such code will behave non-maliciously, nor that it will avoid consuming more
than its fair share of the available system resources.

The computing resources consumed by end-users on programmable nodes within a network
are not free, and must ultimately be paid for in some way. Programmable networks allow
users substantially greater complexity in the way that they may consume network resources.
This dissertation argues that, due to this complexity, it is essential to be able control and
account for the resources used by untrusted user-supplied code if such technology is to be
deployed effectively in a wide-area open environment.

The Resource Controlled Active Node Environment (Rcane) is presented to facilitate the
control of untrusted code. Rcane supports the allocation, scheduling and accounting of the
resources available on a node, including CPU and network I/O scheduling, memory allocation,
and garbage collection overhead.

A prototype implementation of Rcane over the Nemesis Operating System is described; an
experimental evaluation is undertaken to demonstrate the value of such an approach. Sample
implementations of existing active network systems that have been adapted to use Rcane’s
resource control interfaces are presented.
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Chapter 1

Introduction

This dissertation argues that in order to realise practical programmable networks, robust
resource reservations and policing are necessary on the programmable nodes within the net-
work. It presents the design, implementation and evaluation of an architecture – Rcane –
for the resource-controlled execution of untrusted code in an open programmable network.
The architecture supports secure Quality of Service (QoS) provision to individual clients; it
prevents malicious, greedy or erroneous clients from interfering with the system or with other
clients by consuming excessive system resources and permits effective accounting and billing
to the remote clients.

1.1 Motivation

1.1.1 The Case for Mobility

The speeds achieved by computers and communications networks are continuing to improve
over time. However, in the field of distributed processing, two obstacles inevitably stand
in the way of such progress. These two obstacles are the inherent latency associated with
widely-distributed communications and the existence of bottlenecks within networks.

1.1.1.1 Inherent Latency

Firstly, the speed of light provides a fundamental limit on the speed of interactions be-
tween widely-separated computers. The round-trip time for interacting with a server half-
way around the circumference of the earth is, at an absolute minimum, about 200ms. This
assumes that the transmission proceeds at the speed of light in optical fibre1 – transmissions
in the current Internet suffer delays from switching and routing at multiple points along the
transmission path, with the result that packets typically take at least twice the theoretical

1The speed of light in fibre is approximately 66% of the speed of light in a vacuum
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minimum to reach their destination [Cheshire96]. Even techniques to adapt the Internet to
use optical switching techniques can only approach the fundamental lower bound.

When it is necessary to transfer a large quantity of streamed media or other data between two
widely separated locations, such latency may be difficult to avoid; however by anticipating
future requests and caching data at intermediate points in the network, it may be possible to
minimise the latency experienced.

Such caching and prefetching is not possible for applications and services for which each
communication between two remotely located endpoints (typically a client and server) is
unique. When a client is communicating with a server on the other side of the planet, and
needs to make a series of inter-related queries (e.g. navigating through a web application or
talking to a remote mail daemon), there are three factors affecting the time taken to complete
the interaction:

• the time taken at the server to process each query,

• the time taken at the client between successive queries, and

• the transmission latency in the round-trip between the client and the server.

For a large class of interactions, and assuming a properly engineered and sufficiently well-
provisioned server, the processing time at the server may be expected to be small.

If the activity is human driven (as in the case of many web application), the response time
of the human is likely to be the dominating factor; furthermore, since the processing of the
responses is being performed in an unpredictable and unspecifiable way – i.e. by a human
brain – such processing must take place at the client-side. However, when the client-side
processing may be computer-driven, as in the case of an email exchange, or in the case of
defining a macro for automating repetitive actions in a web application, the time taken for
client-side processing will be small. In this case, the high cost of the round-trip latency is the
dominant factor in the time for a task to be completed.

1.1.1.2 Bottlenecks

The second obstacle is that there will inevitably be regions of the network – typically at
or near the edges – where the available bandwidth is orders of magnitude lower than that
available within the core of the network. This is currently the case with the vast majority of
home subscribers to the Internet, who typically have 56Kbps connections over phone lines.
The adoption of technologies such as cable modems and Digital Subscriber Link (DSL) is
gradually improving this situation – however, it seems likely that these connections will remain
bottlenecks as core network speeds increase. Further bottlenecks are possible at congested
points within the network.

When attempting to process large sources of data (such as a video stream or a remote
database), the time taken to transfer the volume of data over the bottleneck link – lim-
ited by the bottleneck bandwidth, rather than the latency – may be the dominant factor in
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the time taken. In the case of a database query, the size of the eventual results required after
processing the data may be orders of magnitude smaller than the data itself. In the case
of a video stream, the user may be prepared to settle for a lower quality (and hence lower
bandwidth) of video if it allows the video to be received in real-time; however, if the provider
of the video does not make such a low-bandwidth stream available, the user has no alternative
but to transfer the entire stream over the bottleneck link. In both of these situations, the
ability to filter or process the high-bandwidth stream of data to produce a lower-bandwidth
representation before it has to cross a low-bandwidth or high-latency link would reduce the
time spent transferring data across the bottleneck.

1.1.2 Programmable Networks

With the rise of the World-Wide Web, the introduction of Java [Gosling95b] applets is an
example of a solution to the problem of inherent latency – by downloading program logic to
the client, the server can interact with the user’s display without the high latencies that would
otherwise occur. However, this solution is less effective in situations where the interaction is
characterised by a client querying a server to make use of a body of data maintained by that
server, such as when querying a database or posting to a news server.

An alternative is to permit such computation to be moved onto or toward the server. By
permitting clients to upload their own agents to be executed on the server, latency delays
can theoretically be reduced to a single round-trip time, even when multiple interactions are
required between the server and the client’s agent. A disadvantage of moving code to the
server is that it burdens the server provider with issues of security and resource control on top
of any work required to implement and maintain the server – hence in many cases it may be
more appropriate to move the client’s agent to specialised “computation servers” close to the
desired server. A further refinement, as espoused by the active networking community, is to
permit such processing to be performed within the forwarding path of the network switches.
This allows users to exploit application-specific networking requirements, so as to make more
efficient use of the network. These two approaches of moving program logic from the client
towards the server fall under the general field of programmable networks – permitting users
of the network to utilise the resources of nodes within the network in ways not forseen by the
network providers.

For the purposes of this dissertation, the term programmable network is used to refer to
a network in which some of the nodes provide programmable extensions to end users. To
obtain benefits from programmable networks it is not necessary that all nodes within the
network are programmable; indeed, a totally programmable network would be likely to be
counter-productive on efficiency grounds. The bulk of traffic in a network can be adequately
served by a traditional store-and-forward service model. The latency and processing overheads
experienced by flows through a programmable platform are likely to be substantially greater
than those experienced through a hardware router or switch, thus forcing all traffic through
a programmable platform would degrade the overall utility of the network.

The term open programmable network is used to imply that these programmable facilities are
available to all users of the network (possibly in return for an additional payment), not just
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those users employed by or trusted by the network providers. Thus the code being executed
on the network nodes may be untrusted. It is therefore vital that the network providers are
able to prevent user-supplied code from compromising the safety of the network nodes or the
stability of the network itself.

1.1.3 Untrusted Code

For the purposes of this dissertation, untrusted code is considered to be any executable code
that is supplied by a client to some kind of server (possibly an OS kernel, or a server within
the network), and that is executed by that server, but where there are no particular goals or
trust shared in common between the client and the server.

Thus this definition excludes certain instances of mobile code:

• When both the client supplying the code and the server running the code share some
common goals (e.g. within a single organisation, or a widespread group of co-operating
researchers), it is reasonable to assume that the likelihood of denial of service (DoS)2

attacks and excessively greedy applications is reduced. The resource control techniques
presented in this paper are still applicable in such environments, in order to improve
robustness or help differentiate the levels of QoS required by different activities; however,
the inevitable overhead incurred by robust resource control may mean that such control
is considered excessive for these situations.

• When the code is supplied by the server to the client3, it is unlikely that resources on
the client machine are as scarce as those on a server; moreover, although a DoS on a
client machine is likely to cause annoyance and inconvenience to the user, it is unlikely
to cause major problems to an enterprise. Thus whilst some form of resource control
can be useful to prevent malicious Java applets from mounting DoS attacks on web
browsers, the techniques presented in this dissertation may not be necessary.

1.1.4 Issues of Resource Control

With the increased flexibility provided by programmable networks comes a greater complexity
in the ways that server and network resources – including CPU time, memory and bandwidth
– may be consumed by end-users. In a traditional network, the resources consumed by an
end-user at a given network node may be roughly bounded by the bandwidth between that
node and the user; in most cases, the buffer memory and output link time consumed in storing
and forwarding a packet are proportional to its size, and the CPU time required is likely to
be roughly constant. Thus, limiting the bandwidth available to a user also limits the usage of
other resources on the node. The resources consumed by a client at a server can be similarly
bounded by limiting the rate at which requests from that client are accepted. Since in each

2A Denial of Service attack is one in which an attacker gains no direct benefit, but attempts to degrade
the service received by other users of a node or network.

3In this context a server is a multi-user system that receives requests, and a client is a single-user system
that makes requests.
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case the code to be executed is under the control of the server/network node, there is no
straightforward way for the client to circumvent such resource limits.

When the client is permitted to specify or customise the code that is executed on the server
or within the network, such resource control is more difficult. Security measures may be
employed to permit only those clients trusted by the node to supply code, but this defeats
many of the advantages that code mobility can provide. Language restrictions and formal
proofs may be used to verify that the code performs no intrinsically illegal actions, but the
task of deciding in advance whether a particular piece of code will consume excessive resources
is, in general, intractable. Even in the absence of specific DoS attacks, the task of allocating
resources according to a specified QoS policy is complicated by a lack of knowledge about the
behaviour of the user-supplied code.

Moreover, if programmable nodes and computation servers arise within the network, it is likely
that commercial pressures will require some form of charging for use of the services provided.
In return, users will expect some assured level of QoS. To offer such QoS guarantees, the
environment in which the code executes needs to provide isolation between different clients,
and fine-grained scheduling and accounting mechanisms.

1.2 Contribution

Diverse paradigms have previously been developed to allow the remote execution of code at
nodes within a network. These have included projects from within the active networks and
open signalling communities, and from the more general mobile code research communities.

Many of these earlier projects have focused on the basic security mechanisms required for the
safe execution of untrusted code. These mechanisms have involved the use of safe languages,
proof-carrying code and high-level interpreters. Negotiation for access to resources has also
been studied, particularly within the mobile code communities.

However, the mechanisms for regulating such access to resources once it has been granted,
to ensure that DoS attacks are preventable and to enable the provision of effective QoS
guarantees to the untrusted mobile code, have not previously been sufficiently studied.

Some projects have temporarily ignored the issue, on the grounds that the suppliers of the
code were trusted not to consume excessive resources or perform DoS attacks. This is a
reasonable approach to take when initially developing the high-level environment in which
the mobile code must run. However, to deploy such solutions in the real world is not practical.

Those projects that have considered resource control have tended to implement policing with
a very coarse granularity. Two solutions typically proposed have been:

• If the processing for any packet takes longer than a given period of time, then assume
that the packet is misbehaving and drop it.

• Employ a priority-based scheduler; at intervals check that threads are not exceeding
their allocated time, and reduce their priority if they are.
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Both of these solutions are unnaceptable if a node is attempting to support QoS guarantees
for clients, since they do not act on a sufficiently fine time scale.

Moreover, previous work on programmable networks has not sufficiently addressed the issues
of safely revoking and reclaiming the resources of clients who have exited or been aborted.
In a traditional operating system, using hardware protection between clients, each client is
typically sufficiently isolated and self-contained that revoking the client’s resources is rela-
tively straightforward. The software protection used by many programmable network node
prototypes provides a more lightweight environment; however these have typically provided
insufficient control over the reclamation of some of the node resources (such as memory and
threads) associated with departed clients, since there is no clear notion of resource ownership
at the virtual machine level.

Providing robust resource control helps to prevent direct DoS attacks on a programmable node
itself. A further problem that must be considered is that of preventing DoS attacks from being
launched by user code running on the node against other sites within the network. Whilst
identifying likely DoS behaviour in real-time is likely to be a hard problem, the maintenance
of accounting records (required for billing) will also facilitate tracing the culprit following a
DoS attack launched from a programmable network node.

The thesis of this work is that the provision of platforms for the general execution of untrusted
code within a network requires an architecture with support for:

• fine-grained resource partitioning, with accounting and scheduling

• lightweight communication between clients

• effective resource revocation

This dissertation gives a rationale for such resource usage. An architecture is presented,
along with a prototype implementation on the Nemesis operating system. The effectiveness
of the architecture is evaluated to demonstrate that it provides the above properties. In
addition, implementations of two resource controlled Active Network architectures, PLANet
and ANTS, have been developed over the abstractions provided by Rcane, together with an
implementation of a multicast protocol that utilises the flexibility provided by programmable
networks to trade memory consumption for bandwidth and latency.

1.3 Outline

The organisation of the remainder of this dissertation is as follows.

Chapter 2 provides background material relevant to this work. The development of networks,
from the earlier “passive” networks to the programmable nodes offered by active networks is
discussed. Relevant research in operating systems and safe languages is also reviewed.
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Chapter 3 discusses the resources that need to be controlled in the presence of untrusted
code, and the extent to which such control is required. It is argued that without such control,
widespread deployment of programmable nodes in a network is impractical.

Chapter 4 discusses the Nemesis operating system and the features that make it a suitable
platform for the resource control of untrusted code. Comparison is made with other operating
systems to establish the suitability of Nemesis as a base for Rcane.

Chapter 5 introduces the architecture for Rcane, an environment permitting the safe and
resource-controlled execution of untrusted code. The principles that guided its design are
discussed, and the abstractions used to allow controlled access to the resources on a node in
a programmable network are presented.

A prototype implementation of the Rcane architecture over the Nemesis operating system
and the Objective Caml (OCaml) language is presented in Chapter 6. An overview of the
implementation is followed by an examination of the modifications made to OCaml to adapt
it to the requirements of the Rcane environment, and a description of important aspects of
the implementation.

Chapter 7 provides an evaluation of the key features of Rcane through the use of microbench-
marks, and demonstrates that it provides an efficient mechanism for resource isolation between
multiple clients.

Chapter 8 examines the use of Rcane in the context of Active Networks; two different styles
of active networks and their implementation on Rcane are presented.

Finally, Chapter 9 summarises the main arguments of the dissertation and suggests avenues
for future research.
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Chapter 2

Background

This section provides background information to the development of the architecture pre-
sented in this dissertation.

2.1 Evolution of Network Services

2.1.1 Passive Networks

There has been much study of traditional passive networks – the most pervasive exam-
ple being the collection of networks communicating through the use of the Internet Pro-
tocol (IP) [Postel81]. This provides a common interoperability layer throughout the Internet.
Although clearly some form of processing (whether hardware or software) is occurring within
the routers and switches in a passive network1, the essential feature is that the interface pre-
sented to the user deals only in terms of data rather than code or customisability – the user
has no way to extend or customise the processing on a node within the network. Further-
more, although in many modern switches and routers the provider of the node can upgrade
the software on the node, such control generally occurs over a relatively long timescale.

The development of passive networks such as the Internet was guided by the principles given
in the end-to-end argument [Saltzer84], which states that certain functions of a distributed
system

can be correctly and completely implemented only with the knowledge and help
of the application standing at the end points of the [distributed] system

– i.e. that supplying complex functionality within the network is non-optimal, since it is
probable that such functionality will either duplicate work that the application needs to
carry out at a higher level, or will fail to meet the needs of most users. Following the thesis of

1The development of purely optical switches may herald the arrival of the truly passive network.
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these arguments, IP supports only an unreliable, unsequenced form of data delivery. Higher
level protocols such as TCP and UDP are implemented only at the end-points of the network2,
and IP must be mapped over all link layers.

The service abstraction presented by passive networks is that of a connectionless store-route-
and-forward model for transporting packets from a source host to a destination through a
series of routers. All routers process packets using conceptually the same algorithm, param-
etised only by certain header fields in the packet (primarily the destination IP address).

Packet forwarding over connectionless protocols such as IP involves a routing stage, typically
based on a longest-prefix match of the destination address against a routing tree, which
may be both expensive and complicated [Waldvogel97]. Providing different levels of service
based upon other parameters such as source address and protocol increases the complexity
further [Srinivasan98].

Wide Area Network (WAN) technologies such as X.25 [Jacobsen80], Asynchronous Trans-
fer Mode (ATM) [Fraser93] and Multiprotocol Label Switching (MPLS) [Callon97] have at-
tempted to make use of simpler connection-oriented forwarding models. These aim to reduce
the cost of packet forwarding by performing the routing stage once at connection setup time,
then performing a circuit look-up (which may be substantially cheaper than the routing oper-
ation performed during IP forwarding) at packet processing time. By simplifying the packet
processing operation, it is possible to increase the throughput of a switch, particularly if such
simplifications result in an algorithm that lends itself to implementation in hardware.

QoS provision within passive networks has been addressed in several ways. Two of the primary
solutions being developed for the Internet are:

Integrated Services allow each network flow or class of flows to be mapped to a particular
QoS class [Braden94]. This QoS class is used to schedule the transmission (and limit the
buffering) of packets in these flows. RSVP [Zhang93] has been proposed as a protocol
for allowing the creation of flow specifications at routers.

Differentiated Services attempt to reduce the amount of state required within the core
routers by requiring end nodes and intermediate routers to mark each packet with the
required per-hop forwarding behaviour [Blake98]. Service Level Agreements (SLAs)
may be set up between different network domains specifying the traffic profile (such as
the average and peak rates, and burst size) for different classes of packets.

2.1.2 Programmable Networks

In a programmable network, the software on the network node may be customised or extended
at relatively short timescales; such customisation may be over the lifetime of a connection,
or even carried with each packet. This may be in order to perform packet processing (Active
Networking), connection control (Open Signalling), or more general extensibility.

2Note that a router within the network may be considered an end-point when specifically addressed as the
destination in an IP packet.

20



2.1.2.1 Active Networking

The Active Networking [Tennenhouse97, Campbell99] community proposes moving computa-
tion into the network in order to increase network flexibility, by replacing the simple packet
forwarding model used by IP with a richer programmable model. Thus instead of allowing a
user to only specify the parameters (such as destination address) used in packet processing,
an active network permits enhancement or replacement of the forwarding routines themselves.
The benefits that can be gained from such programmability include:

Customised routing: Customised routing algorithms could allow applications to circum-
vent deficiencies in the standard IP routing behaviour or to tailor the QoS properties
of the route to the needs of their traffic.

Deployment of new protocols: Session/transport-level protocols such as HTTP and TCP
may be deployed purely at the end hosts, with no modifications required to network
routers. However, deploying new network-level protocols – such as IP multicast ex-
tensions [Deering89] – over the Internet requires long periods of time both for stan-
dardisation, and for implementation by router vendors. By providing a programmable
environment in which users can define custom packet processing routines, network-
level protocols can potentially be deployed substantially more quickly. Examples of
such protocols deployed over active networks include reliable multicast [Lehman98] and
transparent web cache redirection [Legedza98].

Access to non-standard resources: In the current Internet, router-specific resources (such
as enhanced capabilities on a novel link-layer) cannot easily be utilised by end users,
since there is no way in the basic IP protocol to indicate a requirement to use such
resources. By specifying a more flexible, extensible and programmable network sub-
strate, users can more easily make use of enhanced capabilities at certain nodes within
a network.

Dynamic adaptability: Programmability allows a flow to be dynamically processed at cer-
tain points within a network, such as to add FEC (Forward Error Correction) at lossy
points within a network [Hadzic98], or to transcode a high-bandwidth multicast stream
into a lower bandwidth stream before sending it over a low-bandwidth link [Amir98].

Each of these advantages could be realised to some extent by making use of the IP op-
tions [Postel81] mechanism to communicate such requests for non-standard behaviour to
routers and endpoints. However, for this approach to be generally useful, some specification
for the required extensibility and programmability must be reached. In this respect the IP
option mechanism is not ideal – although some specific options are defined, there is no ac-
cepted standard for extensibility. Prototype implementations of active network systems have
been developed to encode capsule code within IP options [Wetherall96, Murphy97]; however,
to be of general practical benefit, such use of options requires more uniform standardisation.
Furthermore, the use of IP options typically results in a packet experiencing lower-quality
processing throughout the whole of the path it traverses; packets with options set tend to be
queued with lower priority, due to the extra complexity that they present to a router. The
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Active Network Encapsulation Protocol (ANEP) [Alexander97a] has been proposed as a more
flexible mechanism than IP options for encapsulating active network packets for transmission
over different lower-level media and protocols. It supports the multiplexing of packets from
multiple execution environments (EEs) over a single channel.

In [Bhattacharjee97], it is suggested that the end-to-end argument [Saltzer84] (discussed in
Section 2.1.1) does not preclude the existence of active and programmable networks; it is
argued that the fundamental rationale behind the end-to-end argument is that:

Some services require the knowledge and help of the end-system-resident appli-
cation or user to implement, and so cannot be implemented entirely within the
network.

and that the corollary of this premise is that:

Some services may best be supported or enhanced using information3 that is only
available inside the network.

Thus the addition of programmability allows end users to implement precisely the services that
they need – by executing user-supplied code within the network, the application-specific logic
required by the end-to-end argument may be combined with additional knowledge regarding
the state of the network and with the higher bandwidth and lower latency afforded to nodes
within the network. In [Saltzer98], the originators of the end-to-end argument agree with this
suggestion in principle, but caution that end-to-end arguments should still be considered on
a case-by-case basis to determine whether such programmability is beneficial.

2.1.2.2 Open Signalling

Analagously to the drive provided by Active Networks to open up the routing and packet
processing functions on the data path of a network node, research into Open Signalling has
attempted to provide a programmable interface to the control plane of a network node, typi-
cally a router or an ATM or telephony switch.

The control plane of a communications network is responsible for setting up, maintaining and
tearing down connections between switches within the network. The interactions required for
such activity, both between entities within the network and between the network and end
hosts, is known as signalling.

Historically, telephony networks existed to carry voice connections between end-points. The
services available were defined by the network providers, and updated over long timescales.
The only signalling available to users of the network was that for setting up point-to-point
calls (i.e. dialling). Within the networks, out-of-band signalling mechanisms such as Signalling

3The author feels that this sentence would have been more effectively phrased “. . . information and re-

sources . . . ”
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System 7 [Jabbari91] were developed to provide greater security and scalability. Intelligent
Networks (IN) services were developed over SS7, permitting the deployment of more advanced
(network-provided) services such as conference calls and toll-free access numbers. Provision
of new and more sophisticated services by end-users or third parties was not possible.

Initial attempts to define standards for broadband (ATM and ISDN) signalling [ATMF96,
ITU-T94] followed paradigms inherited from the telephony standards and thus tended to
limit users to only those services provided by the network operator.

Alternative signalling strategies – known as control architectures (CAs) – such as [Crosby95,
Hjalmtysson99, Newman96, Lazar96] have been proposed; each with its own advantages and
disadvantages. In [van der Merwe97] it was argued that no single control architecture could
provide for the needs of all applications and services.

Projects such as the Tempest [van der Merwe97, Rooney98b] architecture from the University
of Cambridge aim to provide an environment to support flexible management of connection-
oriented networks. Within the Tempest, the physical resources at an ATM switch are parti-
tioned through the use of a switch divider into multiple logical switchlets [van der Merwe96,
van der Merwe97]. Each switchlet appears to its users as an independent switch with its own
range of virtual paths and virtual circuits. Multiple CAs may then be run on the network,
each seeing the appearance of its own private network of ATM switches. Each CA has full
control over the range of VCIs and VPIs assigned to its switchlet, allowing it to manage
the connections established within the virtual network. When a virtual network is created,
a general CA such as PNNI [ATMF96] or IP Switching [Newman96] may be employed, or
alternatively a Service Specific Control Architecture may be instantiated to provide better use
of network resources for a particular application ([van der Merwe97] presents the example of
videoconferencing). Moreover, components of the architecture (such as a switch divider or a
CA) may be extended through user-supplied code to provide custom processing within the
network.

2.1.2.3 Level of Programmability

Research into active networking and open signalling has been undertaken at all levels, from
the physical layer [Hadzic98, Lee99] to the application layer [Amir98, Fry98]. Furthermore,
the level of programmability provided by different projects has varied considerably.

Capsules: At the most fundamental level of programmability, each packet contains both
executable code and data. Such a packet is often referred to as a capsule4. When a capsule
arrives at a router, the code carried by that capsule is executed by the router, typically
parameterised by the capsule’s data (payload). Possible actions performed by the code include:

• Performing a routing decision and transmitting itself (or multiple copies of itself) out
along egress links from the router.

4Note that the terminology in the field of Active Networks is not yet well-defined.
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• Creating fresh capsules, and sending them on to new destinations or back to the original
capsule’s source.

• Interacting with objects or other state in the router, either to obtain information about
the router or local network, or to perform some control operation.

Alternatively, each capsule may contain mostly data, but with some specification of the code
that should be used to process the capsule5. If the specified code is not found, the capsule
may be dropped, or the code may be obtained via some out-of-band mechanism.

The ALIEN [Alexander98a] architecture from the University of Pennsylvania and the Smart-
Packets [Kulkarni98] project from Kansas University both support capsules. An ALIEN cap-
sule consists of an OCaml [Leroy97] bytecode module and a payload; a SmartPacket contains
the serialised class definition and state for a Java object.

The Packet Language for Active Networks (PLAN) [Hicks98, Hicks99c] is built around the
two concepts of invoking named services on a node, and invoking a function on a remote node
– such a remote invocation is semantically (and functionally) equivalent to sending a packet.
A PLAN capsule contains a chunk, which represents a delayed remote PLAN evaluation. (See
Section 2.2.2 for more details on PLAN chunks.)

The Active Node Transfer System (ANTS) [Wetherall98] and PAN [Nygren99] from MIT
support demand-loading and caching of code at a network node. Each active capsule is
tagged with a code identifier. The code identifier is implemented as a secure hash (such as
MD5 [Rivest92] or SHA-1 [NIST95]) of the Java [Gosling95b] class (ANTS) or generic code
object (PAN) that should process that capsule. This prevents malicious users from hijacking
other users’ capsules, since the only way to receive another user’s capsules is to preload exactly
the class/code that the originating user intended to be used for processing the capsule. The
payload of the capsule consists of a serialised representation of an instance of the specified
class (ANTS) or generic data (PAN). In the event that the required code is not available
at the receiving node, a request is sent to the upstream neighbour (ANTS) or the specified
code repository (PAN) from which the capsule was received, to obtain the class/code for
processing that capsule (and any associated capsule types in the same protocol). In this way,
a capsule pulls the code required to process it through the network. Since code caching is
used, subsequent instances of the same capsule type (within a period of time determined by
the level of caching) will be serviced immediately, without the delay of requesting code from
elsewhere in the network.

Capsules may be transient (as in the case of ALIEN) or they may be permitted to maintain
persistent state at network nodes. The PLAN environment provides a resident service that
permits related packets to share persistent state.

The concept of capsules is also applicable within the area of open signalling. Active Reser-
vation Protocols [Braden99] allow Java capsules to be used for signalling (passive) network
flow requirements to a QoS enabled router, thus permitting greater flexibility when specifying

5Such a specification is, of course, semantically very similar to the headers on an IP packet, but with
enhanced flexibility.
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flow classes. The Smart Packets6 [Schwartz99] project from BBN Technologies aims to im-
prove the flexibility and reduce the bandwidth and latency required for network management.
Capsules carrying management programs may travel around a network from device to device
interrogating and modifying SNMP [Case90] MIB databases, only needing to send packets
back to a monitoring station in the case of an abnormal situation.

The Caliban [Rooney98a] interface within the Tempest permits similar SNMP querying through
the use of Java bytecode transported across a network. The Elastic Network Control provided
by the Haboob architecture [Bos99] supports remote invocation using granules (autonomous
program units) to customise behaviour throughout all levels of a network.

Extensions: At an intermediate level of programmability, active extensions may be loaded
on to a router or switch by an out-of-band mechanism. Associated with each extension is a
set of flows, whose packets should be processed by this extension.

ALIEN and PLAN both support the loading of OCaml extensions; this facility was used to
create an extensible active Ethernet bridge [Alexander97b] running over ALIEN. Extensions
register packet filters to give access to the network flows that they wished to process. The
Composable Active Network Elements (CANES) [Bhattacharjee98] architecture supports a
limited form of programmable extensions – the behaviour of a flow of packets may be cus-
tomised by selecting triggers that are called by pre-defined programs at certain points during
packet processing.

Network hardware may also be extended: the Programmable Protocol Processing Pipeline
(P4) [Hadzic98] and other projects such as [Lee99] allow users to download processing logic
into field-programmable gate arrays (FPGAs), permitting high-speed custom processing at
the link layer and physical layer.

A generic extension intended to process a large class of packets may be classified as an
execution environment (EE). An EE may itself permit extensibility by the end users of the
network, either by directly executing the packets that it is processing, or through out-of-band
mechanisms. Systems such as ANTS and PLAN may themselves be implemented as EEs over
a lower-level NodeOS (see Section 2.1.2.4), allowing multiple active network environments to
co-exist on a single node.

Partially Programmable Networks: Not all proposals for active networking require that
the entire network be made programmable. [Smith98] presents Active Router Control, a
hybrid active/passive architecture which assumes a passive IP forwarding network as the
main “transport plane”, and associating a “controller” with groups of IP routers, to deal
with higher level issues such as maintenance of routing tables. The controller itself may be
an active node, thereby permitting flexible customisation of the network by users, without
degrading the performance of standard IP flows that have no requirement for active behaviour.

A similar approach to partially programmable networks has resulted in the development of
the Active Networks Overlay Network (ANON) [Tschudin99]. ANON supports the creation

6Not to be confused with the SmartPackets project from Kansas University.
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of programmable clusters of active nodes – called segments – connected together by a larger
overlay network.

Active Services: At the highest (and least flexible) level of customisation, Active Ser-
vices [Amir98] (also referred to as Application Layer Active Networking [Fry98]) permit pro-
grammability within the network, but only at the application layer. User-supplied code may
be executed on nodes within the network, but cannot replace the processing used for the
network or transport layer. This allows users to experience reduced latency by moving com-
putations closer to the nodes with which they are interacting (e.g. a web document could
specify code to be executed on a programmable web cache, giving faster responses than by
connecting through to the original web server on each request [Marshall99]).

Xenoservers were proposed in [Reed99] to provide hosts at strategic points within the network
that can supply execution services to untrusted clients, in return for payment. In many
respects the concept of Xenoservers is similar to Active Services but aims to present an
environment in which resource usage is strictly scheduled, accounted and charged for.

Within the open signalling community, projects such as the Hollowman [Rooney97] Tempest
CA support extensible control of ATM switches. Users of these architectures may supply code
in a safe language – Java in the prototype Hollowman implementation – to execute on or near
a switch in order to deploy application-specific policy for a particular connection. Such code
can interact with the virtual network’s switchlets, to configure its VCI mappings and resource
allocations with lower latency than code executing at end points of the network. This enables
more effective control over the resources associated with the CA’s virtual network.

The Haboob [Bos99] takes the extensibility of Hollowman a stage further with the concept
of Elastic Network Control. It proposes Sandboxes in which Dynamically Loadable Agents
(DLAs) may be executed. Sandboxes allow DLAs to present extensible interfaces that may be
externally invoked – either by other DLAs or by external applications – by using the Simple
Uniform Framework for Interaction (SUFI ). Sandboxes may be instantiated at any location
with the network control and management architecture where extensibility is desirable. In
the example implementation, sandboxes are presented for the execution of DLAs written in
Java and TCL [Ousterhout90].

2.1.2.4 Platforms

The environment over which active network execution environments and open signalling and
mobile code systems are implemented has a fundamental effect on the properties of such
systems. Previously, the majority of active network projects have been developed over various
flavours of the UNIX operating system. In particular, open source variants such as Linux have
been widely used due to the ease with which kernel modifications may be made, facilitating
modifications to network packet processing.

Running an active network system in a Unix user-space environment has the advantage of be-
ing easily portable among different POSIX-compliant [NIST88] operating systems. However,
the abstraction presented by the operating system often obscures a great deal of the detailed
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information and control over the data-path that a low-level active network system requires
to perform activities such as resource scheduling.

Several projects have attempted to move all or part of the network programmability inside the
OS kernel. The Network Element for Programmable Packet Injection (NEPPI) [Cohen99] is a
Linux IP router extended to allow programmable translations on certain TCP flows. Gateway
programs may request that packets on flows which match a specified filter are passed up to
the user-level processing routine, which may manipulate the packet directly, or may program
a specific manipulation (such as packet redirection, address translation or adjustment of TCP
sequence number and window size) into the router’s forwarding tables for future packets on
that flow. By specifying TCP flag bits as part of the filter, a gateway program may for example
receive all connection setup packets (with the SYN flag set) on a particular flow, but allow all
established connections to be processed within the kernel router. Router plugins [Decasper98]
and the Click router toolkit [Morris99] have been proposed to support a similar – but lower
level – functionality in an extensible router, with modules implemented for various functions
that a router may be required to perform, and connections set up between modules and the
underlying platform.

PAN [Nygren99] supports an active network implementation running unsafe native code en-
tirely within a Linux kernel loadable module; it aims to perform zero-copy active routing for
those packets that are simply being custom-routed and forwarded to their ultimate destina-
tions.

Other projects have recognised that the I/O model of a traditional Unix workstation is not
optimal for supporting extensible network programmability. Previous research has addressed
both the software and hardware architecture requirements.

The Lancaster Active Router Architecture (LARA) [Cardoe99] provides a hardware/software
hybrid solution for implementing active network nodes at the edge of moderate sized net-
works. LARA uses a dedicated processor to act as a forwarding engine for each network
port, and a management node to oversee the system. Data-path communication between the
forwarding engines is performed over a high-bandwidth interconnect – the prototype uses a
0.5Gb/s modified SCSI bus. Control-path communications, including interactions with the
management node, use a standard bus. LARA/PAL (Platform Abstraction Layer) provides
a platform-independent interface over which different EEs may be instantiated.

The “holy grail” of active networking research is the Node Operating System (NodeOS). The
NodeOS [Peterson00a] interface is defined as part of the Active Networks Working Group
Architectural Framework [Calvert98]. It is intended to provide a minimal common fixed
point for active networking in the same way that IP provides a common fixed point for
passive Internetworking.

The NodeOS is, as its name suggests, an OS-like interface over which multiple execution envi-
ronments may operate. It uses the abstraction of a flow to represent the resources associated
with remote principals, and to manage resource accounting, scheduling and admission control.

Each EE defines a networking environment tailored for some specific (or generic) requirement,
and presents that environment to a subset of end-users of the network. The environment
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provided by the EE does not have to be programmable in itself – the EE may choose to
utilise the abstractions provided by the NodeOS to provide some form of customised passive
packet forwarding. In fact, IP itself may be regarded as a “legacy” EE, which sits alongside
other EEs and provides simple best-effort forwarding according to the node’s default Internet
routing tables.

The NodeOS allows flows to open channels on to the network. Such channels come in three
flavours:

• In channels allow a flow to receive packets matching some demultiplexing specification.

• Out channels allow a flow to transmit packets.

• Cut-through channels allow a flow to join an In channel to an Out channel via a specified
standard routing/processing algorithm. The routing and processing of packets in a cut-
through channel is performed entirely within the NodeOS, and so may potentially be
optimised.

Figure 2.1 illustrates the architecture supported by the NodeOS. Currently, the NodeOS
specification is at a draft stage. Several projects [Lepreau99, Hartman98, Merugu00] are de-
veloping implementations that are intended to guide the evolution of, and eventually conform
to, the final specification.
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2.2 Safe Execution of Untrusted Code

2.2.1 Overview

Some active networks projects have produced environments that execute arbitrary native
code. PAN [Nygren99] provides such support in order to measure the inherent overhead
associated with various levels of activation within the network – execution of safe Java code
is also supported. Bowman [Merugu00] executes only unsafe code; the authors state that

The choice of [the] C programming language to implement the Bowman system call
interface has given us good performance, but probably sacrifices some flexibility
(code can only come from a priori -trusted parties).

This is something of an understatement – one of the fundamental advantages that pro-
grammable networks offer is the ability for network providers to offer flexible and extensible
access to their switches and routers, upon which users and third-parties can develop advanced
services. Restricting such service provision to just those who are fully trusted by the network
provider defeats the purpose of an open programmable network.

Furthermore, debugging applications when portions of the application’s logic and data are
spread throughout disparate nodes in the network is a substantial challenge. The use of
some form of safe language for network programability substantially decreases the chances
of uncaught bugs, and increases the probability that sensible diagnostics may be obtained
in the event of a runtime error. Trusting another party not to load malicious native code
on to your node is insufficient in a programmable network – you also have to assume that
they are capable of writing code without the possibility of arbitrary memory corruption, due
to behaviour such as running off the end of a buffer or using a pointer to previously freed
storage.

Therefore, many programmable networks and mobile code systems enforce some form of safety
requirements on the user-provided code that they execute. This may be implemented either
by requiring use of a safe language, or by permitting code to be written in an arbitrary source
language while requiring that the executable code conforms to certain well-defined properties.

2.2.2 Language-based control

Many mobile code and programmable network systems specify that the end-user’s code must
be written in a particular safe language. [Alexander98a] and [Cugola97] analyse the require-
ments for a language for mobility and network programmability.

Some systems reuse an existing safe language. Java [Gosling95b] has rapidly gained great pop-
ularity as a language for mobile code, due to its portability, type-safety and security7. Java is

7Due to incompatabilities between implementations, and to errors in bytecode verifiers and security policies,
these features have been somewhat compromised. However, it is plausible that these problems will be resolved
in the future.
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a strongly object-oriented language with hybrid static/dynamic typing. ANTS [Wetherall98],
PAN [Nygren99], SmartPackets [Kulkarni98], Hollowman [Rooney98a] and the Haboob [Bos99]
make use of Java in slightly different ways – ANTS and PAN process capsules using demand-
loaded Java classes; SmartPackets capsules contain the full definition for a Java class as
well as the serialised data for a single instance; Hollowman and Haboob support the dy-
namic loading of Java classes to perform control-path operations on network switches and
control architectures. Caml [Leroy97] is a dialect of ML [Milner97] that has been used
as a mobile code language by Rcane [Menage99] and several components of the Switch-
ware [Alexander98b]8 project including ALIEN [Alexander98a] and the Secure Active Net-
work Environment (SANE) [Alexander98c]. The TCL [Ousterhout90] scripting language has
also proved to be a popular base for mobile code; the Haboob supports mobile agents written
in TCL, and Safe-TCL [Borenstein94], Agent TCL [Kotz97] and TACOMA [Johansen95] all
extend TCL, with support for migration and confinement. The untyped nature of TCL, in
which all values are represented (conceptually) as strings – procedures interpret these strings
as being of the appropriate logical type – allows for simple but unstructured interfaces be-
tween various components in a mobile code system. The TUBE [Halls97] environment utilises
properties of the Scheme language to support the suspension of mobile agents to package up
the state of their computation; this state may then be transferred to a different site and the
computation continued.

Other projects have developed their own languages that are specifically designed to have
suitable properties for mobile computing. [Schwartz99] defines a safe high-level language,
Sprocket, its mapping into a restricted CISC “assembly language”, Spanner, and a virtual
machine environment in which Spanner programs (Smart Packets) can be executed. An im-
portant feature of the Spanner environment is the addition of language level (single pseudo-
opcodes) support for interrogating and modifying SNMP [Case90] MIB databases. This tight
integration with a particular network management architecture reduces the system’s flexibil-
ity; however, it helps fullfil one of Spanner’s design goals, that meaningful programs should
be expressable in a single unfragmented packet, typically under 1KB. Inferno [Lucent96] was
developed to provide an operating system for distributed services such as telephony switches
and media servers. It supports the execution of programs in a high-level type-safe language,
Limbo.

The Switchware project has developed the Packet Language for Active Networks [Hicks99c].
PLAN is a restricted functional language similar to ML [Milner97], but with strong dy-
namic typing. The language restrictions allow PLAN programs to be safely executed with-
out verification or checking. Remote invocation and layered encapsulation are supported
through the notion of a chunk, a first-class object representing a suspended PLAN function
call [Moore99b]. When a chunk is created, a string is marshalled consisting of the name of
the function or service to be invoked, the arguments to the function, and the definitions of
any PLAN functions required for the execution. Function names are not bound to actual
functions until execution time, allowing a PLAN program to refer to services that exist on
remote nodes but which are not resolvable at compilation. The OnRemote() primitive causes
a chunk to be executed on the specified remote host. Once created, chunks may be manipu-

8In [Moore99a] and [Hicks99a], two of the Switchware developers discuss their experiences with an earlier
version of some switchware components written over Java, and comment on the advantages that they gained
after converting to use Caml.
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lated by a PLAN program or the services that it invokes. For example, fragmentation may be
performed by splitting the binary contents of a large chunk into several portions, and using
each portion as one of the arguments to a chunk that invokes the reassemble() service on a
remote node. Encryption, compression, reliable transfer and other network services may be
performed in similar ways.

[Wakeman98] discusses various requirements for a language for programmable networks, and
proposes Safetynet as a new language that supports these requirements. Safetynet aims to
encode properties such as security and resource control into the language. This allows more
substantial type checking beyond simple safety properties.

Some languages such as PLAN support dynamic scoping of identifiers, such that the unre-
solved bindings (for services and data) required by a mobile program must be satisfied at
the executing site. Other languages such as Obliq [Cardelli94] use lexical scoping, whereby
all free bindings must be resolvable at the point when a program fragment is transmitted
over the network, and use of those bindings will effect remote invocations on objects at the
originating site. Such lexical scoping enables a program fragment to see a more consistent
view of the state of the world; however, this high level of network transparency causes both
unpredictable performance and difficulties in specifically referring to state and services on the
execution node. In this respect, language primitives such as PLAN’s OnRemote() combine
convenient access to remote invocations with the clear distinction between local and remote
accesses.

2.2.3 Low-level control

Requiring the mobile code that a server executes to be written in a safe language has the
disadvantage of reducing the flexibility available to remote users. An alternative approach
taken by some researchers has been to develop ways to permit arbitrary machine code or
assembly language to be executed safely.

Software Fault Isolation (SFI) [Wahbe93] runs each untrusted code module in a separate fault
domain. A fault domain is a region of memory associated with the untrusted module, within
which all loads and stores – and most jumps – are unrestricted. Code to be run is required to
execute special bounds-checking code before any memory access, to ensure that the address
being accessed is within the permitted data area9, or in the case of a jump, that the address
being jumped to corresponds either to a valid basic block or to an entry point in a trusted
jump table to support cross-domain RPC. This access discipline may be enforced in two ways.
In the first instance the end-user may employ a specially modified compiler that inserts the
relevant checking code, combined with a verifier that runs on the server to ensure that the
checks are present. Alternatively, the server may use binary rewriting techniques to insert the
necessary checks before loads, stores and jumps when the code is first supplied. This allows
any compiler to be used on the client10.

9Extensions to the SFI model have permitted multiple data segments to be accessible to a single fault
domain; these segments may be shared between multiple domains.

10Current implementations of SFI do place limitations upon the register usage of the code being isolated,
since some registers are required to be reserved for efficient fault isolation.
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The encapsulation provided by SFI allows any untrusted code to be safely executed; however,
this is at the expense of an execution time overhead of approximately 5%, and with a relatively
crude protection model. Other research has focused on the use of formal methods to reduce
the overhead of untrusted execution while providing a richer typing model. Typed Assembly
Language (TAL) [Morrisett98] and Proof-Carrying Code (PCC) [Necula97] have both been
developed as ways of providing a typing discipline for low-level code. TAL supports a generic
type system for basic blocks, over the registers and stack of a processor, with higher-order
extensions to cope with the low-level control possibilities available to assembly code. For
example, part of the typing of a basic block might specify that the RA (Return Address)
register must contain a pointer to a block which expects register R0 to contain an integer;
thus any piece of code that causes a control transfer to the basic block must ensure RA contains
a pointer to an appropriate return address or continuation. TAL thus ensures that the typing
discipline is respected without prohibiting the calling conventions of any particular language
(such as tail-call recursion or continuation passing). This work has been extended [Hornof99]
to allow the partial generation of certified code, which may be verified in a similar manner
to Java; the final compilation stage proceeds on the execution host, taking advantage of
properties of that system. PCC allows the executing host to publish arbitrary sets of pre- and
post-conditions for code segments that must be respected by a client’s code. These conditions
may determine both the behaviour of code supplied by the client, and the arguments that may
be passed to callback routines supplied by the host. From these conditions and from analysis
of the code, a set of verification conditions may be generated and proved offline by the client,
through the use of a theorem prover. The client presents this proof to the host along with
the code; verifying that the proof is valid is significantly less expensive than generating the
proof initially.

2.2.4 Security

Safety is concerned with enforcing the low-level characteristics of an environment for the
execution of untrusted code. Security, on the other hand, involves discovering what resources
a program is authorised to access, and ensuring that a program does not gain unauthorised
access to resources or information.

Whilst a sensible security policy is recognised as vital for the effective deployment of a pro-
grammable network node, the development of such a policy is largely beyond the scope of this
dissertation. This section therefore briefly reviews a selection of security solutions proposed
for open and programmable networks, rather than surveying wider research on the general
issue of security.

At the level of inter-node cryptographic security, the Secure Active Network Environment
(SANE) [Alexander98c] allows peers in an active network to establish trust between each
other, by exchanging certificates that authenticate them, and to establish secret keys to
permit secure communication. The firmware in the nodes is modified to provide a Trusted
Computing Base.

Security in PLAN is achieved by restricting the namespace of services available to a PLAN
program according to the capabilities that it carries [Hicks99b]. The services available through
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the namespace are implemented in a general-purpose programming language, thus requiring
verification before installation. Under the PLAN security scheme, a firewall may be imple-
mented by encapsulating a PLAN chunk (see Section 2.2.2) in a function call that severely
restricts the packet’s namespace and then evaluates the original chunk.

The Active Networks Security Working Group are defining the Security Architecture for
Active Nets [SecArch98]. This is intended to be developed in tandem with the NodeOS to
provide tailored security facilities.

Oasis [Hayton96] and KeyNote [Blaze99] both provide security policy architectures for services
in an open network – in each case policies may be specified in a domain-specific language,
and enforced upon the entities in the network.

2.2.5 Operating System Extensions

In traditional operating systems, the user/kernel division provides an inflexible interface;
applications may use only those abstractions and services which are provided by the interface.
This may result in inefficient behaviour, with substantially greater amounts of time spent in
user/kernel crossings and memory copying than would be necessary if a different abstraction
were being used.

Many operating systems permit the loading of modules into the kernel. These are generally
used to provide support for particular of hardware. They may also be used to extend the
abstractions offered by the kernel, by providing extension system calls or a pseudo-device.
Non-administrators are generally not permitted to load their own kernel modules, even when
the module does not in itself extend the privileges of the user (i.e. it only performs actions
that the user would be permitted to perform, but in a more efficient manner), since there is
usually no support for verifying that such extension modules are safe.

To this end, various research projects have developed extensible operating systems to permit
users to employ more efficient abstractions for accessing the resources on a computer.

SPIN [Bershad95] from the University of Washington permitted extensions written in Modula-
3 [Cardelli89] to be loaded into the kernel by user-processes, with the intention of improving
performance by reducing the number of user/kernel crossings. User-level programs were run
under hardware protection, and so could be written in any language. In the prototype, kernel
extensions had to be signed by a trusted compiler.

Since users were permitted to load extensions to respond to interrupt events, SPIN extended
the Modula-3 language with an EPHEMERAL keyword; EPHEMERAL procedures could only call
other EPHEMERAL procedures, and hence could not lock critical resources belonging to the
kernel (which were only accessible through non-EPHEMERAL procedures). Thus they could be
safely aborted by the kernel if they spent too long in an interrupt service routine.

VINO [Seltzer96] solves the problem of resource-hoarding by kernel extensions in a different
way. The Vino kernel is extensible through the use of SFI (see Section 2.2.3). The extensions
are all invoked through a transaction system, which allows the kernel to abort extensions and
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undo changes made to system state by the tardy extension.

The Exokernel [Engler95, Kaashoek97] project from MIT supports the notion of OS-in-a-
library in a similar way to Nemesis (see Chapter 4), although the primary motivation is
that of improved performance due to reduced abstractions, rather than the goal of improved
QoS enforcement that underlies Nemesis. As such, its notions of resource isolation between
processes are less well-defined.

The Exokernel permits extension in several ways. Dynamic Packet Filters [Engler96] allow
applications to pass flow demultiplexing specifications down to the network driver. Untrusted
Deterministic Functions [Kaashoek97] (UDFs) allow library-based file systems to pass meta-
data parsing routines down to the kernel, where they may be safely executed. By initially
emulating the instructions of a UDF on a particular piece of meta-data, the kernel can be
satisfied that the UDF will always return the same results for that meta-data, and hence can
run the UDF natively on future occasions.

2.3 Resource Control and Accounting

Much research has been done into mechanisms for controlling the resources allocated to en-
tities executing on a computer or within a network.

2.3.1 Resource Control in Operating Systems

Traditional operating systems such as Unix, as well as more recent micro-kernels, are typically
optimised for performance, often at the expense of reliable resource partitioning amongst the
different tasks occuring on the system.

A major factor in such unreliability has been the tendency to move processing into the kernel
(in the case of monolithic systems) or into shared servers (in the case of micro-kernels). This
can cause crosstalk in the timeliness of receiving access to resources, and also to obscure the
amount of resources consumed by each client on the system. Whilst some OS kernels provide
real-time scheduling of the CPU, such crosstalk and obsfuscation mean that simply scheduling
the CPU is insufficient.

Some approaches to solving this problem have attempted to fit such resource control on to
traditional systems. LinuxSRT [Ingram99] modifies the Linux scheduler to provide guaranteed
levels of access to the CPU, and further demonstrates that by adding schedulers to shared
servers it is possible to provide QoS in those servers, and thus avoid some of the crosstalk.

A major source of crosstalk in traditional operating systems arises due to network protocol
processing, which in a monolithic kernel is often performed in interrupt handlers. In an
attempt to reduce this problem, techniques such as Lazy Receiver Processing [Druschel96]
and Signaled Receiver Processing [Brustoloni00] more properly account to applications the
time spent performing protocol processing their incoming streams of packets. This is achieved
through the use of a packet filter to associate incoming network data with a particular local
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socket. This data is then left unprocessed until such time as a read() is requested on that
socket. In addition to more accurate accounting, a further benefit of this technique was
observed – the improved temporal locality of the network data resulted in a lower number of
cache misses. In a traditional network stack the data is pulled into the cache on receipt (for
header checking, checksumming, etc.); by the time the data is copied to user-space for the
receiving application, it is likely to have been displaced from the cache. By only processing
the packet data directly before it is copied to user-space and used by the application, the
level of cache pollution is reduced.

In [Banga99], resource containers are proposed as a means whereby resource accounting and
protection may be separated. A resource container is associated with a particular activity
and may be shared between multiple processes; similarly, a process (particularly servers) may
hold multiple resource containers – corresponding to different clients or classes of client –
allowing it to inform the OS to which of its containers it desires its current activity (e.g.
the consumption of CPU cycles, or the protocol processing for the traffic on a particular
socket) to be accounted. Eclipse [Bruno99] provides a similar form of resource control, using
a reservation file system to model hierarchical resource guarantees.

Scout [Mosberger96b] takes the two preceding ideas a step futher, representing all activity in
terms of paths. The informal notion of a path, commonly used in terminology such as “fast
path” and “data path”, is formalised to consist a set of modules – referred to as routers – that
process a particular class of data sequentially. For example, an incoming video stream being
displayed as part of a video conference would be represented by a path that begins in the
network subsystem. A packet classifier in the link-level (Ethernet) device driver module would
recognise packets that constitute the video stream and direct them to the video conference’s
path. The path would continue through the network protocol modules (IP, UDP), which
would process any header information and possibly defragment IP packets. From here the
data would be passed into a video decoder module that would translate the payloads of the
network packets into frames of video. These frames would finally be passed to the video
display module in order to be viewed by the user.

The path mechanism in Scout allows modules to register interfaces; these interfaces may be
used to connect modules together to form paths; this is similar to (but more extensible than)
the connectable modules used by Click [Morris99]. A router graph is generated to identify
valid configurations of connected modules. By associating a particular level of resources
with a path – rather than with a network subsystem or the video display subsystem – Scout
attempts to offer guarantees to particular activities. A further advantage is that the path
abstraction permits further optimisations such as partially evaluating the functions along
a path to provide versions specialised for a particular data stream [Mosberger96a]. The
performance improvements achieved by these optimisations must be offset by the loss of
spatial locality in the processing code caused by multiple specialised versions of common
functions.

Nemesis [Roscoe95, Leslie96] is an operating system designed to provide resource guaran-
tees and QoS to applications. It is vertically-structured – i.e. wherever possible, applica-
tions perform work themselves (typically using shared libraries) rather than calling a shared
server to perform the work for them. By making applications less reliant on shared servers,
crosstalk (interference in the QoS received by one application due to activity caused by another
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application) is reduced. Where resources need to be multiplexed (e.g. for CPU scheduling
and network output), such multiplexing is performed at the lowest possible level, in accor-
dance with the principles put forward in [Tennenhouse89]. Tasks such as protocol process-
ing [Black97], thread scheduling and virtual memory paging [Hand99] are safely delegated to
the applications themselves. Nemesis is discussed further in Chapter 4.

2.3.2 Resource Control in Mobile Code and Safe Languages

Existing approaches to resource control in mobile code and safe languages have focused on two
main areas: the negotiation for and allocation of resources, and the scheduling and accounting
of such resources.

D’Agents [Bredin98] uses a market-based approach, in which mobile agents bid for access
to resources. “Sealed” bids allow the resource providers to effectively determine the current
demand – and hence market rate – for a resource. [Tschudin97b] describes a similar envi-
ronment that allows messenger agents [Tschudin97a] to bid for resources; actual allocation is
performed through lottery scheduling [Waldspurger94]. [Lal99] presents a framework to allow
mobile programs and hosts to specify constraints on the allocation of CPU. The framework
permits the specification of real-time and non-real-time constraints; however, the current
implementations do not support real-time scheduling.

Most existing active and programmable network research has tended to ignore the issue
of resource control, focusing instead on the development of programming paradigms and
environments. Since such work typically occurs in a closed environment, with only a relatively
small set of researchers accessing the systems concerned, this has been a reasonable choice to
make.

Where thought has been given to resource control, it has typically been coarse grained. For
example, PLAN provides three facilities for controlling the execution of a packet’s code:

• Associated with each packet is a Resource Bound (RB). The RB is an analogue of the
IP hop-count, and indeed is used in a similar way – each network hop taken by a packet
decreases its RB by one, and a packet whose RB is exhausted is discarded. However,
use of the RB is more flexible than in IP. If the code for a packet sends out multiple
different packets, it may choose how to split its RB amongst the new packets. The RB
is also used for evaluating recursive functions – by bounding the number of recursive
calls that may be made, a rough bound on the CPU time consumed may be made.

• The total amount of memory allocated by a packet’s code at a single node may be
bounded, and the packet aborted if it exceeds this bound.

• The total amount of CPU consumed by a packet’s code at a single node may be bounded,
and the packet aborted if it exceeds this bound.

Safetynet [Wakeman98] uses type information to calculate a bound on the resources consumed
by an active packet. A further feature of Safetynet is to draw a distinction between packet-
forwarding code and ordinary code. Forwarding code is restricted in what operations it may
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perform; it may not allocate heap memory, and it must provably terminate. ANTS applies
similar restrictions to capsule forwarding code – the evaluate() method of a capsule may
not call into other Java classes.

The concept of Proof-Carrying Code has been extended [Necula98] to permit formal reasoning
about the resource usage bounds for untrusted agents. Whilst these techniques do go some
way to prevent serious DoS attacks, they are insufficient for providing effective fine-grained
resource guarantees.

More recent work has begun to focus on issues of proper resource control. The specification of
the NodeOS [Peterson00a] provides an interface for allocating and scheduling computing and
network resources on a programmable node. Early implementations of this interface, such as
Bowman [Merugu00], have shown effective isolation between multiple flows of packets passing
through a node.

Java has proved a popular medium for resource allocation and control architectures. The orig-
inal runtime definition contained support for priorities, which by themselves are insufficient
to provide effective resource guarantees. J-Res [Czajkowski98] and Conversant [Bernadat98]
extend Java’s resource control, providing a measure of control over the consumption of re-
sources by Java threads. Both account memory allocations and CPU time to threads, and
attempt to provide CPU guarantees by adjusting the priority of threads based on scheduler
feedback. A philosophical difference between the two is that J-Res attempts to avoid changing
the Java runtime, thus improving portability, at the expense of efficacy, whereas Conversant
makes substantial modifications to the runtime in order to provide facilities such as multiple
semi-independent heaps.

The J-Kernel [Hawblitzel98] provides support for multiple untrusted threads in a Java system.
Different threads are isolated from one another in multiple protection domains within a single
heap, but communication is permitted through capabilities, which marshal parameters from
one domain to another. KaffeOS [Back00] applies abstractions from OS design to a Java vir-
tual machine; threads are grouped into processes, and given independently garbage-collected
heaps. Processes may share data in specially designated read-only heaps. The system is
divided into “user” and “kernel” sections; user code is untrusted and may be terminated at
any time, whereas kernel code is trusted and may not be terminated. Resource consumption
by the different processes in a KaffeOS system is accounted, to help prevent denial of service
attacks.

2.4 Summary

In this chapter, background information relating to the evolution of programmable networks,
resource control, and the execution of untrusted code has been introduced. This provides the
necessary basis for the remainder of this dissertation, which presents the argument that the
combination of these three areas is vital for the widespread deployment of open mobile code
systems. In support of this argument, the Rcane architecture, its prototype implementation,
and its evaluation are also presented.
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Chapter 3

Resource Control Requirements

This chapter discusses why, and to what extent, resource control of untrusted code is nec-
essary. It considers how the resource requirements of user-supplied code are considerably
more complicated to predict than those of packets in a passive network. The types of re-
sources which require control, and the way in which those resources should be accounted, are
discussed.

3.1 The Case for Resource Reservations

The question of whether resource reservations or overprovisioning of best-effort services is a
more cost-effective way providing services has long been a bone of contention within the net-
working community. Advocates of reservations claim that modern multi-media applications
require the higher predictability given by reservation-capable networks to provide a suitable
level of service. Opponents of reservations claim that a reservation-capable network will only
provide satisfactory service when its blocking rate1 is low, and hence the provisioning lev-
els required would provide near-satisfactory service in a best-effort network – the difference
being met by a modest amount of over-provisioning, with much lower complexity than the
reservation-capable network.

3.1.1 Resource Reservations in Passive Networks

The Internet was conceived as a network giving only best-effort delivery. Protocols such as
TCP are designed so that in the presence of contention they throttle back their output, so
as not to overload network switches. Token support for QoS was provided in the Type of
Service (ToS) bit, which allowed packets to be marked according to their traffic type and
precedence. Such information is typically ignored by network routers, leading to a best-
effort service for all network users. Such behaviour is not always desirable, particularly when
attempting to use interactive applcations across a network, or view streamed multimedia

1The rate at which it refuses reservation requests
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data. Integrated Services (RSVP) [Zhang93] and Differentiated Services (DiffServ) [Blake98]
have been two approaches to providing QoS in the Internet (in the case of DiffServ, re-using
the IP ToS bit to actually support different service types). More recent technologies such as
ATM have provided support for QoS from their inception.

[Breslau98] addresses the question of whether resource reservations are required in passive
networks. Different classes of applications and load distributions are considered, and expres-
sions are derived for the additional bandwidth required for a best-effort network to provide
equivalent service to a reservation-capable network. No definitive conclusions are presented
about whether future networks should be reservation-capable. However, the authors note that
the greater the unpredictability of the offered load, the greater the performance advantage of
a reservation-capable network over a best-effort network; in particular, with an exponential
or algebraic2 load distribution, the additional factor of bandwidth required by a best-effort
network can increase without bound as the base bandwidth increases.

In [Paxson94] traffic traces were studied, with the conclusion that much of the WAN traffic in
the Internet could not be modelled with a Poisson inter-arrivals process, but instead exhibited
distributions with much larger variances and self-similarity [Leland93, Crovella95]. Although
it is difficult to predict the load distributions faced by future networks, such results suggest
that reservations will be necessary, at least for certain classes of traffic.

It has been claimed [Deering95] that applications can adapt to whatever service the network
offers, rendering reservations unnecessary. Whilst this may be the case, such adaptation can
only occur by degrading the QoS delivered to the end user. For some applications that do
not require interactive response or low jitter, such as file transfer or electronic mail, this may
be a practical solution. However, for multi-media applications adaptation can result in a
substantial reduction in the utility received by the end user.

A particular drawback to the argument that adaptation renders reservations unnecessary
is that it assumes all communications are of equal importance. This tends to reduce the
incentive for users to put off unimportant communication to times when the network is less
busy. By allowing (and charging for) reservations, important communications automatically
receive improved QoS over less important ones, since their users are likely to be willing to
pay the additional cost to ensure high utility.

3.1.2 Resource Reservations in a Programmable Network

For the remainder of this dissertation, the term open programmable network is used to refer
to a network in which some of the nodes provide programmable extensions to end users. To
obtain benefits from programmable networks it is not necessary that all nodes within the
network are programmable – indeed, since the latency and processing overheads experienced
by flows through a programmable platform are likely to be substantially greater than those
experienced through a hardware router or switch, providing programmability for that pro-
portion of the traffic that has no special requirements may be considered a waste. The term

2An algebraic distribution has a high variance in offered load; the probability that k flows are requesting
service is P (k) = ν

λ+kz
.
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let hostileForwardPacket pkt =

while (true) do

allocateSomeMemory ();

sendPacketToNeighbours (pkt)

done

Figure 3.1: A hostile forwarding routine

An example of a forwarding routine potentially capable of consuming all available resources
at a node.

open programmable network is used to imply that these programmable facilities are available
to all users of the network (possibly in return for a payment), not just those users employed
by or trusted by the network providers.

Since providing programmable platforms within the network greatly increases the ways in
which end-users may consume resources, it seems reasonable to assume that the variance
in load experienced by such platforms will be greater than that experienced by “passive”
networks. In a passive network the potential resource load at a node caused by the activities
of a particular customer is likely to be roughly proportional to the bandwidth offered to that
customer. There is a direct correlation in the case of buffer storage and link utilisation; the
CPU cycles required for forwarding a packet are likely to involve a constant per-packet cost
for the routing, and a copying cost proportional to the bandwidth3. Thus, by limiting the
bandwidth that a customer receives, a network provider may limit the amount of resources
consumed by that customer on a network node. Effectively, the direct charge that the provider
makes for the bandwidth includes an indirect charge for the use of other resources on the
network node.

However, in a programmable network there are many more variables to take into account
when considering the system load – the loads generated on resources such as CPU cycles,
memory and outgoing link bandwidth may be totally unrelated to the incoming link band-
width. At the extreme, hostile, greedy, or careless forwarding code could potentially consume
all available resources at a node. For example, within an active network node, allowing arbi-
trary customisation of the forwarding code used to process packets would permit (if specific
controls were not put in place) a single packet to potentially consume all available CPU,
memory and link bandwidth at a node (see Fig. 3.1).

It has been argued [Wetherall99b] that since part of the rationale behind programmable
networks is to trade off bandwidth for other computing resources (such as memory and CPU
cycles), bandwidth is presumably the scarce resource at the node. Therefore simply scheduling
bandwidth still suffices to schedule other resources at the node. However, apart from the
obvious problem of gross DoS attacks, there are two flaws in this argument:

• This effectively provides an incentive for end-users to reduce bandwidth requirements at
all costs, even if this results in inefficient use of other computing resources. For example,

3This is clearly not the case if transport protocols and some of the higher level functions of IP – such as
ICMP and subnet broadcast – are taken into account [CERT96, CERT98]. However, such abuses of IP are
generally fairly straightforward to detect as DoS attacks, and as such can be filtered out by routers.
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a program that is transcoding a multicast video stream before transmitting it over a
low bandwidth link would be charged according to the size of its output stream – thus
its optimal course of action would be to expend large amounts of CPU making a given
quality of video stream fit into the smallest possible bandwidth, even if the majority of
that work only produces very small incremental benefits.

• Programmable networks do not just reduce bandwidth requirements at the expense of
increased use of other computing resources; they can also reduce latency using the same
trade-offs. In this case the bandwidth consumed is potentially a small part of the total
resource consumption.

Thus, we conclude that simply limiting the incoming bandwidth is insufficient to allow the
provider to control overall resource usage at a node.

Since the load variance in a programmable network may be expected to be greater than
that in a passive network, the conclusions of the analysis presented in [Breslau98] may be
applied to suggest that some form of resource reservation and control will be required for a
programmable network.

3.2 Approaches to Resource Control

[Wetherall99a] recognises that resource control is one of the major unsolved problems in
current active network research. The approach taken in [Wetherall99a] is to only accept code
certified by a trusted authority – it is acknowledged that this is a serious drawback to the
provision of an open programmable network.

The resources consumed by untrusted code need to be controlled in two ways. The first is
to limit the execution qualitatively – limit what the code can do. This involves restricting
either the language in which the code can be written, and/or the (possibly privileged) services
which it can invoke. The second requirement is to limit the execution quantitatively – limit
how much effect its activities may have on the resource usage in the system. Such resource
control may be performed in various ways, discussed in the following sections.

3.2.1 Control through proof

Proof-carrying code [Necula97] can be generated; such code can be formally proved to respect
the typing disciplines that an execution server wishes to enforce. A verifiable type-safe lan-
guage represents a subset of proof-carrying code – in this case the server has chosen to enforce
the generalised type system used by the language. This, then, provides the qualitative con-
trol mentioned above. Furthermore some previous work has used such techniques to provide
limited quantitative control – e.g. using proofs to reason about the number of instructions
executed within a particular block of code, in order to show that a routine yields the processor
sufficiently frequently to satisfy the execution server [Necula98].
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However, such proofs can be expensive to generate and are not particularly general. For
example, a block of code that could prove it would yield the processor every 15ms would
be unlikely to get a chance to run on a node that had other clients who needed to run
every 10ms. Since such proofs are likely to be based on worst-case costs, this could lead
to clients being unable to run their code even if it would not interfere with other clients’
guarantees. Conversely, if the same code were supplied to a server whose existing client had
been guaranteed to be scheduled every 29ms, the 15ms client would get to run only once every
29ms – since it would be impossible to run the 15ms client twice in a row without missing
the 29ms deadline. A generalised routine could possibly be developed that took its allowable
running time as a parameter, and could be proved to return within a time bounded by that
parameter; however, such a routine would suffer both in code complexity and in the overheads
required to ensure it did not exceed its limits. Furthermore, when multiple resources need to
be controlled simultaneously, such proofs become substantially more complicated.

3.2.2 Control through scheduling/accounting

The alternative to requiring proof is to actively schedule the resouces on the node, and measure
the resources consumed to allow accounting to take place afterwards.

Scheduling may be either co-operative or pre-emptive. Co-operative scheduling relies on the
code being run to relinquish access to the resource at regular intervals; scheduling decisions
may only be made at these intervals. Typically only CPU cycles are scheduled co-operatively,
although it could be argued that gaining access to certain system resources that require
mutual exclusion (e.g. binding to a specific TCP port, or grabbing the display server focus)
involves co-operative scheduling.

Whilst co-operative CPU scheduling may be suitable for multiple threads within certain
applications, or – when used with care – within OS kernels, it has proved less suitable for
system-wide scheduling, especially in the presence of careless or badly-behaved applications
that fail to relinquish access to the CPU; this can result in a system user-interface hanging
whilst an application carries out a large calculation, or a real-time application missing its
deadlines. A system which permits pre-emption between different clients is essential in order
to allow the various guarantees to the clients on the system to be effectively honoured.

It should be noted that for some resources, fully pre-emptive scheduling is not possible. For ex-
ample, an Ethernet card cannot reschedule more frequently than at packet boundaries. When
large (1500 byte) packets are being sent on a 100Mb/s network, this means that scheduling
decisions may only be taken at 120µs intervals. (These effects may be lessened by through
use of a link layer such as ATM, which by virtue of its small cell size allows scheduling to
occur every 53 bytes, equivalent to 4µs on a 100Mb/s link.) In this case, it is necessary to
account for any overrun, so that over two or more scheduling periods a client does not receive
excessive guaranteed access to the resource due to such quantisation.
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3.3 Resources requiring control

Once the decision has been taken to limit the resources available to untrusted code, the
resources that need to be controlled must be selected. This section examines the different
resources available on a node in a programmable network, and discusses approaches to con-
trolling each.

3.3.1 CPU cycles

One of the most obvious resources to be controlled is that of access to a CPU. This includes
time spent executing the untrusted code and time spent executing in (trusted) system libraries.
In particular, time required for tasks such as packet processing and garbage collection should
be accounted to the principal on whose behalf the tasks are being performed.

Many different algorithms have been developed for scheduling CPU resources. Traditional
general-purpose operating systems such as Unix [Ritchie83] use time-sharing schemes that
attempt to allocate the available CPU cycles fairly among the processes (or threads) in the
system. Each process has a dynamic priority that decreases when it receives CPU time,
and increases when it is waiting on a run queue; at each point, the process with the highest
dynamic priority is run. To improve interactive response and the throughput of I/O bound
processes, such processes are given temporary boosts in their dynamic priority. Time-sharing
schemes make no guarantees that a given process will receive access to the CPU with any
degree of timeliness.

In an attempt to provide more reliable access to the CPU for processes that require it, some
schedulers introduce “real-time” static priority classes – at any point in time, the scheduler
runs the process(es) with the highest static priority. If a low-priority process is running and
a high-priority process becomes runnable, it typically preempts the low-priority process. If
several processes share the highest priority value, they may be scheduled cooperatively or
preemptively.

Priority-based schemes have several flaws when seeking to provide resource guarantees [Nieh94].
The first is that a priority is by definition a relative value – the amount of time received by
a process of a given priority is very dependent on the number of other processes with equal
or higher priority. Thus although a process may experience good access to resources when
it has the highest priority in the system, clearly only a few such process can exist before
the problems associated with standard time-sharing occur. The second flaw is that priorities
are insufficient to deal with the case of a process that requires regular processing time, but
which does not require priority over other tasks whenever it is runnable. In a programmable
network, an example of such a task would be the processing of routing updates – these should
clearly not take priority over jitter-sensitive tasks; however, it is vital that they get to run for
a certain amount of time during every update period.

An approach to scheduling that attempts to ensure that all processes make progress, whilst
still allowing straightforward relative priorities, is lottery scheduling [Waldspurger94]. Each
process is allocated a number of “tickets” according to some resource allocation scheme. At
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each time slice, a process is chosen at random to receive CPU; the probability distribution
used is weighted by the number of tickets held by each process, so a process with more tickets
receives more CPU time. This provides a very simple scheduling algorithm that is responsive
to users needs; however, since no guarantees are made to processes about when they will
receive the CPU over short periods of time, it is unsuitable for jitter-sensitive activities.

The concept of processor bandwidth allows processes to receive the guarantees that they
require to carry out jitter-sensitive tasks. At its most basic form, processor bandwidth may
be expressed as a percentage of the CPU. Whilst this is useful in itself, it does not take
into account the fact that different tasks will have different requirements for the frequency
at which they receive access to the CPU. [Black94] presents a scheduler that divides up the
available CPU time into fixed length periods of time called jubilees. Within each jubilee,
time is allotted to all processes according to their allocated percentage share. This provides
a very simple run-time scheduling algorithm, but requires that all processes be scheduled at
the same frequency (i.e. the inverse of the jubilee length). Thus the presence of a process
that requires frequent scheduling causes all processes to be frequently scheduled, increasing
scheduling overheads. In the presence of processes with very different requirements for their
scheduling frequencies, a better solution is to guarantee each process a certain fraction of the
CPU over a process-defined period of time; thus the guarantee consists of a pair (p, s), to
allow a process to receive p seconds of processor time in each consecutive interval of length s

seconds.

The concept of periodic deadlines may be employed to provide the appropriate regular access
to the CPU required by processor bandwidth scheduling schemes. [Liu73] describes the Rate
Montonic (RM) and Earliest Deadline First (EDF) algorithms for scheduling hard real-time
tasks. RM calculates static priorities for each task, according to the frequency at which they
must run; at each scheduling decision, the runnable task with the highest priority is executed.
EDF effectively recalculates such priorities dynamically, always running the task with the
closest deadline. EDF has a greater runtime complexity than RM; however, [Liu73] shows
that EDF can give a feasible schedule for any utilisation up to 100%, whereas RM can only
guarantee a feasible schedule up to 69% (ln2). EDF and RM are both designed for the
scheduling of periodic tasks, rather than general purpose process scheduling. [Roscoe95] shows
that by considering the guarantee made to a process as being a periodic task requiring s

seconds to run and with a deadline every p seconds, these algorithms are applicable to the
problem of processor bandwidth scheduling.

3.3.2 Memory Usage

Memory usage by untrusted code falls into five areas:
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3.3.2.1 Code modules

These represent code that has been dynamically loaded, either at system initialisation time
or by remote clients. They are likely to be read-only4, allowing a single module to be shared
amongst multiple clients. A code module may have some form of persistent variables.

3.3.2.2 Thread stacks

Thread stacks provide the context associated with a computation occurring on the node. This
may be in order to forward or otherwise process a packet, or it may be in response to some
other event, such as a timer expiring. Stacks represent a measure of concurrency – if blocking
(or long-running) computations are expected to occur, the availability of thread stacks for a
particular class of remote client limits the response time and processing rate for that class of
clients. Examples of such classes might include a single client with resource reservations, or
the set of “all best-effort clients”.

3.3.2.3 Packet buffers

Packet buffers provide a level of queueing for both transmission and reception at network
interfaces. If a client had been guaranteed exclusive access to the CPU, and if the latency in
the paths between the network device drivers and the client were negligible, such buffering
would not be needed. However, neither of these conditions are likely to be met; thus to be
able to keep a transmission queue fed and avoid dropping incoming packets in the periods
between gaining access to the CPU, network buffering must be provided.

3.3.2.4 Heap memory

For some forms of communication in a programmable network, each packet may be totally
independent and not rely on flow-specific information stored at nodes in the network – such
flows could include datagram flows that consulted alternative routing tables, or capsules that
carried all their code and data with them. However, carrying multiple copies of the same
code and data around a network wastes bandwidth and processing time (for marshalling and
unmarshalling between wire format and memory structures), and reduces the amount of useful
payload in each packet.

Various approaches have been taken to provide persistent state at network nodes. The most
common approach has been to provide some form of soft state – data that may be flushed
from storage by the node if it requires the space for something else. Thus the client cannot
rely on this data remaining available between successive packet arrivals. Examples of this
form include:

4Whilst self-modifying code does have its uses, we regard its deployment in a programmable network as
foolish, due to the extreme complexity of debugging such code remotely and the prevention of sharing that
such modification entails.
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• ANTS’ [Wetherall98] code cache, in which the Java classes for a particular packet type
are cached along the path taken by those packets.

• PLANet [Hicks99c] and Bowman [Merugu00] provide timed soft-state stores.

ANTS is structured such that in the event of an arriving packet’s protocol code having been
flushed from the cache, it can be easily retrieved from the upstream node that last processed
the packet.

However, other kinds of data (such as flow routing information) may not be so easily regen-
erated. Furthermore, when all packets are processed by the same set of threads – i.e. without
reserving stack resources for particular remote clients – the only way to access per-client
information is to store it in some form of lookup table. For example, PLANet’s soft-state
mechanism uses a table keyed on client identifier (for security) and a string supplied by
the client (to permit multiple data items to be stored by the same client). This represents
inefficiency, a possible source of crosstalk (in the table locking) and an unnatural style of
programming.

For clients with reservations, an alternative is available – the code environment used to process
packets and events for a client may be specialised to that client; therefore instead of invoking
a general packet processing routine that locates an appropriate function to call for this flow,
and provides access to some form of soft-state lookup, instead the function specified by the
client can be invoked directly, with language-level access to persistent variables defined by
that client’s code.

In order to store such data, heap space must be reserved for that client. It should be possible
to limit the amount of heap space consumed by a particular client; conversely, it should be
possible to guarantee to that client that they will receive the amount of memory that they
have reserved.

3.3.2.5 Auxillary data structures

The system will need to maintain data structures concerning clients on the node. These
may be for administrative purposes (e.g. billing and accounting information) or for functional
purposes (e.g. structures relating to network connections). These structures are unlikely to
consume large amounts of memory during normal execution; however, the possibility of a
buggy or malicious client means that it is necessary to limit this memory consumption. Such
structures are likely to fall into three classes:

• Structures of which a single instance exists per client (e.g. client identity). These do
not present a resource control challenge, since there is no way for a malicious client to
increase the resource usage associated with them.

• Structures that are associated with controlled resources. For example, a thread control
structure is going to be allocated in association with a thread stack; a network control
structure is going to be allocated in association with network buffers and a bandwidth
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reservation. These structures do not need to be controlled individually – it will suffice
to include their effects in the accounting for the controlled resources.

• Structures that may be created through client actions and which are not associated
with controlled resources (e.g. timer events). These should be accounted for in some
way. Two approaches are to track the allocations of each individual type of objects; or
to maintain a (fixed-size) per-client heap from which all such allocations are made.

3.3.3 Network Bandwidth

In a node (switch or router) in a traditional passive network, the bandwidth offered to a
network flow is one of the fundamental metrics of quality of service. In a programmable node
it is quite likely to be secondary to other resources such as CPU cycles or memory – if the client
purely wanted network bandwidth, it is likely that reserving resources on a programmable
node would incur greater overheads (and hence be more expensive) than setting up a flow
through a standard switch or router. However, the ability to reserve network resources on a
programmable node is still vital; consider the situation in which a client has moved its logic
for a networked transaction to a node closer to the server, in order to reduce the latency of
the transaction. If the latency between the client and the server is 100ms, and the client’s
code running on the network node only gains transmit access to the network every 200ms,
the latency of the transaction will be increased rather than decreased by the migration.

Various transmission scheduling algorithms have been proposed to share out network band-
width. These include weighted fair queuing [Demers89] and virtual clock [Zhang90] and a
modified form of EDF [Black97].

3.3.4 Summary

This chapter has examined issues relating resource reservation in programmable networks.
First the arguments for and against resource reservations in passive networks were considered.
By comparing the likely load variance at programmable nodes with that of passive nodes, it
was concluded that resource control in programmable networks would be required.

Two approaches to resource control were considered – control through proof and control
through scheduling. It was concluded that proof-based controls were useful for enforcing
safety properties, but for ensuring guaranteed access to resources they were less practical
than scheduling.

The chapter concluded with a discussion of the resources on a programmable node that would
require control.
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Chapter 4

Nemesis

This chapter presents further detail on the Nemesis Operating System developed at the Uni-
versity of Cambridge. The origins of Nemesis are discussed, along with the properties that
make it suitable as a base for the Rcane architecture to be presented in Chapter 5. More
information may be found in [Roscoe95, Leslie96, Barham96].

4.1 Overview

In traditional operating systems, tasks such as network protocol processing, paging, and
graphics rendering are performed either in a shared server or in the kernel – unless this
work is carefully scheduled and accounted for, it can cause Quality of Service interference
(crosstalk) between applications.

Nemesis simplifies such accounting by requiring each client to perform much more of its own
work than in a traditional system; shared servers (or the kernel) are needed only to arbitrate
access to shared resources. Wherever possible, these servers exist purely for setting up and
destroying access connections (e.g. providing access to the blocks on a disk consituting a file,
or installing a packet filter to demultiplex network packets). Other operations such as network
protocol processing or graphical rendering are performed in the application itself (typically
using shared libraries), with the servers just providing safe scheduled access to the hardware.

This approach allows Nemesis to provide an effective platform for “multi-service” systems, in
which different multi-media applications co-exist without experiencing interference from one
another or from other applications with less critical time constraints.
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4.2 Operating System Structure

4.2.1 Traditional Systems

Traditional operating system structures have fallen into three main categories:

Monolithic systems have a single operating environment that has full access to the machine’s
resources. Typically only a single application runs at any one time, or else co-operative
task-switching may be employed.

Kernel-based systems separate out applications from system services (scheduling, memory
protection, paging, scheduling, etc). Services run in a privileged kernel ; applications
run without system privileges, and isolated from each another.

Such systems are typically not designed with the intention of accurately accounting
the consumption of resources to applications. Substantial amounts of work are often
performed within interrupt handlers, such as network receive routines; accounting such
work to the receiver can be problematic.

A further problem with the kernel-based approach is that the abstraction layer and the
protection layer are entwined; whilst a high level of protection is desirable, the high
abstraction level thus presented prevents an application from effectively specifying the
relative importance of its own activities.

Although some research has addressed these issues [Druschel96, Banga99, Ingram99,
Bruno99], effective resource control in traditional kernel-based systems is still an open
problem.

Microkernel systems aim to provide modularity (and thus greater maintainability and fault
isolation) by moving functionality from the kernel into servers. The kernel itself pro-
vides support just for scheduling, memory protection and Inter-Process Communication
(IPC); device drivers1 and services such as networking, paging, filesystems and memory
management are provided by (possibly privileged) servers.

Whilst this approach does provide a more flexible method of OS design, the additional
modularity and protection can increase the overheads of communication between ap-
plications and the various servers. However, previous work [Härtig97] has suggested
that with careful optimisations, the cost of such communication can be comparable to
a traditional kernel-based system.

A more fundamental problem with the microkernel approach is that it makes accurate
resource accounting even more difficult than in the case of a kernel. Let us take the
example of a network stack server. If it is to provide QoS, it must schedule the actual
transmission of outgoing packets and account for the buffering of incoming packets.
However, if it is also performing protocol processing (such as checksumming, IP frag-
mentation/reassembly, etc) on the data being transmitted and received, it must also
have sufficient CPU resources to carry out such work; furthermore the server must be

1In some situations, portions of device drivers are placed within the microkernel for performance or other
reasons.
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able to accurately account such resource consumption to the client applications. Sim-
ilar problems apply with the rendering time used by a graphics server2 and the disk
bandwidth consumed by a paging server.

4.2.2 Vertical Structure

A new approach to OS structure, taken by Nemesis [Leslie96] and the Exokernel [Engler95],
is the vertically-structured system. Vertically structured systems arose from the concept that
the association between abstraction and protection enforced by kernel- and microkernel-based
systems was unnecessary. In fact, while enforcing a high level of protection on applications is
desirable, enforcing the high level of abstraction is not.

In a vertically structured system, many tasks traditionally performed by the kernel or shared
servers are migrated into the application itself. The high level of abstraction provided by
traditional systems is instead provided by shared libraries; since the work is performed by the
application itself it can be easily accounted to that application.

Nemesis and the Exokernel approach the concept of a vertically structured system from differ-
ent directions – the Exokernel is essentially a kernel-based system and Nemesis a microkernel.
However, in both systems, all but the control path activities (such as setting up IPC connec-
tions and specifying network packet filters) and very low-level data path operations (such as
transferring individual disk blocks, ethernet frames and pixel blocks) have been moved into
the applications themselves; thus the work remaining for the kernel or the shared servers is
minimal and does not significantly contribute to QoS crosstalk.

In the following sections, various aspects of Nemesis are described to illustrate the vertically
structured nature of the OS, and show why it is suitable as a base for a programmable network
node.

4.3 CPU Scheduling

Nemesis allows a domain to reserve a single guaranteed allocation of CPU time, in the form of
a slice of CPU received over a period of time. The scheduling period may be very fine-grained,
and periods as short as a millisecond are common for processes that require low-latency. The
current implementations of Nemesis use the Earliest Deadline First (EDF) [Liu73] scheduling
algorithm to allocate CPU time.

When an application becomes eligible to receive CPU time, it is entered at its activation
vector ; this will typically handle any incoming events (see Section 4.4) and then dispatch to a
user-level thread scheduler. This gives the application full control over how its allotted CPU
time is used.

2The problem of accounting for time consumed by a graphics server has also been seen to occur with the
X server on Unix systems [Barham96].
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Because Nemesis requires that applications perform their own work rather than relying on
servers, it is possible to significantly regulate the total CPU load put on the system due
to an application’s activity. Furthermore, since far more of the activities accountable to an
application take place within that application’s protection domain (rather than in a kernel or
server) the application has far more control over the scheduling of its own tasks. For example,
an application may choose to expend time on protocol processing for a high importance
network stream, and defer any processing for a low-importance stream. Such behaviour
cannot be easily achieved in a traditional OS, although projects such as Signalled Receiver
Processing [Brustoloni00] and Resource Containers [Banga99] have addressed this problem
for monolithic kernel-based systems.

4.4 Interprocess Communication

The Nemesis kernel provides only the simple event channel primitive for communication
between domains (Nemesis processes). An event channel is a monotonically increasing integer
shared between a sender and a receiver; when the sender increases the value of the event, the
new value is made available to the receiver, and the receiver is optionally notified of the
change and unblocked if necessary.

On platforms in which transitions to kernel mode may be made cheaply, such as the Alpha
21164, such event increments are performed through system calls; on platforms such as Intel
x86 and StrongARM, where kernel transitions are more expensive, a per-process FIFO of
outgoing event increments is read by the kernel at reschedule time.

Higher levels of IPC may be built on top of these primitive events by applications, with
no additional support required from the kernel. A system service called the Binder allows
domains to establish event channels to other domains.

The standard Nemesis libraries provide synchronous closure-based IPC using shared-memory
segments. When an IPC invocation is made, the arguments to the invocation are marshalled
by the client into the shared-memory buffer; on the server side the arguments are copied out
of the buffer in order to make an invocation on the original closure.

This marshalling is performed by stubs that are generated dynamically, at runtime; when the
first IPC channel of a particular interface type is created, the methods in that interface are
analysed [Menage98a]. For each method, a bytecode description of the actions required to
marshal its parameters is generated; from this a machine code stub is synthesised. Such stubs
are cached, and reused later if a method with an equivalent bytecode sequence is processed.
The low-level bytecode used to describe marshalling actions allows significant code sharing to
occur between stubs.

A second form of IPC is the I/O Channel [Black94, Barham96]; this supports buffered asyn-
chronous communication between domains using three areas of shared memory. The first area
of memory contains the data buffers being transferred; the second is used as a FIFO from
the consumer to the producer, for passing descriptors indicating empty buffers (within the
data area); and the third is used as a FIFO from the producer to the consumer for passing
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descriptors indicating full buffers. Event channels are used to synchronise access to the FIFO
areas.

4.5 Device Architecture

Nemesis uses the DMM/DAM device architecture proposed in [Barham96]. Control over each
device is split into two independent entities3:

• The Device Abstraction Module provides data-path access to the device. Connections
(typically abstracted behind an I/O channel) are established by the DMM, over which
clients may send and receive data. These connections may be implemented in several
ways:

– If the device is a user-safe device [Pratt97], the client may be given protected
direct access to a set of registers on the card; thus the I/O channel encapsulates
the logic for communicating buffer areas to and from the card.

– If the dominant resource consumed when accessing the device is CPU time, and
requests to the device may be broken up into small units, a trap into kernel mode
(known as a device privileged section or callpriv [Barham96]) may be provided
by the device driver to access the device. For example, Nemesis frame buffer
drivers use a callpriv to allow clients to transfer small blocks of pixels into windows
that they own. Since the dominant resource consumed is CPU cycles (due to the
relatively low speed of the PCI bus), the CPU scheduler effectively polices access to
the device with no additional scheduler required in the framebuffer device driver.

– If the device has the ability to schedule between multiple clients, but cannot pro-
vide protection between them, a callpriv may be used to provide the necessary
protection to make the device appear to be a user-safe device. For example, the
DEC OPPO ATM adaptor has the ability to create multiple outgoing queues of
packets, each separately scheduled. For this device, a callpriv is used to mark an
outgoing PDU for DMA and transmission on the client’s queue.

– For traditional devices that support neither scheduling nor protection, a thin device
driver layer is required to mediate access to the device. This layer should provide
access in terms of small requests (such as disk blocks, network frames or tiles of
pixels) and may be required to perform scheduling for clients.

• The Device Management Module (DMM) provides management and control for the
device; it is responsible for implementing access control and resource allocation policies,
and for creating data connections between clients of the device and the DAM. It takes
no part in data-path activity.

3Note that in some cases it proves convenient to implement these two entities as two interfaces on the same
object; however, any synchronisation between the two is structured so as to avoid interfering with data-path
guarantees.
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4.6 Network I/O

Nemesis provides network access in the form of I/O channels between applications and the
network device or device driver, over which link-level frames (such as Ethernet frames or AAL5
PDUs) are exchanged. The application is responsible for performing any necessary protocol
processing (such as flow control, reliable delivery, IP fragmentation and reassembly, or TCP
checksumming and segmentation); the device driver needs only to schedule the transmission
and reception of raw frames. Packet filters are used both on transmission (to ensure that the
packet headers are valid) and reception (to locate the I/O channel to which the packet should
be passed).

The Nemesis Flow Manager is the DMM for the network – it is in charge of setting up the
I/O channels between clients and network devices and configuring packet filters; any required
network access policy for the system is implemented by the Flow Manager. However, once
such I/O channels have been set up, the Flow Manager plays no part in data-path activity.

In the case where the network interface card is a user-safe device, the client application may
communicate directly with the card. For traditional devices that cannot themselves provide
protection between multiple users accessing the device, a thin device driver layer is needed.
This driver is responsible for scheduling and transmitting Ethernet frames from a set of client
I/O channels, and for receiving and demultiplexing incoming frames, and sending them down
the appropriate I/O channel if that channel has empty buffers available. In the event that an
incoming I/O channel is full, the packet is dropped, either in the card or in the driver before
protocol processing takes place.

Since each I/O channel acts as an independent queue, and processing time is only expended
on processing packets in that channel when the application so chooses, accurately scheduling
and accounting multiple incoming or outgoing network streams in a single application is more
straightforward under Nemesis than under traditional systems. For example, a web server
could give priority to channels that corresponded to sites hosted for paying clients, and only
expend resources on non-paying clients after all work for paying clients had been performed.

4.7 Summary

This chapter has provided detail on the Nemesis Operating System. An overview of the
structure of the OS was presented, with a comparison to the structures of traditional operating
systems.

Aspects of the system, including its device architecture, inter-process communication models
and resource scheduling models were presented; it was shown that Nemesis possesses features
that support effective resource isolation between multiple clients, and provides the ability for
applications to schedule the resource consumption of their own activities. These properties
suggest Nemesis as a suitable base for the development of a platform for the execution of
untrusted code in a programmable network.
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Chapter 5

The RCANE Architecture

This chapter describes the Resource Controlled Active Node Environment (Rcane) architec-
ture and the principles guiding its design. Rcane is designed to allow providers of nodes in
a programmable network to permit untrusted clients to run code on their nodes, without the
risk of Denial of Service attacks or excessive consumption of resources.

Rcane provides abstractions to control access to CPU cycles, network bandwidth and mem-
ory, and allows lightweight and flexible communication between clients. The structure and
mechanisms used by Rcane to accurately account for these resources are described, and their
applicability to preventing various types of DoS attack is discussed.

Many of the ideas presented in this chapter were previously described in [Menage99].

5.1 Introduction

In the previous chapter the Nemesis Operating System was discussed. It was shown that
Nemesis provides basic resource guarantees to applications, allowing multi-media applications
to co-exist with one another and with batch processes without the interference associated with
traditional operating systems.

Given the resource requirements discussed in Chapter 3, this would seem to make Nemesis a
suitable platform for a programmable network node. However, in its basic form Nemesis is
unsuitable for such a rôle:

• Providing each remote client with their own (hardware protected) Nemesis domain
would be expensive in terms of both memory consumption and setup time. The in-
creased memory costs would reduce the scalability of the system. Many clients’ appli-
cations (such as mobile agents) in a programmable network will be substantially more
ephemeral than multimedia applications on a workstation, and so the increased setup
costs can turn into a substantial overhead.
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• Nemesis is designed to allow essentially benign applications on a workstation to com-
municate their resource needs (possibly overriden by the user) to the OS and for such
needs to be effectively met by the OS. In an uncooperative environment such as a pro-
grammable network, applications may be greedy or even malicious, and hence more
control is needed.

• Nemesis is designed to run native code. In a heterogeneous programmable network,
unless we wish to burden clients with the task of producing and shipping multiple
binary formats – possibly for architectures for which they have no suitable compiler –
a common virtual machine layer is required over the OS.

The Rcane architecture, presented in this chapter, meets these requirements.

5.2 Architectural Principles

Rcane is designed to provide resource isolation between multiple independent applications
on a node in a programmable network, with the resources consumed by each application being
paid for by a remote principal. The following aims underlie the design of the architecture:

• To provide guarantees to applications that they will receive the Quality of Service that
they require in order to complete their tasks in a timely manner.

• To accurately account resource consumption to the client that causes such consumption
to occur, in order that the client may later be be billed.

This section describes how these aims have shaped the overall architecture of Rcane.

5.2.1 System Structure

Rcane employs both horizontal layering (between different layers of trust) and vertical iso-
lation (between different clients).

5.2.1.1 Layering

Rcane follows the principles (proposed in [Alexander98a]) to partition the system into mul-
tiple layers:

• The Runtime is written in unsafe native code and provides access to – and scheduling
for – the resources on the node. Services such as garbage collection (GC) and thread
synchronisation primitives are also provided by the Runtime.
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Figure 5.1: Rcane Architecture Overview

• The Loader is written in a safe language (as are all higher levels). The Loader is entered
early in system initialisation. It is responsible for:

– completing the initialisation of the Runtime,

– loading the higher levels of the system, and

– linking user-supplied code into the system.

• The Core, loaded at system initialisation time, provides safe access to the Runtime
and the Loader and performs admission control for the resources on the node. The
interface to the Core represents the “Red Line” identified in [Back99] as a requirement
for security in a system using software protection.

• Modules are units of untrusted code. The include standard libraries, supplied by the
system and loaded at system initialisation time, and code supplied by remote users.
They have access to the interfaces exported by the Core, but no direct access to the
Runtime or the Loader except where permitted by the Core.

System modules in the Core are linked against entry points in the (unsafe) Runtime; these
are then exported through safe interfaces to which the untrusted modules can link directly.
The Runtime performs a policing function on the use of the node’s resources. An overview
of the Rcane architecture is shown in Figure 5.1. The Safe/Native code boundary indicates
the division between unsafe native code (written in a language such as C) and code written
in a safe language supported by the Runtime’s virtual machine. The Trusted/Untrusted code
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boundary indicates the division between code that is known to respect the security properties
of the node and other code; such code may be regarded as untrusted if it is supplied by an
untrusted source, or if it is from a trusted source but has not been sufficiently checked to
ensure that it would not compromise the system. Within the Core and the Loader, although
all code is written in a safe language, the interfaces exported by the Runtime permit complete
control over the node1. Thus it is important that malicious code not be permitted to execute
within the Core.

5.2.1.2 Sessions

Rcane uses the abstraction of a Session to represent a principal with resources reserved on
the node. A session is the analogue of a process in a conventional OS that uses hardware pro-
tection, and is similar to the concept of a flow in the Active Networks NodeOS [Peterson00a].
Sessions are isolated, so that activity occurring in one session cannot prevent other sessions
from receiving their guaranteed QoS, except in situations where explicit interaction is re-
quested (e.g. due to one session using services provided by another session).

To provide guaranteed levels of QoS to remote principals, Rcane allows sessions to reserve
resources in advance. Requests for resource reservations are processed by the System session
(see below) and, if accepted, are communicated to the Runtime’s schedulers. In general,
data-path activity – e.g. sending packets – is carried out within the originating session.

In other active network systems, the main resource principal is the execution environment (EE).
This can lead to QoS crosstalk between the different clients of an EE. The use of sessions in
Rcane makes the end-user the resource principal, allowing guarantees to be made more easily
to individual end-users. An EE then becomes a library that a session may use to provide a
convenient programming abstraction, and a client may make use of more than one EE in a
single session if desired. (See Section 5.6 for a discussion of mechanisms allowing shared state
between multiple instances of the same EE.)

Figure 5.2 shows part of the Session interface provided by the Core to permit control over a
session and its resources. (Certain functions concerning modification of resource requirements
are not shown.)

• createSession() requests the creation of a new session. Credentials to authenticate
the owner of the new session for both security and accounting purposes are supplied,
along with a specification of the required resources and the code to be executed to
initialise the session.

• destroySession() releases any resources associated with the current session.

• loadModule() requests that a supplied code module be loaded and linked for the session.

• linkModule() requests that an existing code module (possibly loaded by a different
session) be made available for use by this session. The module to be linked may be

1In particular, some of the low-level features of the Runtime may permit language safety to be compromised.
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bool createSession (c : Credentials, r : ResourceSpec, code : CodeSpec);

void destroySession (void);

bool loadModule (l : LoadRequest);

bool linkModule (l : LinkRequest);

vp_id createVP (spec : CpuSpec);

bool bindDevice (d : Device, bu : BufferSpec, bw : BandwidthSpec);

Figure 5.2: The Session interface

specified simply by the interface that it exports, or by a digest of the code implementing
the module to ensure that a particular implementation is used.

• createVP() creates a new scheduled allocation of CPU time (see Section 5.3).

• bindDevice() reserves bandwidth and buffers on the specified network device (see Sec-
tion 5.4.

At system initialisation time two distinguished sessions are created:

• The System session represents activity carried out as housekeeping work for Rcane.
It has full control over the Runtime. Many of the control-path services exported from
the Loader and the Core are accessed through communication with the System session.
Such system services include:

– The code librarian and linker.

– The session manager.

– The default network routing tables.

• The Best-Effort session represents activity carried out by all remote principals without
resource reservations. Packets processed by the Best-Effort session supply code written
in a very restricted language and are given minimal access to system resources. Access
to the createSession() call in the Session interface is permitted, so that best-effort
code can initiate a new session; further work may then be performed by the newly
created session.

Figure 5.3 shows how Rcane sessions are orthogonal to the layering described in Section 5.2.1.1.
The horizontal dashed lines indicate boundaries of trust ; the vertical dashed lines indicate
boundaries of resource isolation. It can be seen that some portions of the Core – such as those
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Figure 5.3: Orthogonality of sessions and layering in RCANE.

dealing with data-path activity – are directly accessible to user sessions; untrusted code may
call them directly, possibly resulting in a direct call to the Runtime. The majority of the Core
code executes in the System Session and thus is not directly accessible to the user sessions;
such separation may be achieved using a heap isolation technique such as that described in
Section 5.5. Hence this portion of the Core must be accessed through the inter-session services
described in Section 5.6.

It can be seen that each user session has created an instance of either the PLAN [Hicks99c]
or ANTS [Wetherall98] execution environments, or both. Note that although multiple ses-
sions are using each EE, these instantiations are operating independently and without QoS
crosstalk, since resource scheduling occurs in the Runtime, below the level of the EEs.

5.2.2 Security

When opening up a node to permit the execution of untrusted code, security is clearly an
important concern, with two important aspects that need to be considered.

The first aspect is that the server may not trust the code supplied by remote users. Therefore,
the server must restrict the ability of the user-supplied code to interfere with the code or
data of the server or of other users. Such restriction takes two forms: restricting the basic
operations – at the language/instruction level – that the user’s code may perform (discussed
in Section 5.2.3) and restricting the higher-level services that may be accessed.
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To identify which services a client is authorised to access, some form of security and trust
management framework is required. Rcane does not mandate any one particular security
framework, and detailed discussion of such is beyond the scope of this dissertation. Possible
frameworks suitable for specifying and implementing security policies in a programmable
network environment are presented in [Blaze99, Hayton96, Hicks99b].

The second aspect of security that needs to be considered is that the “untrusted” mobile code
may itself not trust the server. The server has total control over the environment in which
the mobile code executes; the server is at liberty to examine or corrupt any of the client’s
code or data, and can adversely affect the execution of the client’s code. Once the code is
executing on the server the results of an attempt to verify the credentials of the server cannot
be trusted.

A possible way to get around this problem is for the algorithms and data used by the client’s
code to be encrypted in some way; thus the server executes the algorithms, but has no way
of understanding what the client is actually doing. This is similar in principle to the Chinese
Room Argument presented in [Searle80], in which a person carries out a set of instructions to
manipulate Chinese symbols, in order to take part in a (written) dialogue in Chinese without
understanding either the questions or the answers. [Sander98] discusses mechanisms through
which a client’s code may provide itself with limited protection against a malicious server,
and [Karjoth98] presents a protocol by which a mobile agent’s owner may detect alterations
made by a malicious host to information gathered from other hosts; however, it is not clear
whether these approaches can be extended to provide a general protection mechanism for a
client’s code.

Therefore, a tenet of the Rcane architecture is that the client supplying the code trusts the
server executing the code – this is similar to the requirement in the current Internet that
hosts trust the routers in the intervening network path, and does not preclude the use of
end-to-end encryption on sensitive portions of the payload that are not needed within the
network. Mechanisms for establishing such trust are beyond the scope of this dissertation.
An example of an active network architecture in which establishment of mutual trust is a
fundamental principle is given in [Alexander98c]. [Bos99] presents an interface through which
roaming agents may establish such trust.

Security of a client’s data whilst the data is travelling over a network to/from an Rcane node
is to some extent the responsibility of the client. Rcane does not specify any secrecy, integrity,
or authentication mechanisms for network flows. Rather, it provides low-level access to the
network over which the client may layer any desired security mechanisms before ultimately
processing the data received in a network flow.

5.2.3 Code Safety

Since an active node is expected to execute untrusted code, there needs to exist a layer of
protection between each principal and the node, and between multiple independent principals.

One approach to such protection is to utilise the memory protection capabilities of the node’s
hardware. Each principal’s code will execute within its own address space. This allows the

60



execution of programs written in arbitrary languages and compiled into native code. The
virtual machine and interfaces provided to permit a principal’s code to interact with the node
and with other principals on the node may take several forms.

The server may present a virtual machine that emulates the real machine [Goldberg74,
Bugnion97, Creasy81] or provides a trap-based interface to a well-defined kernel interface.
Advantages of these approaches include the fact that arbitrary optimisation techniques may
be employed by the prinicipal supplying the code in order to improve efficiency of execution.
Disadvantages include the cost of context switching between multiple protection domains,
and the storage overheads associated with maintaining each domain.

An alternative is to require principals’ code to be written in a typesafe and verifiable language.
Such languages prevent the programmer from circumventing the type system of the language
by treating an object/value of one type as though it had a completely different type. Moreover,
programs are either supplied in source form or (more usually) compiled to some intermediate
form2 that the server can be confident respects the type system of the language. This allows
much of the protection checking to be done statically at compile or load time, and allows
much more lightweight barriers between principals. In particular, it means that untrusted
code may be safely executed in the same address space as the Rcane runtime system, and
interactions between principals can be made almost as efficient as a direct procedure call.

The constraint of verifiability requires principals to supply code in one of three forms:

• Verifiable bytecode. This may be executed by an interpreter without further checks, or
converted into native code by a just-in-time compiler.

• Unverifiable bytecode or scripts that must be run by an interpreter with dynamic check-
ing. This is likely to run substantially more slowly than verifiable bytecode; however,
the startup costs of such code will be lower than that of code that must be verified.

• Proof-Carrying Code: native code, with a proof that the code respects the typing and
the interfaces provided by Rcane [Necula98]. Proof-carrying code requires the client
to generate and prove extensive verification conditions, to demonstrate that the code
respects the interfaces provided by the host. These proofs can grow exponentially in
the size of the code being proved safe.

Hybrid forms are possible; for example in Java bytecode, some instructions (such as certain
dynamic casts) have to be checked at runtime, while other parts of a Java program can be
compiled to native code and run without checking.

A major advantage of using bytecode is that in a heterogeneous network it removes the need
for principals to supply native code specific to the architecture over which the node is running.

Executing bytecode is somewhat slower than executing native code; however, the performance
improvements available when clients supply native code are limited for two reasons:

2It is quite possible for multiple source languages to compile to the same intermediate form (as has occured
with Java bytecode [Gosling95a]), and thus such an approach need not overly restrict the freedom of the
programmer.
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1. Just-in-Time compilation [Cramer97] (JIT) techniques allow a bytecode sequence to be
converted into equivalent machine code at runtime, potentially providing performance
at the same level as that obtained from unsafe code. (For code that is migrating
frequently, the overhead of JIT-compilation may be wasted, since the code will not be
heavily executed at any one node – the techniques proposed in [Harris98] may be used
to permit user-control of such compilation).

2. Code provided as part of the system is trusted, and hence may be fully compiled to
efficient native code when the system is created/installed. If the set of services and
libraries provided by the node is sufficiently encompassing, most execution time will be
spent in these system libraries, and the efficiency of the user-supplied code will be less
relevant.

Three other possibilities for supplying safe code were considered but rejected:

1. Software Fault Isolation (SFI) [Wahbe93] would provide a guarantee that the applica-
tion was not able to access objects to which it did not have any access; however, it
would be unable to guarantee that the application respected the type safety of objects
within its heap. This would result in Rcane being unable to store any data within
the application’s heap, nor trust the validity of abstract objects passed to and from
Rcane interfaces. Furthermore, [Seltzer96] relates that the runtime checking overhead
associated with SFI can be very expensive for data-intensive code.

2. Code could be certified by the compiler as being a true and valid compilation of a
program written in the safe source language. Such an approach has two drawbacks:

• It requires all programmers to use the same trusted compiler, or else requires a
trusted party to check the validity of third-party compilers and produce certifying
versions of such. The use of verifiable code has no such requirement, since anyone
may produce a compiler that generates verifiable code.

• Unless a small set of trusted authorities provide a “signed compilation” service
through which all programs must be sent before being deployed in a programmable
network, it would be necessary for the trusted compilers to be distributed to end-
users. In this situation it would be difficult to prevent reverse-engineering of the
compilers to retrieve the cryptographic keys used for code certification. This is
shown by the case of the DVD Content Scrambling System (CSS). CSS is an en-
cryption system intended to prevent the playback of DVD films by unlicenced pro-
grams; the keys required to decrypt the per-disk key (which in turn could decrypt
the media content on the disk) were embedded in licenced viewer programs. Since
the viewer programs were run in a hostile environment (i.e. a system controlled by
an end-user) the keys were relatively easily retrieved through reverse-engineering.

Any malicious user who gains access to the keys may sign arbitrary (possibly
invalid) programs. The use of verifiable code does not suffer from this drawback,
since the code can be verified on its own merits, without requiring any special key
embedded within the compiler.
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3. Code could be certified as being provided by a trusted source (rather than, as in the
previous item, verified code from an inherently untrusted source). This removes the
need for protection, but instead relies on the owner of the node trusting every user who
may wish to execute code on the node3. In an open network this requirement is likely
to be unsatisfiable.

For the reasons given above, Rcane is oriented towards a node supporting the execution of
verifiable bytecode or proof-carrying code; however, many of the principles guiding the design
of Rcane could be applied to a system that permitted the execution of arbitrary native code.

5.2.4 Modules

The unit of code linkage in Rcane is the module. Each module exports a (possibly empty)
interface, and imports a set of interfaces from other modules. An interface is a strongly
typed set of functions and values. Multiple modules may export different implementations
of the same interface. Each implementation module and interface also has a code signature,
generated from a secure hash of the bytecode making up the module, or the types specified
in the interface, to enable references between modules and interfaces to be rapidly resolved.

The form taken by modules and interfaces will depend on the safe language being employed.
In the case of Java, a module may map to a Java class; in Caml [Leroy97] a structure would
be used for a module, and a signature would represent an interface.

5.2.4.1 Linking and Binding

Linking is the operation of introducing a new module into the system. In a system using
hardware protection, there is typically no need for any verification by the system when a user
loads and links new code. In a system using software protection, however, it is necessary
that the system can verify that the module is safe to execute, using techniques such as those
described in Section 5.2.3. Such verification will involve checking that all of the new module’s
imports can be resolved by existing modules, and that the code in the module respects the
typesystem of the language and the types of the imported interfaces.

To access the elements of a module’s interface, a session must be bound to that module.
Binding to a module instantiates the module into the namespace of the requesting session.
Sessions may bind to modules either by presenting the desired bytecode to the system (thus
simultaneously performing the linking and binding steps), or by referring to the code signature
of the desired module4.

3It is important to bear in mind that just because the owner trusts the code signers, it does not mean that
he trusts those whose code has been signed – the signature only serves to identify the author of the code, and
does not verify that it is safe.

4When referring to a module by its code signature, the module must have been previously loaded into the
system, possibly by a different session or at system initialisation.
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Binding may be explicit – as a direct result of a user request – or it may be implicit, called
recursively to satisfy the imports of another module that is currently being bound. During
binding, the module’s functions and data are initialised so that the interface exported by that
module may be used by other modules in the same session.

5.2.4.2 Privilege

Some modules may have particular privilege levels associated with them. This may be the
case if:

• the module allows unsafe access to the underlying Runtime,

• the module allows manipulation of important node state, or

• if the module contains proprietary algorithms that are not intended to be publicly
accessible.

Such privilege may be expressed in various ways. An implementation of Rcane may represent
privilege on a simple scale from “no privileges” to “full privileges”, or more complicated
capability-based models such as that proposed in [Hicks99b] may be used.

A module’s privilege levels affect linking and binding:

Binding: When binding, the session requesting the bind must have sufficient privilege to
bind to the desired module.

Linking: When linking, the session introducing the new module must have sufficient privilege
to bind to all of the module’s imports.

5.3 CPU Management

This section presents the abstractions used by Rcane to provide access to the CPU(s) on the
node. The thread model was originally proposed in [Menage98b] and subsequently adopted
in a modified form by the Active Networks NodeOS specification [Peterson00a].

Rcane’s CPU management abstractions are structured so as to allow sessions to split their
tasks between multiple scheduling classes, control the level of concurrency used for different
sets of tasks, and to service those tasks efficiently. Three important abstractions employed
are:

1. A virtual processor 5 (VP) represents a regular guaranteed allocation of CPU time, ac-
cording to some scheduling policy (e.g. EDF [Liu73] or WFQ [Demers89]). All activities

5For those familiar with the Nemesis Operating System, over which the prototype of Rcane is based, this
abstraction is distinct from the normal Nemesis notion of a VP.
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Figure 5.4: The Rcane CPU management architecture
Each VP represents a CPU allocation; thread pools permit events to be routed to worker

threads.

carried out within a single VP share that VP’s CPU guarantee. A session may have
one or more VPs; by requesting multiple VP’s, a session may organise its tasks into
multiple independently-scheduled classes.

2. A thread is the basic unit of execution, and at any time may be either runnable (working
on computation), blocked (e.g. on a semaphore, or awaiting more resources to become
available) or idle (in a quiescent state, awaiting the arrival of further work items).

3. A thread pool is a collection of one or more threads. Each thread is a member of one
pool. A thread pool acts as a queueing and dispatch point for packets and events. Each
pool is associated with a particular VP; its threads are only eligible to run when its VP
receives CPU time.

Figure 5.4 shows an example of the CPU management architecture used by RCANE. There
are two VPs shown. VP 1 contains a single thread pool, with a single thread. CPU time
reserved for VP 1 will be consumed by the single thread, processing events placed in the event
queue of VP 1’s thread pool (see Section 5.3.1). VP 2 contains two thread pools; these thread
pools contain two and three threads respectively. The CPU time reserved for VP 2 will be
shared between the threads contained in the VP’s two thread pools.

The choice of scheduling algorithm used to select between the thread pools (and threads)
within a single VP may be left to the application itself6 – unlike the top-level scheduler used
to select between VPs, there is no requirement that it be capable of supporting reservations or
fine-grained scheduling. Since all the CPU time being consumed is accounted to the session, it

6The application may be restricted to choosing a scheduling algorithm from a set defined by the provider
of the Rcane node and implemented in unsafe code within the Runtime. Alternatively, the node may employ
extensible virtual machine [Harris99] or proof-carrying code [Necula97] techniques to permit an application to
schedule its own threads in a safe manner.
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may choose a simple scheduler that is efficient to run but which gives no particular guarantees
to threads, or it may choose a more complex scheduler to satisfy some policy for sharing its
CPU allocation between its different tasks.

5.3.1 Events

Each thread pool has an associated event queue. An event represents a callback into one of
a session’s functions. Events may be placed into the queue in two ways:

• An event may be requested to occur after a given delay. For example, a thread may
specify that the (user-defined) handleTimeout() function be called with a given pa-
rameter in 100 milliseconds time. By default, an event requested in this way is sent
to the thread pool in which the thread is running, but the user may specify that the
event be sent to a specfied thread pool, or to the default thread pool for a specified VP
belonging to the user’s session.

• When a packet is received on one of a session’s network channels (see Section 5.4), it is
turned into an event that will invoke that channel’s processing function – specified by
the application – with the contents of the packet as an argument to the function.

Whenever a thread pool’s event queue is non-empty (either due to newly arrived packets,
or delayed events whose timeouts have passed) idle threads in the pool will be dispatched
to process the events in the pool’s queue. When a running thread has finished its task, it
is dispatched to process the next event from the event queue if the queue is non-empty, or
returns to the idle state if the pool’s queue is empty.

This hybrid thread/event model allows sessions a great deal of flexibility in how they map
their work onto threads. Traditional multi-threaded programming may be performed, at
the expense of an increased amount of memory required for thread’s stacks and greater ef-
fort on the part of the programmer to avoid concurrency bugs. Alternatively, by using the
continuation-passing style of programming that is promoted by events, a single thread might
be bound into a pool, serving multiple tasks consecutively from the same event queue, and
thus reducing the amount of stack memory used, but with less concurrency. The level of
concurrency allocated to a particular task is directly controlled by the number of threads
attached to the task’s thread pool.

This flexibility is extended to the level of CPU reservations. If a session has two tasks of
the same importance to perform then a single CPU reservation (i.e. a single VP) may suffice.
If however, a session has multiple tasks to perform, multiple VPs may be appropriate. For
example, an application that is processing a network video stream, with packets arriving every
20ms and requiring 0.5ms to process, and which is also performing housekeeping processing
that should not be permitted to interfere with the network processing, may choose to allocate
two VPs – one with a 0.5ms slice of CPU time every 20ms of real time, for the network
processing, and another with a less fine-grained guarantee for the periodic processing. A
database server that wishes to provide services to multiple clients simultaneously may bind
several threads into a pool to which incoming packets are directed.
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5.4 Network I/O

Access to network flows is essential to allow mobile code to communicate both with its original
source and with the other resources in the network with which it wishes to interact.

Rcane allows sessions to open channels to give access to network resources. A channel is a
simplex or duplex flow of packets to and/or from the network.

Each channel that is capable of receiving packets has associated with it a demultiplexing
specification (to select the incoming flow of packets to be directed to that channel) and a VP,
which is used for RX protocol processing on that channel.

One of the significant sources of QoS crosstalk in a traditional operating system is the net-
working stack. In particular, the use of kernel threads to perform protocol processing can
make it difficult to correctly account the resources consumed by a particular flow, and can
lead to livelock situations7 [Druschel96].

To prevent crosstalk between the network activity of different clients, all packets are demul-
tiplexed to their receiving pools by the Runtime using a packet filter. Protocol processing
is not performed on packets before demultiplexing. Each channel contains a FIFO queue of
received packets – if this queue fills up, subsequent packets arriving for that channel will be
discarded until such time as space becomes available in the queue.

At a later time, when the VP associated with the channel is eligible to receive CPU time,
protocol processing occurs:

1. The packet is removed from the channel’s packet queue.

2. Any required processing such as defragmentation or checksum validation is performed.

3. If specified by the application, further demultiplexing into sub-flows may be performed,
based on the value of specified key fields within the packet data.

4. The contents of the packet are encapsulated in a callback event to the function specified
for the particular flow or sub-flow. Incoming packets for each thread pool are stored in a
per-pool packet queue. This is conceptually part of the per-pool event queue described
in Section 5.3.1. However, in order that the timely delivery of events to a client is not
compromised by a flood of incoming packets for that client, events in a pool’s event
queue have priority over packets in that pool’s packet queue.

The time required for this protocol processing is entirely accounted to the VP associated
with the channel, and thus to the session that opened the channel. Thus even a session
that is receiving large amounts of network data will not be able to interfere with the level
of resources received by other sessions. Moreover, if a session is receiving more data than
it can effectively process, excess packets will be dropped at the bottom level of the system,

7Livelock occurs when little or no useful work is performed processing received data, as the system is too
busy processing (and throwing away) more incoming data.
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rather than consuming excessive buffer resources, or causing needless protocol processing
to be performed before the packet is ultimately dropped. Ideally, such packet filtering and
discarding will be performed in an intelligent network card [Pratt97, Pratt00], to avoid wasting
any CPU cycles or bus bandwidth on data that is ultimately discarded.

An application may associate each flow or sub-flow with a particular thread pool. The callback
event constructed by the protocol processing is placed in the packet queue for the specified
thread pool. This allows different logical flows of packets to be processed by different thread
pools, possibly running in different VPs to give better QoS isolation between the different
flows.

This network architecture allows each session full control over decisions such as whether au-
thentication is used – and if so, what kind – for packets on a given flow. For non-authenticated
flows, a session can specify a function that processes the packet’s payload immediately; should
authentication be required, the session’s favoured authentication routines may be invoked with
the relevant authentication data from the packet. Other protocol layers such as reliability,
ordering and fragmentation may similarly be composed as required.

A session may request a guaranteed allocation of buffers for receiving packets from a given
network device. Incoming packets demultiplexed to the session will be accounted to this
allocation, and returned to it when packet processing is completed. Packets for sessions
without a guaranteed allocation are received into buffers associated with the Best-Effort
session. Thus, although such sessions can receive packets, they will be competing with other
sessions on the node.

Similarly, a session may request its own allocation of guaranteed transmission bandwidth and
buffers for a specified network device, or may use the transmission resources of the Best-Effort
session.

Figure 5.5 shows an example configuration of the Rcane network architecture. Sessions A
and B have each opened a single channel to a network interface. Incoming network frames
are demultiplexed in the network packet filter and placed in the appropriate channel FIFO
(or dropped if that channel is full). These frames are not processed further until the client
VP associated with that channel receives processing time.

In the case of Session A, no further demultiplexing is performed, and after protocol processing
(which is accounted to session A’s VP), the frames’ payloads are placed on the packet queue
for session A’s thread pool. In the case of session B, the protocol demultiplexing delivers
packets to one of two thread pools, each of which has its own CPU guarantee. Such a
setup might be used when a client is performing two activities, both of which require large
amounts of CPU time and one of which involves processing very few packets. For example,
one activity might involve processing a network data stream, and the other may involve
performing computations, directed by a low-bandwidth stream of control packets from the
end-user. Rather than set up a separate channel for each activity, the client may decide that
any crosstalk introduced by the additional multiplexing and demultiplexing of the few packets
from the second activity into a single channel is small, and that the reservation costs of a
second channel would be too great. Any crosstalk caused by this decision will be internal
to the client, and will not affect other clients. Hence Rcane allows clients to make such
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Figure 5.5: The Rcane network architecture

decisions based on their own criteria.

Packet transmission is similar to that for reception, with link-level frames being placed in
an outgoing FIFO8. A transmit scheduler takes packets from the FIFOs according to the
reservations made by clients, and sends them out over the network.

5.5 Memory

As described in Section 3.3.2, the memory managed by Rcane falls into five categories:
network buffers, thread stacks, dynamically-loaded code, auxillary data structures, and heap
memory.

Network buffers (discussed in Section 5.4) and thread stacks are accounted to the owning ses-
sion in proportion to the memory consumed. The charges incurred for keeping code modules
in memory are likely to be based on a system specific policy (e.g. it may be the case that
linking to a commonly used module would be less expensive than loading a private module).
Techniques for accounting for auxillary data structures were presented in Section 3.3.2.5.

8Protocol processing on the TX side is not shown in Figure 5.5 due to lack of space.
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Heap memory presents more challenges. Safe languages that permit dynamic allocation of
memory have to ensure that pointers cannot be used after the memory to which they refer
has been freed – such a pointer is known as a dangling pointer. Since the memory refer-
enced by a dangling pointer may have been reused for a different type of object, it represents
a potential violation of the safe typesystem. To avoid dangling pointers, a garbage collec-
tor [Wilson92] (GC) may be employed to ensure that no memory block is freed while pointers
to it remain in existence.

The heap memory architecture employed by Rcane must therefore provide a garbage collec-
tor; in order to meet the aims of isolation and accountability, it should support the following
features:

• Efficient tracking of the memory usage of each session.

• Prevention of crosstalk between sessions due to GC activity.

• Ability to revoke references from other sessions when a session is deleted.

Three different possible approaches were considered, shown in Figure 5.6 and described in the
following sections.

5.5.1 Multiple Virtual Machines

The traditional approach to providing isolation between multiple applications is to run each
application in a separate virtual machine in a separate OS process. Most virtual machines
assume that only one user is using the machine, even if parts of the code being executed are
not trusted to have full access to the system. By allowing each VM to run independently, we
preserve the validity of this assumption. This provides a good level of isolation, since each
application’s access to resources may be controlled by the OS; however, using multiple VMs
has certain drawbacks:

• Communication between different applications is made considerably more difficult.

• Sharing of VM data structures and code is not straightforward; for traditional native
applications, code sharing is effected by sharing text segments when they are loaded
from disk. In an environment such as Rcane, where code is supplied over the network,
and potentially transformed into native-code using JIT techniques, more complicated
strategies would be required, involving co-operation between VMs to identify and coa-
lesce shared code pages.

• It is less scalable due to the overhead associated with a new process (both in terms
of cycles required to create the process, and system and user memory required for the
process).

70



 VM A  VM B 

(a) Multiple virtual machines

B

A B

B

B

B

B
A

A

A

A

A

(b) Single tagged heap

A B

(c) Multiple heaps

Garbage-collected
Heap

Virtual Machine

VM client structures
(including heap roots)

Heap block

Figure 5.6: Approaches to providing memory accounting

5.5.2 Single Tagged Heap

This approach uses a single garbage collected heap (and a single virtual machine) for all
applications. Each memory block is tagged to indicate which application allocated that block.
Whenever a block is allocated, the size of the block is added to the tally for that application.
When a block is garbage collected, the owning application’s tally is decremented. Use of a
single heap may reduce the amount of wasted empty space, by permitting the application
of statistical multiplexing techniques to reduce the total amount of memory required on the
node.

There are five significant drawbacks to the single tagged heap approach:

1. If pointers are permitted to be passed between different applications, then one applica-
tion may retain a pointer to objects allocated by another application. This may result
in blocks of memory that are no longer held by the allocating application (and thus
ought to be garbage collected and decremented from the application’s tally) remaining
live. Thus the application is no longer in charge of its own resources.
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Furthermore, if the allocating application exits or runs out of resources, there is no
way to free the memory that it allocated, without creating a dangling (unsafe) pointer.
This could lead to the situation where a series of malicious clients each create a session
to allocate large amounts of memory and make references to this memory available to
other (possibly innocent) sessions. When these sessions exit (and hence are no longer
charged for resources) it may be impossible to free the memory thus allocated.

One possible solution to this problem would be to specify that sessions are held (jointly)
responsible for any memory that can be reached from their heap roots. However, per-
forming such analysis is expensive; moreover in the scenario presented above, the result
would be that unwary clients could end up footing the bill for the storage allocated by
other sessions and stored in places accessible to them.

2. Garbage collection incurs a processing overhead, in order to locate unreachable memory
objects and return them to the free memory pool. With a single heap, there is no
straightforward way to account the CPU time required for garbage collection activity
to applications in proportion to the amount of activity for which they were responsible.

3. Even when other applications do not retain pointers to memory blocks owned by an
application that exits, it is still not possible to efficiently free the application’s memory.
Since all memory blocks are mixed together in the heap, with no partitioning on a
per-application basis, it is necessary to trace through the object graph of the exiting
application in order to identify and free its memory. Thus, unless CPU time is devoted to
such a task immediately when an application exits, the blocks owned by an application
persist as garbage for some period of time after that application’s session is destroyed.

4. If one application causes significant heap fragmentation (either through malice or through
lack of knowledge of the node implementation’s heap layout) then the useful memory
available for all applications may be severely reduced9.

5. There is an overhead in the form of the application tag on the front of each memory
block. In the case of a language such as ML [Milner97] that makes heavy use of small
immutable memory blocks, such tagging would add substantial overhead to the total
heap memory usage.

The JRes project [Czajkowski98] made use of a single tagged heap. JRes used binary-rewriting
techniques to cause all memory allocations to also call a routine to increment the current
thread’s allocation total; object destructors were similarly rewritten to decrement the thread’s
allocation. Apart from problems due to the example implementation being written mostly in
Java with little support from the JVM10, associating allocations strictly with a thread can
cause problems if a user wishes to have multiple threads co-operate.

9This drawback applies only to Mark/Sweep garbage collectors – using a Stop/Copy collector would remove
the problems associated with memory fragmentation.

10Byzantine behaviour in destructors could cause the memory allocations to be decremented before ob-
jects were actually garbage collected, thus allowing users to consume more memory than was actually being
accounted to them.
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5.5.3 Multiple Independent Heaps

A hybrid approach is to make use of a separate heap for each application, within a single
virtual machine. This facilitates accounting for each application’s usage of memory, since it is
only necessary to track the amount of memory reserved for that application’s heap, regardless
of whether that memory is free, live, or garbage.

It also makes it possible to account the CPU time required for garbage collection to each
application, since garbage collection can be scheduled along with ordinary execution for each
Rcane session.

 Heap/Session A  Heap/Session B 

Heap block Legal pointer
(intra-heap)

Illegal pointer
(inter-heap)

Heap roots

Figure 5.7: Dangling pointers caused by inter-heap references

When using multiple independent heaps, it is essential that references between objects in
different heaps be prevented. If such inter-heap references were to exist, the type-safety guar-
antees provided by the use of a safe language could be broken, as demonstrated in Figure 5.7:
the heap belonging to session A contains a reference to an otherwise unreferenced object in
session B’s heap. Since the garbage collectors are independent, B’s collector will consider
the referenced object to be garbage, and return it to the freelist. This will leave a dangling
pointer from A’s heap; if this location is later reused for a different object, the typesystem
will be violated and arbitrary behaviour may occur.

Such inter-heap references may be prevented either statically (by preventing access through
the type-safety of the language) or dynamically (at runtime). Dynamic prevention requires
that every time a reference is written to a field of a heap object, a check is performed to
ensure that the heap of the source and destination objects is the same. The Conversant
project [Bernadat98] implemented a dynamic checking system in Java, and experienced a
15% overhead on writes when using interpreted code, and a 55% overhead when using JIT-
compiled code. KaffeOS [Back00] used similar checks, adding 25–41 cycles to the cost of a
write (excluding cache effects).
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In a type-safe language pointers may not be generated arbitrarily, and may only be obtained
by allocating an object on the heap or reading an existing pointer from a variable. Thus
if each session begins with pointers only to objects in its own heap, and the Runtime does
not permit pointers to be passed unsafely between heaps, there is no way for a malicious
programmer to generate an inter-heap reference – he can only allocate a new object (in the
local heap) or access a pointer already stored in a heap object (which is guaranteed to be a
reference to an object in the local heap). Thus the property that no inter-heap references
exist is maintained, and requires no overhead for runtime checking. However, it does make
communication between different sessions more expensive, since values must be copied by
Rcane from one heap to another.

A second reason for choosing static rather than dynamic inter-heap reference prevention is
due to the overhead associated with root tracing. When garbage collection occurs for a given
heap, an important part of the collection activity involves tracing all the roots11 of the heap
to provide a initial set of live heap objects. If static inter-heap reference prevention were
not employed, it would be possible for threads executing in one session to have pointers in
their stacks which referred to objects in other heaps. Thus, all stacks in the virtual machine
would need to be traced to check for roots when garbage collecting any heap. This is an
unsatisfactory solution for two reasons:

• The time (accounted to the client owning the heap being collected) required for the
root tracing part of garbage collection would increase with the number of threads in the
entire system, reducing scalability and contributing to crosstalk between sessions – the
amount of GC work done by a session would be dependent on the number of threads
created by other sessions.

• When performing root tracing on a thread’s stack, it is necessary to suspend execution
of that thread. This is because write barriers12 are (usually) not used on stack locations
due to the substantial overheads that would be incurred on every write to a stack
location.

Thus, dynamic reference prevention would result in all threads on the system being sus-
pended due to garbage collection activity in other threads. This would cause substantial
jitter in the CPU QoS received by sessions, reducing the isolation between supposedly
independent sessions.

Conversant [Bernadat98] provided a separate heap for each user application. Static members
of classes in the system heap were accessible – when permitted through standard Java ab-
straction mechanisms – to untrusted code; this required that garbage collection of the system
heap caused root tracing (and hence suspension) of all threads in the system, since any of
them might have pointers to system heap objects on their stacks. Furthermore, Conversant
tagged every object with the identifier of its heap, leading to increased storage usage. The
J-Kernel [Hawblitzel98] simulated multiple heaps in Java by requiring all accesses between

11Roots are non-heap objects such as static variables, registers, and stack locations, which may contain
references to heap objects.

12A write barrier is a synchronisation protocol between the garbage collector and the mutator (heap user)
to ensure that concurrent garbage collection is performed correctly. For more details see [Wilson92].
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different clients’ data structures and objects to be through special capability objects. Invo-
cations on these objects caused parameters to be marshalled from the client domain to the
server domain in a similar way to Rcane’s service calls described in Section 5.6; however,
all threads in the J-Kernel execute in a single heap, so while some desirable properties of
heap separation – such as the ability to revoke services and terminate sessions – are achieved,
other properties such as accounting for memory usage and preventing GC crosstalk are not
straightforwardly realisable.

5.5.4 RCANE memory architecture

The Rcane memory architecture is based around the single virtual machine, multiple heaps
solution. Each session is given its own independent heap. The maximum reserved size for
this heap may be configured by the session, by requesting a particular size from the Core.

An incremental garbage collector – which processes a small portion of the heap each time it is
invoked, rather than processing the entire heap in a single invocation – is employed to prevent
excessive interruptions to execution. Such a property is essential to prevent the unpredictable
nature of garbage collection from causing clients to miss their deadlines. Each session may
tune the parameters of GC activity – such as frequency and duration of collection slices – in
order to trade off responsiveness against overhead.

Charging is based on the size of the reserved memory blocks that comprise the heap, rather
than the amount of live memory within those blocks, simplifying the accounting process and
more accurately reflecting the load placed on the system’s memory by each client.

Associated with each heap is a set of threads that may have references in their stacks to
objects within that heap. The threads in this set are those that must be suspended in order
to perform root-tracing on the heap. Conversely, associated with each thread is a set of
heaps to which it has access. A thread gains access to a heap when it invokes a service (see
Section 5.6) and loses access to that heap when it returns from the service invocation. Thus,
the set of threads associated with a session’s heap is generally a (non-strict) superset of the
set of threads created by that session.

5.6 Inter-Session Services

As described in the previous section, in the Rcane architecture each session executes in its
own private heap. Thus pointers between different clients’ sessions are not permitted, with
the effect that communication between code executing in different sessions through direct
procedure call is not possible.

In many cases this does not present a problem; since Rcane aims to avoid shared servers on
the data path, and instead to execute data-path code (such as network protocol processing
code) in the context of the session which is requesting such activity, such isolation is actually
desirable as it simplifies the provision of guaranteed access to node resources.
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In some situations, however, it may be necessary or desirable to communicate with applica-
tions or services running in other sessions:

• When talking to the System session to request a change in reserved resources, or to
make use of services provided by the System session (such as default routing tables).

• As described in Section 5.2.1.2, EEs in Rcane are treated as libraries to be instantiated
by a client’s session. Some EEs may have a requirement to maintain state shared
between multiple instances of an EE on a node, implying the need for communication
between sessions.

• Some sessions may wish to export services to other sessions running on the node (e.g.
extended network routing tables, or access to proprietary data or algorithms).

In each of these cases, code executing within one session requires a way of interacting with
code or state within a different session. Such interaction could be implemented by a client
session with no extra intervention on the part of Rcane by sending network packets through
a loopback network interface to another session.

The principal drawback of such an approach is inefficiency. A secondary drawback is the loss
of type-safety.

A more efficient and type-safe solution may be provided with support from the Rcane Run-
time layer. Such support can draw on previous research into Remote Procedure Calls (RPC),
traditionally between two processes executing in different hardware protection domains (pos-
sibly on distinct computers).

5.6.1 Types of RPC

RPC facilities may be provided in two main ways: message passing and thread tunnelling.
In [Lauer79] it was proposed that these two methods are duals of each other13, and that they
can be made equivalent in performance terms provided that the underlying primitive system
operations are equally efficient in each case. However, the QoS guarantee requirements of
Rcane, combined with the lightweight context switch available through use of a safe language,
mean that the two styles of RPC communication are not necessarily equally applicable. The
following sections examine both message passing and thread tunnelling in the context of the
Rcane architecture.

5.6.1.1 Message Passing

RPC between two separated computers, (as presented originally in [Birrell84]) requires mes-
sage passing. The sequence of events which occur during a message passing RPC is as follows:

13In fact the argument in [Lauer79] is expressed in terms of monitors ([Hoare73]) rather than thread-
tunnelling – however, a similar duality can be drawn between a thread-tunnelling system and a multi-threaded
message passing system.
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1. The calling thread of execution in the client process marshals a procedure reference and
a set of arguments into a buffer, transfers this buffer in some way to the server process,
and blocks awaiting a reply.

2. A thread within the server process reads the procedure reference and the arguments
out of the buffer, and constructs a call frame to invoke the specified procedure with
the supplied arguments. On return from the invocation the server thread marshals any
results or exceptions into a reply buffer and transfers it back to the client.

3. The client thread is unblocked, unmarshals the results, and returns to its caller or raises
an exception as appropriate.

Many traditional RPC systems – both inter- and intra-machine – use message passing [Birrell84,
Birrell93, Roscoe95].

5.6.1.2 Thread Tunnelling

The time taken to reschedule to the server, and then back to the client, can add significant
latency to the time taken for a message passing RPC to complete. Furthermore, the server
may not be eligible to receive CPU time at the point of the invocation, increasing the latency
further. Thread tunnelling14 [Wilkes79, Bershad90, Chase93] aims to reduce the latency and
synchronisation costs associated with message passing on a intra-machine call by switching
the calling thread into the protection context of the server. This avoids the overhead of calling
into the scheduler and waking the server thread. If the arguments are small (i.e. can fit within
processor registers) it may be possible to leave the arguments within the processor registers
and avoid the marshalling step entirely, thus reducing the latency further.

Since the thread owned by the client is executing the server’s code, it is necessary to require
that the server not be permitted to perform certain operations on the thread, such as termi-
nating it. This can ensured by preventing the server from obtaining a handle on the current
thread ([Hawblitzel98]), or by wrapping each service call segment in a conceptually separate
thread ([Ford94]).

5.6.1.3 Discussion

In [Roscoe95], it is argued that thread tunnelling is unsuitable for systems seeking to provide
resource isolation for the following reasons.

Increased crosstalk: If a thread has tunnelled into a server domain, it is no longer possible
for the client to be responsible for scheduling that thread (i.e. the system kernel must be
responsible for scheduling not only processes, but also threads within processes), reducing
the control that a process has over the scheduling of its threads. This in turn may lead to

14Thread tunnelling may also be referred to as thread migration.
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increased crosstalk should a process need to schedule a thread according to an application
defined policy in order to meet a deadline.

In a system such as the original implementation of Nemesis, where each process has only
a single CPU allocation, this criticism is valid; however, the architecture used by Rcane

permits each client to reserve multiple guaranteed allocations of CPU time, and makes it
straightforward for clients to assign different activities to different CPU allocations.

Furthermore, there is a significant source of crosstalk in a message-passing system that is
absent or attenuated in a thread-tunnelling system.

In order to provide useful QoS guarantees to its clients, each server must schedule the CPU
cycles consumed by its threads according to the priorities of the clients that are calling it.
This complicates the server substantially. [Ingram99] describes the implementation of an X
server to perform such scheduling under a soft-real-time Unix system. Previous work on the
Nemesis display system (described in [Barham96] and extended by the author) found that
a restricted form of thread tunnelling provided access to the framebuffer with both lower
latency and lower crosstalk compared to the earlier message-passing display server, without
substantially affecting the ability of applications to control their own scheduling policies.
The thread tunnelling mechanisms permit each client to be accurately charged for the CPU
cycles15 consumed on its behalf in the server.

Loss of control: Separately from issues of scheduling, since the client is executing the
server’s code, the server can control when the service call returns, and may (due to malice or
programming errors) fail to return to the client. In this situation, the client sees the thread
as effectively blocked, and thus cannot continue until the call returns. [Roscoe95] argues that
when using message passing, the client still has full control over its own threads, and may
continue with other processing, or decide to cancel the service call and raise an exception to
the caller. In a properly event-driven and parallelised client, message passing does allow the
client to be relatively unaffected by a server failing to return. Experience shows, however,
that many uses of message passing RPC treat it as a synchronous call, and hence will block
until the server does return. Thus, provided that the thread-tunnelling mechanism provides
a way for the client to abort in the event of a call taking an excessively long time, message
passing and thread-tunnelling are little different in this respect.

Message passing can be pipelined: [Roscoe95] suggests that message-passing can amor-
tise the overhead of a single context switch over several RPC invocations, effectively pipelining
requests. This approach has been shown ([Black94]) to be effective when the communication
being performed is in the form of bulk data transfer from client to server or vice versa, in
which case clients have no need to block after each request awaiting a reply. However, for tra-
ditional RPC, generating sufficient outstanding invocations in the client to benefit from such
amortisation would require that the client have a very large amount of inherent parallelism
available in its work to be exploited.

15Note that if the server is being used to multiplex access to a hardware device or other shared resource
where coarse-grained synchronisation may be required, such scheduling may still be necessary.
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A further problem with message passing is the availability of server threads. When a message
passing RPC invocation is received by a server, it must be processed by a server thread.

This thread may be obtained in one of several ways, each of which has its own disadvantages:

• The server may maintain a fixed set of worker threads to service all invocations on an
RPC binding (or set of bindings). Each thread services a complete invocation before
starting to service the next invocation (or blocking if no more work is available). In this
case, any invocation arriving when all worker threads are busy will wait until a thread
is free.

There are two main disadvantages with this approach. The first is that it becomes
an obvious source of crosstalk between applications – unless the server pre-allocates
sufficient worker threads (most of which are likely to be sitting idle for most of the
time) clients with short deadlines can block waiting for invocations on behalf of under-
resourced clients to complete. The second is that in the presence of recursive RPC
between several domains, it is possible to enter a deadlock situation16.

• The server maintains a set of worker threads (possibly just a single thread) and a set
of current invocations in various states of progress17. Each thread repeatedly requests
an outstanding invocation from the server’s scheduler and performs a small amount of
work upon it.

Such an approach may be usefully employed in special purpose servers – such as event-
driven web servers – where the likely properties of the request are well-known in advance
and switching a thread between servicing different requests may be performed fairly
straightforwardly. This approach is not, however, particularly suited to the provision
of a general purpose RPC server; it is necessary to structure each individual service in
order to break requests up into small chunks of work, each of which may be served in
a short amount of time without blocking. A further consideration is that the server
must employ some form of scheduler to decide which invocation each thread should be
working on at any given time; the disadvantages of this are discussed above, on page 77.

• The server may fork new worker threads to service incoming requests (possibly main-
taining a cache of pre-forked idle threads up to some specified limit). This approach is
employed by many message-passing RPC systems, including [Birrell93]. It avoids the
crosstalk and deadlock problems associated with a fixed set of worker threads. However,
it incurs significant additional overheads due to the costs of creating a new thread; such
costs may also themselves introduce additional crosstalk.

These drawbacks are removed by the use of thread-tunnelling. The thread is supplied by the
client, so no overhead is incurred in creating a new thread. The client has more control over
the level of concurrency used for its operations within the server, and no less control over the
scheduling than if the thread was executing within the client’s own session.

16Such deadlocks have been regularly observed by the author within the system services in Nemesis.
17States might include Arrived, Unmarshalled, Returned, Marshalled, Completed, as well as service-specific

states.
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For the reasons given above, Rcane employs thread tunnelling to provide inter-session ser-
vices. It should be noted that while Rcane and Nemesis both seek to provide QoS in their
RPC services, a major architectural difference between them is that clients within Rcane

are separated through software protection, whereas Nemesis uses hardware protection. This
results in the thread-tunnelling approach being somewhat more practical in Rcane than in
Nemesis.

5.6.2 Priority Inversion

Notwithstanding the arguments presented in the previous sections, thread-tunnelling is not
without potential pitfalls. One of the most obvious is that of priority inversion, identified
in [Lampson80]. This can occur when a client thread with limited resources is executing
within a mutual exclusion region.

In a traditional system using priorities rather than guarantees, priority inversion may lead to
long-term starvation – if a high priority thread wishes to enter the mutual exclusion region, it
must sleep until the low priority thread leaves the region; in the meantime a medium priority
thread may preempt the low priority thread preventing the high priority thread from making
further progress. In a system providing guarantees, long-term starvation due to priority
inversion is less likely since even a low-priority task can be guaranteed a certain level of
access to CPU resources. However, priority inversion can still create situations in which tasks
with fine-grained guarantees are held up due to an under-resourced low-priority task spending
a long period of time within a mutual exclusion region18. This situation should not arise to
the same degree in a message-passing server – provided that the server itself has sufficient
resources guaranteed to it that it is not starved by other applications – but it should be noted
that any system that combines the provision of resource guarantees with mutually exclusive
access to shared resources will suffer from similar problems.

[Lampson80] proposes priority inheritance as a solution to the problem of priority inversion:
whenever a thread holds the lock on a mutual exclusion region, it runs with the highest priority
of any thread waiting to enter the region. A similar approach is proposed in [Waldspurger94]
using the transfer of lottery scheduling tickets. This solution is less applicable to a system
using resource guarantees rather than priorities, since it could result in one client being
charged for resources consumed by the server code whilst doing work done on behalf of
another client. Two possible alternatives are:

• Allow the server to “underwrite” a thread within a critical section with a resource
guarantee of its own.

This will enable the server to ensure that whilst in the critical section, the client thread
receives at least a given level of resources; thus the server may bound the crosstalk
caused by the mutual exclusion on the critical region.

• Permit the server to detect a client with a small resource allocation, and either (a) raise
an exception to the client, or (b) block the client thread until the scheduler can guarantee

18In the case of a malicious (rather than simply resource poor) client, such situations may even be deliberately
engineered.
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that it will be able to completely execute the critical region without preemption. Such
a mechanism is used in Rialto [Jones97] to provide dynamic real-time guarantees.

This solution potentially results in less overhead within the scheduler; however, it can
result in under-resourced clients never gaining access to the critical region.

Rcane employs the first of these solutions to limit crosstalk in inter-session communication,
due to its straightforward and wide-ranging applicability.

5.6.3 Recovery from Client Failure

A second potential problem with thread-tunnelling occurs due to the fact that sessions running
under Rcane are charged for the resources that they consume, and hence a session (and its
threads) may be destroyed if it exhausts its resources.

If a server exits or is destroyed whilst a client is executing in a service within that server, an
exception may be raised in the client’s domain at the point where control passed from the
client to the server.

If a client exits or is destroyed whilst executing within a server, the situation is more com-
plicated. Since the server’s code is being executed on the client’s thread, and that thread is
being destroyed, the server must be given a way to recover gracefully from the destruction
of the thread. If the server is manipulating shared state at this point, simply destroying the
client thread may leave the server’s data in an inconsistent state. Various strategies to allow
such recovery are possible:

Uninterruptible sections: PERC [Nilsen98] defines extensions to Java that allow a block to
be marked as atomic – such a block is guaranteed not to be preempted by the scheduler
or asynchronous exceptions. However, atomic sections are restricted in the type of
code that they may contain, and their execution time must be statically analysable and
below a certain threshold. Such an approach may not be practical for servers that make
non-trivial manipulations of shared state.

Rollback events: Since Rcane uses a garbage collected heap for each session, it is not
necessary for the server to explicitly free any memory allocated whilst servicing the
client. However, it is necessary for the server to be able to roll back any changes being
made to shared data structures.

A possible solution would be to permit the server to specify a rollback event at the point
of entering a critical region whilst servicing a client call. The rollback event encapsulates
the actions that the server must perform in order to restore the invariant of the critical
region. Should it happen that the client thread is destroyed whilst still in the critical
region, the rollback event is posted to the thread pool specified by the server (with the
critical region lock still held); the server’s thread then executes the recovery actions and
releases the critical region lock.

The use of rollback events is applicable to the most simple critical sections, where it
is possible to wrap up a set of actions to restore the critical section’s invariant. It is
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less suitable for more complex critical sections, particularly if interactions with other
sessions or the network, etc., occur during the section.

Transaction logging: The use of transactions [Gray93] in database systems and distributed
systems to provide the ACID19 properties has been heavily researched. Each set of op-
erations on shared state is packaged up into a transaction. Upon completion of the
transaction, the operations are committed or aborted as a single group; if the transac-
tion is aborted, then its effects are undone and will never be seen by other concurrent
processes20.

In [Seltzer96], the use of transactions was proposed for untrusted kernel extensions –
called grafts – in the VINO operating system. Grafts are executed safely through the use
of SFI [Wahbe93]. All accesses from grafts to regular kernel state are through accessor
functions. The accessor functions both implement policy on access to kernel state, and
push undo functions on to a stack associated with the transaction. If the transaction is
aborted, these undo functions are called to reverse the effects of the transaction.

The use of a transaction mechanism for dealing with the unexpected abort of clients is
similar semantically and in complexity to the use of rollback events, although it shifts
the burden of implementing the rollback mechanism from the servers on to any services
that those servers might invoke – thus any server that might be called as part of a
transaction would be required to implement undo functions.

Backup threads: An alternative possibility is to allow the server to specify a “backup
thread” when entering the critical region. In the event that a client thread is destroyed
within the critical region, the state of that thread may be transferred to the backup
thread, which continues from the point where the client thread was destroyed.

This approach has several advantages over the use of rollback events and transactions:

• It removes from the server the potentially complicated requirement of structuring
its critical regions such that the region’s invariant can always be restored using a
rollback event.

• It is likely to be cheaper in the common case. The overhead of assigning a thread
to be used as a backup is likely to be a small and constant cost compared with the
overhead of building a rollback event or transaction – since the vast majority of
service invocations are expected to complete successfully, this suggests that backup
threads will typically be more efficient. Also, the action of specifying a backup to
be used in the event of failure may be optimised in the Runtime, whereas allocating
a rollback event will need to be server specific.

• Although crosstalk may be caused if no backup thread is available when entering
a critical region, the server may bound the level of such crosstalk through prudent
allocation of sets of backup threads to sets of critical regions. Furthermore, the
fact that a critical region is already an inherent source of crosstalk suggests that
any additional crosstalk effects may not be severe, and should be no worse than
that experienced on a transaction-based system.

• It may be integrated with the resource backup mechanism described in Section 5.6.2.

19Atomicity, Consistency, Isolation and Durability.
20Weaker forms of transaction semantics are possible, and may be appropriate in some circumstances.
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For the reasons given above, Rcane uses backup threads to support recovery from client
failure in inter-session services.

5.6.4 RCANE Services

As discussed in Section 5.6.1, Rcane uses a form of thread-tunnelling between different heaps
to provide efficient and flexible inter-session services. The remainder of this section presents
further details of the Rcane inter-session service architecture.

Services exported from one session to another are represented as closures (functions with as-
sociated state). To a client or a server, the service invocation appears to be a normal function
invocation. However, since the client and server are using different heaps, the Runtime is
required to provide support for transferring parameters from the client to the server, and
copying results back from the server to the client.

As in many traditional RPC systems, a single service involves both client-side and server-side
data structures. The client-side handle contains information required for marshalling between
the two heaps, and a reference to the server-side exporter. The exporter contains a reference
to the real function that implements the service and a table of handles that other sessions
hold for this service.

A service invocation normally involves the following steps in the Runtime:

1. Check that the service reference in the handle has not been revoked (see Section 5.6.5).

2. Add the current thread to the list of threads that have access to the server’s heap.

3. Copy parameters to the service invocation into the server’s heap. Since the Runtime
has direct access to both heaps, there is no need to marshal the parameters into a buffer
and then out into a data structure in the server’s heap – this copy may be performed
directly. This step may be omitted if the parameters are small enough to fit within
registers.

4. Make the server’s heap the primary heap of the current thread. This ensures that
memory allocations made during the course of the service invocation use the server’s
heap.

5. Invoke the underlying function.

6. Make the client’s heap the primary heap of the current thread.

7. Copy the results from the server’s heap to the client’s, as in step 3.

8. Remove the current thread from the list of threads with access to the server’s heap.

9. Return the results to the client.

Any work carried out by the server during the invocation is performed using the client’s
thread, and thus accounted to the client’s CPU allocation. Figure 5.8 shows the Service

interface provided for creation and manipulation of services.
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type α→ β service

type α→ β handle

type permissions = Private | Sharable

type memlimit = int

type copyInfo = Tree | Graph

type reclaimInfo = Retained | Collected

type serviceAttr = permissions * memlimit * copyInfo * reclaimInfo

exception Revoked

exception Aborted

(α→ β service * α→ β) create (func : α→ β; attr : serviceAttr);

β invoke (s : α→ β handle; parms : α; timeout : time);

void destroy (s : α→ β service);

void release (s : α→ β handle);

(α→ β handle) get handle (wrapper : α→ β);

Figure 5.8: The Service interface

• create() takes a “normal” function and returns a service descriptor and a service
function – invoking a handle referencing the returned service will cause the session
switch described above. Thus invoking a service appears to the client to be the same
as invoking an ordinary function.

Other parameters to create() specify:

– Whether the service may be passed around between different clients, or may only
be passed between the server and clients.

– The maximum amount of data to be copied when invoking the service.

– Whether the parameters to the function are in the form of a tree or a graph
(allowing optimisations to be made when copying).

– Whether the service reference is weak or strong. A weakly referenced service will
be garbage collected (and revoked) once no pointers to it remain in the server’s
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session, whereas a strongly referenced service will persist while one or more clients
retain handles on it.

The memory limit passed to the create() function allows servers to prevent DoS attacks
by clients. Without such a limit, a client could e.g. pass in a very long list as a service
argument and cause excessive amounts of the server’s memory to be allocated. Ideally,
the server would be able to inspect the data before it was copied, but this could result
in untracked pointers from the server’s heap to the uncopied data in the client’s heap.

• invoke() makes a service invocation as described above. invoke() is not generally
needed, since when a client makes a normal invocation on a service the Runtime will
cause the service invocation to take place. However, invoke() gives the client greater
control over the execution of the service invocation than is possible through the normal
closure interface. The current specification allows the client to specify a timeout, after
which period the Runtime will abort the service invocation and drop back into the
client. This allows a client to prevent a server from stealing its threads. Other client-
side control over the invocation could be added to future versions of the interface.

• destroy() allows a server to withdraw the service controlled by the given service de-
scriptor. Clients attempting to invoke the service in future will experience a Revoked

exception.

• release() allows a client to release a handle on the given service.

• get handle() allows a client to obtain the service handle from a service closure, in
order to call invoke() or release().

During both the invocation and return copying phases, the Runtime notes when a copied
value is itself a service, and creates a new reference (or reuses an existing reference) to the
same service, which is available in the destination session. Services can thus be passed from
session to session. Server-specified policy can limit such copying to allow additional control
over which sessions can utilise a service. The copy-by-reference nature of services also allows
large data structures to be split in a natural way using services of type unit → α, to avoid
excessive data copying.

The ability to pass services between sessions is roughly equivalent to the capability passing
used by the J-Kernel [Hawblitzel98] to pass object references between threads in different
protection domains. J-Kernel protection domains consist of disjoint set of objects in a single
heap, achieving similar functional isolation to Rcane but without the QoS isolation provided
by independent garbage collectors.

Service passing is also similar in semantics to – although substantially more lightweight
than – the interface passing performed by RPC systems such as CORBA [OMG98], Java
RMI [Sun98] and Network Objects [Birrell93]. It differs from the explicit binding architec-
ture used by the standard Nemesis IPC implementations and traditional RPC systems such
as SUN RPC [SUN88] in that services are implicitly bound to when clients import them; how-
ever, the Service.get handle() operation allows a client to access the underlying handle of
a service, permitting explicit control if so desired.
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5.6.5 Abnormal Termination

It is expected that almost all Rcane service invocations will finish normally, by returning
a result to the client. However, there are certain exceptional conditions that Rcane must
handle should they occur:

Uncaught server exception: If an exception is thrown by the code executing in the server,
and this exception is propagated out of the service invocation without being handled,
the exception must be trapped by the Runtime. The Runtime is responsible for copying
the exception (along with its parameters, if any) back to the client’s heap. Such copying
occurs in the same way as with normal service results. Once the exception has been
copied to the client’s heap, it may safely be thrown by the Runtime (in the client’s
session) to the client’s exception handling code.

Server revokes service: It is important that servers are able to revoke services that they
have previously offered to clients. To this end, Rcane provides the Service.destroy()
function, which a server may call on any service that it has created.

Service.destroy() marks all client handles for a given service as revoked, ensuring
that further invocations by those clients will fail with a Revoked exception. Thus, when
starting a service invocation, Rcane must check whether the client’s handle still con-
tains a valid service descriptor; if the descriptor is no longer valid, a Revoked exception
must be raised to the client. Calls that are in progress at the time that the service is
destroyed are aborted and the calling threads are returned to their originating sessions.

Aborted invocation: Rcane allows clients to abort invocations (perhaps due to a timeout,
or due to no longer requiring the results of an invocation). If such an abort occurs,
processing within the server invocation must halt, and the thread of control returns to
the client. Execution continues with an Aborted exception being thrown, to inform the
client that this invocation was aborted.

If at the time the abort occurred, the server was executing in a critical section and had
registered a backup thread (see Section 5.6.2) the execution state of the client thread
must be transfered to the server’s backup thread. The backup thread may then be used
to allow the critical region to complete safely. Once the critical region has completed,
the backup thread may be released.

Client thread destroyed: The client thread may be destroyed during the course of the
service invocation – possibly due to the client calling Session.exit(), or the client’s
session being terminated due to exhaustion of its resources.

In this situation, the behaviour on the server side is similar to that when the invocation
is aborted – from the server’s point of view it is irrelevant whether the client aborted
the invocation or was destroyed. Behaviour differs on the client side – since the client
thread no longer exists, it is not necessary to raise an Aborted exception; rather, the
resources associated with the client thread may be simply released or recycled.

Server exits: In a similar fashion to the previous case, the server may be destroyed during
the course of the service invocation. If this occurs it is equivalent, from the client’s
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point of view, to the server revoking the service – thus a Revoked exception is raised
to the client. Since the server resources are being destroyed, there is no requirement to
transfer thread state to backup threads that may have been registered by the server;
these threads, along with the shared state that such threads protect, will be destroyed
at the same time.

In each of these cases, Rcane must ensure that the integrity of the system is not compro-
mised by the abnormal termination; furthermore, since such terminations are expected to be
rare compared to successful invocations, they should not adversely affect the performance of
successful invocations more than is necessary.

5.6.6 Service Modules

In order to pass interface references as parameters or results of an RPC call, it is necessary to
be able to “bootstrap” a client by providing a handle on an initial service or set of services.
From these initial services, the client may obtain further references. This bootstrap may be
performed in various ways:

• Using a trader with a well-known address, and allowing clients to lookup services by
name. This method is used by Modula-3 Network Objects [Birrell93] and Nemesis.

• Using a shared filesystem to store “stringified” references to services, which may then
be retrieved by clients. This method is used by many CORBA implementations, such
as OmniORB [ORL97]21.

• Providing a system-generated handle to a bootstrap service. This method is more
applicable to intra-machine services than to a fully distributed system. Nemesis provides
newly created processes with a pre-generated connection to the system Binder (a service
which is used to create further connections to other servers).

Rcane utilises the module space to provide a bootstrapping method that is similar to a
trader. Some modules may be specified at load time as Service Modules. In general, a module
exports a collection of functions in its interface. In the case of a service module, all of these
exported functions must themselves be services. When a client in a different session links
against the service module, handles for the services exported by the module are created in
the client session. Invoking an operation on one of these handles causes a service invocation.

A service module may have either shared state or per-client state. A shared service module
is initialised once, when it is created by the server. When clients link against it, the handles
that each client receives all refer to the same set of services. Thus it is suitable for services
that have no particular security requirement on them, or which are only called from trusted
clients.

21Some CORBA ORBs, including OmniORB, also now support a well-known trader [OMG] – however,
practical experience has shown that use of a shared filesystem is often more straightforward and reliable.
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For a per-client service module, a new interface is created each time a fresh client binds to it
– the collection of handles in the interface that is returned to the client refer to the closures
thus generated. Thus the server may embed state that is specific to each client within these
closures. Per-client services allow a server to revoke services for specific clients.

5.7 Accounting and Accountability

Since Rcane separates out the activities for each client, and uses resources accounted to each
session to perform these activities, it is possible to accurately calculate the amount of each
resource that a session has consumed. This allows the owner of a node to charge the end-user
responsible for the session; without such charging ability, it is difficult to see how it would be
practical to provide programmable servers in a network. Charging a flat rate for access to a
node would be likely to result in substantial contention for the resources on the node – current
network protocols such as TCP are designed to throttle back their usage of the network when
they experience congestion, but enforcing such a requirement on the code supplied by users
of an Rcane node would be impractical other than by explicit scheduling.

5.7.1 Pricing and Charging

Pricing and charging policies will be system dependent. They are likely to be affected by
the resources available at the node, the location of the node (and hence whether it is well-
connected to other computing resources) and the fluctuating demand from the remote users.

Resources charged for directly should include:

• Creating and maintaining a session.

• CPU guarantees requested.

• Actual CPU usage.

• Memory (heap, buffers, stacks, code, auxillary structures).

• Network reservations

• Network bandwidth transmitted and received.

Pricing policies should also take into account the consumption of resources that are themselves
difficult to account for directly. For example, as well as consuming raw CPU cycles, a running
thread will cause the processor to perform work in order to service cache misses, TLB loads,
etc. Moreover, such activity is likely to cause other threads to themselves experience more
cache misses, as they are forced to reload cache entries with their own data. Rcane’s use
of a single hardware protection domain and heavy sharing of code between sessions means
that this problem is less severe than it would be when using multiple VMs, each in their own
process; however, it is still likely to lead to situations in which the activity of one session
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may interfere with the QoS received by another session. Dealing with this problem is likely
to require support from hardware, or intricate layout of heaps in order to allow limits on e.g.
the amount of cache that may be used by each session. These charges may be approximated
by charging more for activities (such as very frequent guaranteed access to the CPU) that are
statistically likely to be associated with such crosstalk-inducing behaviour..

Possible pricing policies for resources are discussed in [Stratford99, Tschudin97b, Bredin98].
The actual billing may be accomplished in one of several ways:

• The principal could be required to hold an account with the node provider; this account
would be debited directly with any usage charges.

• A credit card account (or some equivalent) could be supplied at session creation time –
the node provider could make charges to this account.

• A digital payment scheme such as Millicent [Glassman95] could be employed. In such a
scheme, cryptographically signed money certificates may be issued to end users through
the services of a broker, and presented to the node provider as payment for resource
consumption. For the reasons to be outlined in Section 5.7.2.2, digital cash that can be
traced to a specific payer would be used, rather than untraceable “anonymous” digital
cash.

5.7.2 Dealing with Denial of Service Attacks

In addition to performing effective resource control between multiple, possibly greedy, clients,
Rcane must be capable of dealing effectively with deliberately malicious clients who attempt
to commit denial of service attacks. These DoS attacks can be grouped into two main types
– those against Rcane itself, and those launched from Rcane against other sites.

5.7.2.1 Attacks on RCANE

DoS attacks on Rcane could arise through malice. They could also arise due to buggy
programming, for example in the event that a user accidentally supplies code that schedules
an indefinite number of events, or floods the network. Thus any action that could cause
consumption of limited resources should be charged for – in this way, a denial of service
attack is effectively transformed in a purchase of service attack, and the attacker ends up
hurting only himself. Since Rcane employs strict resource partitioning, such attacks would
have no effect on any guarantees made to other clients.

In order for this to be practical, two properties are required of Rcane. Firstly, the system
must be developed such that any action that a user-supplied program can take to consume
resources on the node is charged for. Secondly, the system must be able to abort clients
whose resources have been exhausted; this will prevent either a malicious or a buggy client
from carrying on a protracted DoS attack beyond the point at which the Rcane node owner
can be sure to receive payment. The architecture presented in this chapter fulfills both of the
requirements, thus suggesting that Rcane should be robust against DoS attacks.
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5.7.2.2 Attacks launched from RCANE

Recently, there have been many reports of “Distributed Denial of Service” attacks [CERT99],
in which large numbers of poorly-secured Internet hosts have been “enslaved” to flood a
particular victim – typically high-profile – site with packets, in order to overwhelm it and
prevent it from serving bona-fide customers. These hosts are typically enslaved through
exploiting unchecked overruns in fixed sized buffers, within server programs running with
root privileges; by sending appropriate strings to such servers it may be possible to execute
abitrary root-privileged malicious code on the host. A second form of attack that must be
considered is one in which a malicious end-user mounts a cracking attack against a remote
host, in order to make unauthorised accesses or modifications to sensitive data (such as credit
card details or trade secrets) or to deface a site’s web pages.

The motivation behind Rcane of permitting the execution of untrusted user-supplied code
makes such attacks easier – it is no longer necessary to exploit poorly written programs in
order to execute user-supplied code on a node, as the system is designed purposely to allow
such behaviour!

Both of these forms of attack may be very difficult to distinguish from normal behaviour –
in particular, one of the features of the distributed DoS attacks that makes detecting them
difficult is the fact that the load placed on each of the enslaved machines is not necessarily
abnormally high, and the effect is only seen when their streams of packets merge, much closer
to the server. Thus we must conclude that detecting the launch of such attacks from the
Rcane node in real-time is in general unlikely to be possible22.

Although it is impractical to detect and prevent such attacks, there are two factors that may
be used to deter potential attackers. The first is that Rcane charges for resource usage – this
in itself would make including an Rcane node in a distributed DoS attack unattractive or
infeasible in many cases. The second and perhaps more important factor is that Rcane needs
to keep a log of activity in order to correctly charge its clients for their resource usage. This log
should be sufficiently detailed to allow the node owner to trace back to an authenticated user,
in the event that Rcane has been used to mount a DoS or cracking attack on another host.
Without such a log, the node owner could be subject to criminal penalties for the activity
carried out by the malicious end-user; the existence of such a log would help to class Rcane

node owners as “common carriers” (in the same way that ISPs are not held responsible
for attacks carried out over their networking services, since they can supply details of the
customer site connected from a particular IP address at any given time.)

The audit log should record, for any given recent point in time, which client owned a particular
local network endpoint (such as a UDP port). It is not necessary to record such information
on a per-packet basis; however, it is necessary to ensure that a client cannot transmit a packet
with header information indicating a port that the client does not own. Thus the transmission
packet filters employed by Rcane are required to check any portion of the packet that is under
client control.

It may be observed that such an audit log could itself be used for the type of DoS attack

22Note that it may be possible to use heuristics to detect certain common classes of attacks.
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against Rcane described in the previous section; by repeatedly binding to and unbinding from
a network connection, a malicious application could cause the audit log to grow indefinitely.
In this case, since the act of writing such an entry to the audit log will only occur when
a connection is opened or closed, the charge for creating the connection should take the
consumption of audit log resources into account.

5.8 Summary

This chapter reviewed the fundamental principles required for the resource controlled execu-
tion of untrusted code within a programmable network, and presented the architecture used
by Rcane, the Resource Controlled Active Node Environment.

The chapter opened with a discussion of the architectural principles that underly the Rcane

architecture – namely that the resources used by each client in a programmable network
should be accounted to the correct consumer, and that the horizontal and vertical layering of
a programmable network node should reflect this requirement.

An examination of the main computing resources controlled by Rcane – CPU cycles, memory
and network bandwidth – followed, along with the abstractions presented to users of an
Rcane node to allow them to access and control these resources. The interaction between
CPU guarantees, delayed events and incoming network packets was described.

A rationale for the use of an independent heap for each Rcane client was presented, and
the requirements for the Rcane inter-session service architecture were examined, with the
conclusion that the lightweight nature of protection in Rcane suggested a form of thread-
migration for communication between clients.

The chapter concluded with a discussion of issues relating to the accounting and billing of
remote users, and the prevention and detection of denial of service attacks.
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Chapter 6

Prototype RCANE Implementation

This chapter describes a prototype implementation of Rcane, carried out in order to estab-
lish the feasibility of the architecture. It is an example implementation, and should not be
considered definitive.

An overview of the implementation is given, with details of the language and operating system
bases over which the implementation was developed. This is followed by discussion of some
of the features of these bases that were found to be unsuitable for supporting the Rcane

architecture, and how these deficiencies were remedied.

The remaining sections of the chapter describe how the major parts of the Rcane architecture
were implemented.

6.1 Overview

The Rcane prototype has been developed over the Nemesis Operating System [Leslie96],
described in Chapter 4. Nemesis was chosen as the base platform for Rcane for the following
reasons:

• It provides good support for low-level isolation of resources and Quality of Service.

• Its low-level protection boundaries allow better control over the resources available to
a program.

• The author has extensive experience with the principles and internals of Nemesis, and
has been involved in development of the OS for several years.

As described in Section 5.2.1.1, Rcane consists of four layers: the Runtime, the Loader, the
Core and loaded Modules.

The Runtime makes use of the Objective Caml interpreter [Leroy97] (OCaml) from INRIA
to provide a safe language environment for untrusted code loaded by remote clients. Mod-
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ifications were required to the OCaml interpreter to support multiple isolated heaps with
independent garbage collection.

Other portions of the Runtime provide support for:

• The Rcane CPU management architecture, including real-time CPU scheduling and
support for threads, thread pools and events.

• Efficient access to Nemesis I/O.

• Rcane inter-session services.

• Low-level access to session creation and heap management, for access by the Core and
the Loader.

The Loader contains the Rcane bytecode linker, as well as basic session manipulation oper-
ations. It is contained entirely within the System session.

The Core provides an interface to client sessions to allow them safe access to the resources on
the Rcane node. Some portions of the Core execute within the client sessions themselves.
These portions are those implementing facilities for which no access to shared Core state is
required. Such facilities include:

• Safe access to features exported by the Runtime for CPU and event management.

• Data-path access to network flows, both on transmit and receive.

• Safe access to Caml extensions provided by Rcane.

Since untrusted Rcane clients must supply code written in a safe language, it is not possible
for clients to corrupt or otherwise abuse the portions of the Core executing within the client
session.

Other portions of the Core, which do require access to shared Core state, execute within the
System session. These portions include:

• Session management routines.

• Control-path functionality for managing network devices and flows.

• The bytecode librarian.

In general, data-path operations such as garbage collection, network I/O and CPU scheduling
are implemented in native code in the Runtime for efficiency. Most control path operations
(including bytecode loading and session creation) are implemented in Caml in the Core for
flexibility, safety, and ease of interaction with clients.
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The Best-Effort session uses the PLAN interpreter [Hicks98] to provide a limited execution
environment for unauthenticated packets, with PLAN wrappers around the Session interface
to permit authentication and session creation. Rcane interoperates with PLAN systems
running on standard (non resource-controlled) platforms, allowing straightforward control of
an Rcane system. Support for demand-loaded code in the style of ANTS [Wetherall98] is
also provided.

Hooks are provided to allow a security framework to process credentials and assign privileges
to sessions. The focus of this implementation is on the safety, security and isolation of the
untrusted code itself, rather than on cryptographic authentication/authorisation and high-
level policies; therefore the default security model employed is very simple:

• Sessions and clients are either privileged or unprivileged.

• The System session and the Best-Effort session are privileged, and hence may access
unsafe code sequences and routines that manage system state.

• Other sessions and external clients are unprivileged, and may only execute safe code.

6.2 OCaml Deficiencies

OCaml is an implementation of the Caml dialect of ML [Milner97]. For the implementation
of Rcane, the compiler and interpreter from version 1.07 were used as a base.

The decision to use Caml was made for the following reasons:

• Caml has been previously shown to be suitable for as a language for supporting mobile
code in active and programmable networks ([Alexander98a, Hicks99c]).

• Caml can be compiled to a compact bytecode that can be executed efficiently. The
OCaml compiler also supports compilation directly to native code.

• The OCaml VM is small (approximately 7000 lines of code) and easily understood, sim-
plifying its integration with the resource management mechanisms required for Rcane.

• The OCaml VM is also used as an interpreter by other source languages, such as Moscow
ML [Romanenko99] – thus the choice of VM does not restrict users to a single language,
provided that they can generate bytecode modules that respect the typing rules of the
OCaml VM.

However, some features of Objective Caml 1.07 were found to be unsuitable for implementing
Rcane. Where possible, these deficiencies have been remedied. The deficiencies fell into the
following areas:

• Thread model
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• Bytecode linker

• Confusion of interface and implementation

• Representation of exceptions

• Access to unsafe features

• Just-in-time compilation

• Lack of bytecode verifier

6.2.1 Thread Model

The default OCaml threading model has two implementations in the standard runtime li-
braries; neither implementation provides suitable support for QoS or for the event-driven
processing model favoured by Rcane.

The Thread interface was replaced with one that supported the Rcane processing model.
The new version of the interface is shown in Figure 6.1. Further discussion of the operations
provided by this interface may be found in Section 6.3.

6.2.2 Bytecode linker

OCaml provides a simple dynamic linker that allows bytecode modules to be loaded into
the system. However, the facilities provided are insufficient to support generalised loading of
mobile code.

The major deficiency in the standard linker is that it only permits a single interface of a
given name to be available for dynamic linking at any one time. If a module is loaded,
any module exporting an interface of the same name (even if that interface has a different
signature) is hidden by the newly loaded module. Furthermore, the namespace for locating
implementations is the same as the namespace for specifying interfaces. This causes problems
that will be discussed in Section 6.2.3.

Other deficiencies include:

• The lack of ability to specify the particular version of a given module against which you
wish your code to be linked.

• Poor support for obtaining details of the modules linked into the system.

• No support for loading modules and then dynamically linking against symbols exported
from those modules.

• No support for multiple instantiations of the same module (required to allow multiple
client sessions to each instantiate a given module in their own heap).
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The abstract types used by the interface.

type thread

type vp

type threadpool

type event

Create a new thread to execute the given closure in the current thread pool, the specified
thread pool or the specified VP’s default thread pool.
val create : (α→ β) → α→ thread

val createp : threadpool → (α→ β) → α→ thread

val createv : vp → (α→ β) → α→ thread

Create a new idle thread in the current thread pool, the specified thread pool, or the
specified VP’s default thread pool.
val make : unit → thread

val makep : threadpool → thread

val makev : vp → thread

Create a new thread pool in the current VP or the specified VP.
val pcreate : unit → threadpool

val pcreatev : vp → threadpool

Terminate the currently executing thread.
val exit : unit → unit

Terminate the thread whose handle is given.
val kill : thread → unit

Return the thread currently executing.
val self : unit → thread

Return the pool of the specified thread.
val pool : thread → threadpool

Cause this thread to go idle until more work is available for it.
val finished : unit → unit

Suspend the execution of the calling thread for the specified number of seconds.
val delay : float → unit

Create an event to call the given closure in the current thread pool or specified thread pool.
val event : float → (α→ β) → α → unit

val eventp : threadpool → float → (α→ β) → α → unit

Cancel the specified event.
val cancelEvent : event → unit

Figure 6.1: The Thread interface
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Therefore, the bytecode linker was developed into a more generalised form that permits:

• Multiple modules exporting the same interface, each of which is selectable for linking
against dynamically.

• Multiple interfaces of the same name but with different signatures, which are automat-
ically selected between at link time, using the signature imported during compilation.

Further modifications were made to the linker to support multiple clients with independent
heaps, each of which may have a different set of modules instantiated in their session. This
work is described in Section 6.6

6.2.3 Confusion of interface and implementation

The modifications to the linker described above permit multiple modules, each exporting the
same interface, to be loaded and available in the system; however, even with this scheme
it is not possible for any one module to link against multiple modules exporting the same
interface, due to the confusion of interface and implementation in Caml.

Such confusion (also observed in C++ [Stroustrup86]) occurs when a language makes no
distinction between an interface type – representing an abstract set of operations – and a
class – representing an implementation of one or more interfaces, possibly sharing a common
state. This results in the use of abstract classes in C++ as a representation of interface types.
Caml suffers from a similar problem – although Caml signatures provide effective interface
types, the linking model used by Caml makes it impossible to have multiple implementations
of a given top-level interface type in the same program.

To alleviate this problem, run-time dynamic linking (as opposed to the load-time dynamic
linking provided by the bytecode linker) was added to OCaml. A new abstract type con-
structor, dynspec (dynamic specification), was added to the compiler. This may be used to
generate values that represent a particular method/variable in an specified type of interface,
but with no specified implementation1.

For example, in the context of the Test interface given in Figure 6.2, a dynamic specifier for
Test.number would have type int dynspec, and a specifier for Test.print would have type
(string → unit) dynspec. The compiler permits the textual name of an interface member
to be used as a constructor for its dynspec.

A function, getdyn() (get dynamic value) was added to the interface exported by the Core
to unsafe clients. By passing a dynspec and a reference to a loaded module, the client may
obtain the member of that module’s implementation specified by the dynspec, provided that
the module does actually export the interface to which the dynspec refers. Thus by call-
ing getdyn(‘‘Test.print’’, moduleRef) – where moduleRef is a reference to a previously

1These specifiers are internally represented as a tuple of an interface name, interface typecode and offset
within the interface
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An integer variable
val number : int

A simple function
val print : string → unit

Figure 6.2: Test: a simple interface for demonstration purposes

loaded module – a client may obtain a reference to the print function exported by that imple-
mentation of the Test interface, or receive an exception if the given module does not actually
implement the Test interface. Such dynamic linking facilities are not typically available in
ML.

6.2.4 Representation of exceptions

OCaml represents exceptions as tuples consisting of a tag (the exception identifier) followed
by the exeception’s parameters (if any). The tag is a reference to a string containing the name
of the exception. When manipulating exceptions – which in in Caml are first class values –
comparisons are made by equality of reference of the tags. For Rcane, comparison by equality
is still valid within a single session. However, the multiple-heap architecture of Rcane requires
a separate instantiation of each module used by a session, in that session’s heap. Hence if an
exception is thrown across a service invocation, such comparison of exception tags by equality
is no longer valid – not only do the two different sessions each have their own version of the
exception tag, but the deep copy of the exception value on an exceptional return from the
service invocation would create an exception with a new tag that was equal to neither the
client’s nor the server’s tag.

Three possibilities to remedy this were considered:

1. Compare exceptions by value rather than by reference.

2. Add a special case to the marshalling code, so that when copying an exceptional result
from client to server, the exception tag could be matched with the client’s version of
the tag, and the correct version returned.

3. Alter the representation of exceptions so that comparison by equality was always valid.

The first solution, comparing exceptions by value, would add substantial overhead to all
exception matching operations.

While the second solution would suffice for exceptions raised directly across a service invoca-
tion, the first-class status of exceptions in ML means that any data structure being passed
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as an argument or result may encapsulate an exception value. Thus the marshalling routines
would need to be generalised to support such exception translation at any point in the copying
process. Such translation would be complicated and likely to be expensive, and would need
to be performed whenever an exception was raised across a service.

The third alternative – altering the representation of exceptions – was chosen since it simplified
the marshalling routines. The OCaml compiler was modified to generate a different code
sequence in the initialisation code for modules, so that when an exception is defined, rather
than creating a string with the exception’s name (which was the original behaviour) it invokes
a routine in the Runtime to register the exception. The Runtime returns an atom2 for
that exception – exceptions are matched by module, exception name and position within
the module. This exception registration mechanism does introduce a potential denial of
service attack from a module that registers a very large number of exceptions. Such attacks
are prevented by setting a limit on the number of exceptions that may be registered from
each module. More elaborate protection mechanisms would be possible, but have not been
implemented due to time constraints. The atom representing the exception may be passed
between sessions with no further need for translation. The Runtime also defines a primitive
operation for mapping an exception tag to its textual name. (Previously, the tag itself was
the name.) Such mapping is only required when reporting unhandled exceptions, and thus
the greater overhead due to the indirection does not affect normal system performance.

6.2.5 Access to unsafe features

Although Caml is designed to be a safe language, the standard OCaml runtime library in-
terfaces include access to unsafe features, such as marshalling and unmarshalling of arbitrary
data structures in a non-typesafe manner, and access to array elements without bounds check-
ing.

Following the principles suggested in [Alexander98a], a module called Safestd was created.
Safestd exports each of the standard library modules (giving access to abstractions such as
lists, arrays and hash tables) through thinned interfaces – i.e. only those elements of each
standard library interface that may be safely invoked by untrusted code are exported through
Safestd. An option was added to the OCaml compiler to automatically bring the elements of
the Safestd module into the current namespace before compiling a source file, thus permitting
existing OCaml code to be compiled to use Safestd without requiring source changes.

6.2.6 Just-in-time compilation

To improve the execution performance of untrusted OCaml code, it would be beneficial to
have a JIT (just-in-time) compiler [Cramer97] built in to the VM. A JIT compiler converts
bytecode into native machine code at runtime – such conversion may be performed at the
point of at which a particular function is first invoked, or it may be performed either earlier
or in the background [Harris98] to avoid increasing the latency of execution.

2An atom is a shared system-wide integer identifier for a particular entity.
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No JIT compiler for OCaml 1.07 was available. A partial implementation of an OCaml JIT
compiler was developed as a proof of concept; a complete implementation was not undertaken
due to time constraints.

6.2.7 Lack of bytecode verifier

In order to guarantee that a loaded Caml bytecode module actually respects the definition of
the Caml language (and hence may be safely executed without need for hardware protection)
it is necessary to use a verifier [Nipkow99]. The verifier checks the execution structure of the
functions within the module, and ensures that the code does not perform illegal operations
such as:

• Dereferencing an integer.

• Accessing the contents of an abstract data object.

• Branching to an invalid instruction.

• Accessing beyond the limits of a heap object.

This may be performed through a dataflow-like analysis of the bytecode, assigning types by
inference for directly addressable locations (such as the accumulator and the stack) at each
bytecode location, and ensuring that no clashes arise.

Currently there is no bytecode verifier available for OCaml. However, the bytecode used by
OCaml is sufficiently similar in general style to Java Virtual Machine Language [Gosling95a]
for it to be reasonable to posit that the same principles used for constructing Java verifiers
could be used to create an OCaml verifier. A design outline for such a verifier is presented in
Appendix A; this design has not been implemented due to time constraints.

6.3 CPU management

6.3.1 CPU Scheduling

CPU scheduling is accomplished using a modified EDF [Liu73] algorithm similar to the At-
ropos algorithm described in [Roscoe95]. Each VP’s guarantee is expressed as a slice of time
and a period over which the guaranteed time should be received (e.g. 300µs of CPU time in
each 40ms period).

EDF is based on a dynamic priority scheme. At any point in time, the runnable VP with the
closest deadline – and which has guaranteed time remaining in its current period – is given
access to the processor.

The scheduler maintains priority queues of VPs in different states (Blocked with a time-
out, Runnable with no guaranteed time available, Runnable with guaranteed time available).
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These queues are heap-ordered to allow the scheduler to scale well with a large number of
VPs.

If none of the runnable VPs have guaranteed time remaining, the processor is shared out
fairly between the runnable VPs. The current scheduler walks along the queue of VPs that
are eligible for best-effort time and runs the VP that has received the least amount of best-
effort time since the most recent VP was created. The time required for this scan is linear in
the number of VPs and hence does not scale well. However, since best-effort time is only given
out when all guarantees have been met and slack time exists in the system, this inefficiency
does not affect the enforcement of resource guarantees by Rcane. The choice of an optimal
algorithm for scheduling best-effort time is not considered in this dissertation.

Whenever the Rcane scheduler is entered, the following sequence of events occurs:

1. Unless the system was previously idle, the elapsed time since the last reschedule is
accounted to the previously running VP.

2. The next VP to be run is selected, and the period until its next preemption is calculated.
From this point onwards until the time that the next reschedule occurs, all work carried
out is on behalf of the new VP, and hence may be accounted to it.

3. If there are packets waiting on the owning session’s incoming channels they are retrieved
and transferred to the appropriate pool’s packet queues. (This is described further in
Section 6.5.) Any of the session’s idle pools that have pending events are marked as
runnable.

4. The next pool and thread to be run are selected. In the prototype implementation,
scheduling between pools on the same VP and between threads in the same pool is
performed using a simple round-robin scheduler. Future work would include support
for client-specifed policy for pool/thread scheduling. Such support may permit selection
from a number of Rcane-provided policies, and/or the ability for a client to upload its
own scheduling policies in a safe way.

5. If the selected thread is currently acting as a resource backup for another thread (see
Section 6.7.7), the backed-up thread is selected instead.

6. If the selected thread is active in a heap that is currently in a critical GC phase (see
Section 6.4.2) then the thread carrying out the critical GC is selected instead, and will
run until the critical GC activity has completed.

7. The selected thread is resumed.

6.3.2 Events and Thread pools

As described in the previous section, Rcane ensures that individual VPs receive the CPU
guarantees that they request. Within a single VP, the scheduling is controlled by the client
through the use of events and thread pools.
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Each thread pool may be used to represent an activity being carried out by the client. By
assigning thread pools to VPs, the client may control which activities have their own CPU
guarantees, and which are multiplexed with other activities being carried out by that client.
Assigning threads to thread pools allows the client to control the level of concurrency available
to each activity. Events and incoming packet flows may be directed to particular thread pools,
which correspond to the activities associated with those events and flows.

For each pool, Rcane maintains a list of events, ordered by the activiation time for that
event, and a list of pending packets. If a pool has pending events or packets, and has any
idle threads (or if a previously active thread completes its processing task), the next event or
packet3 is removed from its queue, and the callback function registered by the client for that
event or packet flow is invoked. When the callback function returns, the thread selects a new
event or packet if one is available, or else enters the idle state.

6.4 Memory management

6.4.1 Heap Management

Each client in Rcane has an independent garbage-collected heap. In general, only the threads
belonging to a particular client will have access to that heap. However, when a thread makes
an inter-session service invocation (see Section 6.7), it gains access to the heap belonging
to the exporter of the service. To prevent the possible generation of dangling pointers (as
described in Section 5.5.3), Rcane is required to ensure that two properties always hold in
the system:

• No untrusted routine may have access to objects in more than one heap simultaneously.

• Every thread that has access to a particular heap must have its stack included in the
root-tracing activity for that heap.

The former property is required since the garbage collectors in separate heaps are independent,
and are unable to follow inter-heap pointers. Thus an untrusted routine with access to objects
in multiple heaps may be able to store an inter-heap pointer in one of the objects. The latter
property is required since the stacks of threads accessing a heap must be counted as roots
of that heap. This could be trivially satisfied by tracing all threads’ stacks when garbage
collecting any heap; however, not only would this lead to unnecessary GC overhead, it would
also cause substantial crosstalk between sessions (as is shown in Section 7.4).

To preserve such safety whilst maintaining performance, the prototype implementation of
Rcane maintains a collection of heap records. Each heap record denotes a segment of a
thread’s stack that may contain roots into a particular heap. These heap records are organised
into two orthogonal data structures:

3Events are given priority over packets to allow events to be delivered as close as possible to their scheduled
time.
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Figure 6.3: Example configuration of heaps and threads

• For each thread: a stack of heap records giving the heaps to which it has access.

• For each heap: a list of heap records giving the threads which have access to it. This list
can be used to obtain the set of stack segments that must be scanned when performing
root-tracing for that heap.

Figure 6.3 shows a possible configuration of threads and heaps. Thread 1 is executing purely
within session A, and has stack references only to objects within A’s heap. Thus its stack will
only be used as a source of heap roots when garbage collecting session A’s heap. Similarly,
thread 3 is executing purely within session B’s heap. Thread 2, however, has heap records
linking it to two heaps. It belongs to session A, and hence has a heap record linked into
heap A; having called through a service exported by session B, thread 2 may also have stack
references to objects in heap B; thus it also has a heap record linked into heap B. When
thread 2 returns from the service invocation, the heap record linking it to heap B will be
removed from its stack of heap records.

Heap records are added and removed from the thread stacks and heap lists in two ways:

• Whenever a thread makes an inter-session service call, it is switched into the heap of the
server. Section 6.7 describes how heap records are added and removed during service
invocation.

103



• Routines running in the Runtime, the Loader and the Core are trusted and may switch
heaps when access to a different heap is required (such as when creating a session,
copying objects between heaps, or initialising a module for a session).

The interface used to control heap switching is the same for both trusted Caml code and
service invocations. The push heap() function pushes a heap record on to the heap stack
of the current thread and links the same record on to the thread list of the heap to which
access is being gained. From this point onwards, the thread will be included in garbage
collection activity on the new heap, and hence may safely access objects within that heap.
The pop heap() function performs the reverse of push heap(), popping the heap record at
the top of the current thread’s heap stack and removing it from the heap’s list of accessing
threads.

A reference to the currently active heap is made available to the trusted portion of the virtual
machine – this reference is an l-value, and hence trusted code executing in the virtual machine
may switch heaps without the expense of making a function call into the Runtime. (Prior to
this, push heap() should have been called on the heap being switched to.)

6.4.2 Garbage Collection

The garbage collector is based heavily on the OCaml collector – the fundamental garbage
collection algorithm used is unchanged from that used by OCaml 1.07.

Each session has its own independent two-generation heap. The younger generation (minor
heap) is collected via Stop/Copy into the older generation. The older generation (major heap)
is collected with an incremental Mark/Sweep algorithm. Most allocations are made from the
minor heap, but native code in the Runtime may allocate large objects – or objects that are
expected to be long-lived – directly in the major heap.

[Doligez93] describes the GC algorithm used by Concurrent Caml Light (CCL), a different
dialect of Caml that shares many characteristics with Objective Caml. The two-generation
scheme and shading invariants used in the CCL collector are the same as in Objective Caml.
The CCL collector differs in that it provides each thread with its own minor heap and requires
regular synchronisation between the garbage collector thread and the mutators – since each
Rcane client has only a single heap, these concurrent portions of the CCL GC algorithm are
not relevant to Rcane.

If we wish to avoid using a write barrier on stack locations when tracing the roots of a session’s
heap, it is necessary to suspend all threads that might access that heap. To ensure that all
appropriate threads are suspended during such critical GC activity, the heap records described
in Section 6.4.1 are used to allow such suspension to be performed easily and efficiently.

The top heap pointer on each stack is the thread’s active heap, indicated through the use
of a field in the heap record. (For brief periods of time, such as while transferring control
between two sessions, a thread will actually have both of the top two heaps marked as active.)
Whenever critical activity is being carried out on a heap, all threads that are active in the
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heap are suspended, other than to carry out the GC work. Such suspension is implicit – since
there may be many threads active in a heap, actually suspending and resuming all threads
in order to perform a small amount of root tracing would be excessive. Instead, if a thread’s
active heap is in a critical GC phase when a thread is scheduled to run, execution is instead
diverted to the thread performing the critical GC activity, in order to complete the critical
phase as quickly as possible.

The majority of the Mark/Sweep activity can be carried out without halting any of the
threads. Currently a portion of Mark/Sweep activity is carried out after each collection of
the young generation. The amount of work done in each Mark/Sweep phase may be tuned
by the session owning the heap.

Tracking the threads that have access to each heap minimises the number of threads’ stacks
that must be traversed to identify roots, and prevents QoS crosstalk between principals that
are not interacting. Additionally, a thread executing a service call in a different session need
not be interrupted (possibly whilst holding important server resources) due to critical GC
work in its own heap. Since no pointers to the client’s heap can be carried through to the
server, the (untrusted) code running in the server cannot access that heap. Furthermore,
any pointers to objects in the client’s heap that are stored in enclosing stack frames will not
be accessed until the thread returns from the service, since Caml does not permit dynamic
scoping of identifiers4. Thus a thread need not be suspended in order to perform root tracing
on heaps to which it has access but in which it is not marked as active. If a thread becomes
active in a heap in which critical GC activity is being performed (such as when invoking or
returning from a service) it is suspended until such activity has completed.

The majority of GC activity is not classed as critical – one thread may be performing
Mark/Sweep activity on a heap concurrently with other threads accessing objects within
that heap. A write barrier is used on heap objects to ensure correct concurrent operation.

6.4.3 Low-memory conditions

Gracefully handling low-memory and out-of-memory situations is a difficult challenge, and
one that is often met poorly by application and systems writers.

Garbage collection can make recovery from such events easier, since it is possible for exceptions
to be raised and left unhandled without leaving large swathes of unreclaimable memory that
exacerbate the shortage of memory.

However, the garbage collection can itself obscure the details of memory management from
the programmer, particularly in languages such as ML in which memory allocation is often
implicit. Typical garbage collecting allocators will increase the size of the heap (up to some
large system-wide maximum) if insufficient free space is available to satisfy an allocation
request, since it is generally the case that the application is working on behalf of the owner of
the machine, and hence should have access to as much memory as it requires. When running

4If a language such as LISP [Steele84] or Perl [Wall87] – which do allow access to identifiers to be made
through the dynamic call chain to higher stack frames – were to be used as the safe language for an Rcane

system, such a guarantee would no longer be possible.
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on Rcane, in which relatively small per-session limits on memory consumption may be made
in order to prevent excessive resource consumption by remote principals, the limit on the size
of the garbage collected heap may be reached somewhat sooner. Possible courses of action in
the event of a low-memory condition include:

• Abort the session.

• Return a null pointer.

• Raise an exception.

• Call a programmer-provided “low-memory” hook.

Aborting the session is clearly undesirable, and should be kept as a last resort. Returning
a null pointer in Caml is not possible, since a fundamental feature of the ML family of
languages is that all pointers are always valid – a constructor cannot return a null pointer.
This allows substantial optimisations without compromising safety. Raising an exception is a
valid operation at most times, and indeed raising Out of memory is supported by the OCaml
garbage collector for the rare occasions in which it cannot obtain memory from the underlying
OS; however, this has certain drawbacks:

• Since any non-constant5 constructor may thus raise an exception, either the programmer
must explicitly check for the Out of memory exception at a great many points in the
code; or else an Out of memory exception must be treated as a generic abort signal
potentially causing the session to terminate under programmer control.

• In a multi-generational heap, memory may become exhausted whilst copying from a
newer to an older generation. If this occurs, the state of the heap may be such that it is
not safe to continue execution of the session, thus requiring termination of the session.

Low-memory situations in Rcane are handled with a combination of a callback, a buffer zone
and the Out of memory exception, as described in the following paragraphs.

To avoid the situation where heap memory is exhausted during a copying phase from the
minor heap to the major heap, Rcane maintains a free buffer zone within the major heap
that is at least as large as the minor heap; thus even if the entire minor heap is copied into
the major heap during a minor collection – an event that generally does not occur – heap
memory will not be exhausted.

If, following a copying phase from the minor heap to the major heap, this buffer zone has been
encroached upon, a user-registered callback function is invoked to release memory. This func-
tion may employ any desired strategy to reduce memory usage, so as to allow the requested
allocation to complete. For the duration of the callback function, other threads attempting

5ML constructors may be divided into constant and non-constant constructors. Constant constructors
represent integers, literals and parameterless members of algebraic types. Non-constant constructors represent
tuples, records and parameterised members of algebraic types, which require memory allocation.
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to allocate memory from that heap are suspended. Following the completion of the callback,
a garbage collection pass is made. Memory allocations made directly from the major heap
(which occur only for large objects, and never due to implicit constructors) that would eat
into the buffer zone cause an Out of memory exception to be raised; this may be dealt with
by the user.

This strategy is clearly not perfect – in particular it does not address the following concerns
adequately:

• There is no way for the callback function to know the importance (to the client) of
the requested memory allocation. This could perhaps be achieved by passing the Caml
program counter at which the allocation was made, and allowing the callback to map
this in some way to a function identifier or source code line. Such a facility would need
support from the compiler and the OCaml runtime, along with substantial investment
and maintenance from the programmer.

• The action that may be taken within the recovery callback function is limited, since if
excessive memory is allocated during the callback, the session is by necessity aborted.

However, the approach taken by Rcane does have the benefit that it is the clients that must
consider the implications of memory exhaustion, rather than the Rcane node itself. Since
the clients are in control of their memory allocation strategy, it is more straightforward for
them to perform such recovery considerations.

6.5 Network I/O

Rcane provides access to the network through the abstraction of channels. A channel is a
connection to a device driver associated with a particular network card6

Rcane channels are implemented over Nemesis I/O channels. For clients with no network
resources reserved, multiple Rcane channels may map to the same Nemesis I/O channel; if
the client has reserved resources, the Rcane channel will have a dedicated I/O channel.

Each channel may be used to send and receive packets on a set of flows, specified by packet
filters. These packet filters are installed by Rcane in the Nemesis device driver when the
channel is created.

The prototype currently supports two classes of channels: session-based virtual networks and
channels for access to local network endpoints.

Session-based virtual networks: A virtual network may be set up – as part of the con-
figuration of an Rcane node – either for a particular Ethernet frame type or for a

6In the case of a UDP channel associated with the INADDR ANY (wildcard) IP address on a node with multiple
network cards, the channel may transparently encapsulate multiple such connections.
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Field Meaning

protocol header Header for encapsulating protocol (UDP or Ethernet)
destination Ultimate destination of packet
resource bound Resources associated with packet
session ID Network-wide identifier for sending session
flow ID Demux identifier for sub-flow

Figure 6.4: The header format for RCANE virtual network packets

particular UDP port (with a given set of neighbours). Each packet sent on a virtual
network channel has a packet header as shown in Figure 6.4. This header format is
a prefix of the PLAN [Hicks99c] packet header format, allowing straightforward use of
PLAN interpreters and interaction with existing PLAN nodes. The session identifier
field (see Section 6.8.1) within the packet header is used to demultiplex the packet to
the appropriate session; the flow field may be used to further demultiplex the packet if
the session has specified handlers for multiple sub-flows of packets within the channel.

Local network endpoints: Sessions may open channels to receive packets on network end-
points on the local node, in a similar manner to traditional sockets APIs. Policy for
access permissions to packet flows – such as restricting unprivileged sessions to bind only
to ports greater than 1024 – may be specified on a per-node basis. Packets received on
local network endpoints need have no particular packet format beyond that required for
the specification and demultiplexing of the packet (e.g. a UDP header).

Link-level frames/packets are classified on reception by the network device drivers via the
network packet filter, which maps the packet to the appropriate channel. Packets for local
network endpoints are routed directly to the channel specified for that endpoint. Packets
received on virtual network connections are classified as follows:

1. Packets for sessions that have reserved guaranteed resources on the given virtual network
device are routed to the channel created for that session.

2. Packets for sessions that have registered on the receiving Rcane node, but which have
not reserved guaranteed resources on the given virtual network device, are routed to
the channel created for the Best-Effort session.

3. Packets for sessions that have not registered on the Rcane node are routed to the
channel created for the Best-Effort session.

If the channel has free buffers available, the packet is placed in the channel – no protocol
processing is performed at this point. If the channel has no free buffers, the packet is dropped.
Thus, if a session is not keeping up with incoming traffic, its packets will get discarded in
the device driver, rather than queueing up within a network stack as might happen in a
traditional kernel-based OS.
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At some later point, when the VP associated with a given channel is scheduled by Rcane

to receive CPU time, the packets are extracted from the channels and demultiplexed to the
appropriate thread pools. At this point, the following operations are performed:

1. First, any required processing for the encapsulating protocol (such as UDP or Ethernet)
is performed. After this stage, protocol processing for a packet received on a local
network endpoint is complete, and the packet is added to the event queue for the thread
pool specified by the receiving session. Further processing is required for packets from
virtual network devices, as described in the following stages.

2. If the packet is destined for a session registered on the receiving node, but has been
queued on the channel belonging to the Best Effort session (due to the receiving session
not having reserved the appropriate network resources) it is at this point demultiplexed
to the destination session.

3. The flow identifier in the packet header is used to demultiplex the packet to the appro-
priate thread pool and handler function, as specified by the receiving session.

Such demultiplexing is performed within the Runtime for efficiency, and is accounted to
the appropriate VP (since it is only performed when that VP has processing time available).
Once the thread pool and handler function that are to be used to handle the packet have been
selected, a callback event is constructed that invokes the handler function. The arguments to
the handler function consist of the packet contents and the channel on which the packet was
received.

Once the client’s callback has finished processing the packet, the buffer memory is returned
to the underlying Nemesis I/O channel, to be reused for future packets.

Transmit scheduling is performed by the Nemesis device drivers following a modified EDF
algorithm, as described in [Black97]. Each client channel is given a transmission scheduling
period and slice of transmission time, in a manner analagous to the scheduling of CPU time.
The network device driver repeatedly selects the next “runnable” channel that is eligible for
network time, sends a packet from that channel, and charges the channel for the time that
was taken up by the packet on the network link7, rather than the CPU time consumed by
the driver in sending the packet (which is negligible when using a network card with effective
DMA capabilities). Thus on a 100Mb/s Ethernet, a 1KB packet would be charged for 80µs
of link time. A channel is considered “runnable” when there are packets queued awaiting
transmission.

6.5.1 Enhancements to Nemesis network subsystems

In general, Nemesis was found to provide a good match for the networking interface required
by the lower levels of Rcane’s Runtime. The low-level protection boundaries of Nemesis allow
Rcane to enhance the standard Nemesis networking abstractions to ensure that network
processing is only performed for a given client when that client’s VP has CPU time available.

7Note that the current implementation does not take into account link time wasted due to packet collisions.
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Extensions were required in the Nemesis generic network driver top-half to provide support
for session-based virtual networks and demultiplexing of raw Ethernet frames.

6.6 Bytecode Librarian

The bytecode librarian runs as part of the Loader, and is responsible for linking in modules
of bytecode, and keeping track of

• which modules a given session is privileged to link against,

• which sessions have linked against each module,

• the dependencies between modules, and

• the total amount of code memory consumed by each session.

OCaml stores the global data of each module in a heap record, and stores a pointer to that
record in the module’s entry in the global array. Since each session in Rcane requires its own
copy of a module’s global data items (in its own heap), Rcane provides each session with its
own global array. If a session has linked against a particular module, then that session will
have a valid pointer to the given module’s global data in the appropriate slot of its global
array, otherwise the slot will be null. This record is created at module initialisation time –
thus it is important for Rcane to ensure that a session not be allowed to execute code from
a module before that module’s dependencies have been initialised.

When a session links against a particular module, the code librarian first performs a depth-
first traversal of the module’s dependencies, and links any previously unlinked dependencies.
Next, the initialisation code for that module is executed (in the context of the client’s heap),
to create the global entry for the module. The global entry consists of an array of closures
and values corresponding to the elements exported by the module’s interface, and is stored
in the appropriate slot in the client’s global array.

Note that the procedure for initialising Service Modules – used to export an entire interface
of services from a server to a client – differs from the above description, and is more fully
discussed in section 6.7.5.

6.6.1 Linking

When a new module is to be linked into the system, the following steps are performed:

Unmarshalling: The module is initially presented as a binary object. This object must be
unmarshalled to produce a structure describing the module.
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A

A

B

C

type t = int

let get_t() =
   42

let use_t(val:t)=
   print_int(val)

type t = string

let get_t ()=
   "hello"

let use_t(parm:t)=
   print_string(parm)

open A;

let get_t() =
   A.get_t();

open A;

let use_t(parm:t)=
   A.use_t(parm)

open B;
open C;

C.use_t(B.get_t());

 mA1 

 mA2 

 mB 

 mC 

 mD 

Interface implements importsModule

Figure 6.5: Potential type safety violation

Dependency Checking: Each module will have a set of statically imported interfaces. For
each such interface, there must have already been linked a module exporting that inter-
face. A particular import module may be specified for a given interface8 to deal with
the situation where multiple modules export the same interface. If any of the imports
are unavailable, the link stage fails.

Furthermore, since opaque type definitions may be concealed behind Caml interfaces,
it is necessary to put the following constraint on the linkage tree of modules:

No module is permitted to refer to more than one module exporting any given interface.

The relation mA refers to mB is true when:

• Module mB exports interface B,

• mB is in the transitive closure of module mA’s imports, and

• there exists an import path between mA and mB in which all modules make use of
types declared in interface B.

Such a constraint is required due to the following possible scenario, shown graphically
in Figure 6.5:

1. Interface A declares an abstract type t, with operations get t() (to return a value
of type A.t) and use t(t) (to process a value of type A.t).

2. Module mA1 implements interface A, privately defining type t to be integer.

3. Module mA2 implements interface A, privately defining type t to be string.

8A given implementation may be specified by presenting a hash of its code.
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4. Module mB links against module mA1 and implements interface B, which defines an
operation get t().

5. Module mC links against module mA2 and implements interface C, which defines an
operation use t(t).

6. Module mD links against modules mB and mC. It may thus call C.use t(B.get t()),
passing a value of type integer to a routine expecting a value of type string.

This constraint is related to the requirement to prevent bridge classes [Saraswat97] in
Java from creating similar type system violations.

Verification: The bytecode in the module must be shown to conform to the interfaces which
it imports/exports, and to respect any typing constraints associated with the language in
which it is written, using techniques such as those presented in [Nipkow99]. Appendix A
presents a design outline for a verifier for Objective Caml bytecode.

Resolution: The imports of a module must be fixed up so that they point to the correspond-
ing exports in the modules that are being imported.

6.7 Service Implementation

This section presents some of the key features of the implementation of the Rcane inter-
session service architecture.

6.7.1 Overview

When adding services to Rcane, two main possibilities were considered:

• Extending the Objective Caml bytecode language and virtual machine definition to
provide specific instructions for invoking services.

• Adding support for services through the use of additional primitive functions written
in native code.

Since the Caml typing rules do not make it practical to identify service invocations at compile
time, the latter option was chosen.

6.7.2 Representation

There are five components to an Rcane service:

• The service function is the actual function that the server session wishes to export to
the client, across an existing service binding.
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 Client Session 2  Client Session 1 

 Server Session 

Client wrapper

Client handle

Server wrapper

Server info block

Service function

Figure 6.6: The representation of services in Rcane

• The server info block contains all the server-side state required by Rcane to implement
the service. Within a service’s info block, a table is maintained with entries for each
client that holds a handle for that service.

• The server wrapper is a function closure that is a copy of the service function; thus it
could be called from within the server to obtain the same effects as calling the original
service function. However, it has two additional properties:

– It is tagged9 so that the inter-session copying mechanisms can identify it as a
service and copy it correctly (as described in Section 6.7.4).

– It contains additional information in the environment portion of the closure to
allow its info block to be located.

The server wrapper is the component that the server passes to the client.

• The client handle contains all the client-side state required by Rcane to implement the
service.

• The client wrapper is a closure of the same type as the server wrapper. However,
invoking the client wrapper causes the service mechanism to be entered, and control
transferred to the service function in the server’s heap (see Section 5.6.4).

9Every object in the OCaml heap has a tag as part of its header providing information about the object
type.
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Figure 6.6 shows the situation where a server session exports two services. Client 1 has bound
to both services; client 2 has bound only to one service.

6.7.3 Type-based Optimisations

In the OCaml heap, each object is either abstract (not traced internally by the garbage
collector, e.g. strings) or else contains a series of values. Each value is either an integer or a
pointer, distinguishable through checking its LSB10. This allows the garbage collector and the
Rcane parameter copier to reliably trace objects through memory without risking confusing
pointers and non-pointers.

By default, parameters to Rcane services are copied by tracing the parameters’ structures
in memory, and making copies in the new heap. In the case that the server has specified
the Graph attribute for the service, indicating that a parameter being passed may contain
shared structures, the copying routine additionally maintains a list of previously encountered
objects, and ensures that pointer sharing in the source heap is preserved in the destination
heap.

However, as will be demonstrated in Section 7.3, this generic copying mechanism incurs
overhead due to the checking and bookkeeping that it must perform.

The nature of ML’s algebraic type system tends to conspire against fully optimising the copy-
ing routines. An algebraic type has multiple constructors, some of which may be constants
(represented as integers) and others of which may be some kind of object (represented as
pointers). An example of such a type, representing a tree containing strings and integers,
might be:

type tree = StringNode of string * tree * tree

| IntPairNode of int * int * tree * tree

| Leaf

Thus a value of type tree might contain:

• a pointer to a three element block with the tag StringNode containing a string pointer
and two tree values,

• a pointer to a four element block with the tag IntPairNode, containing two integer
values and two tree values, or

• the integer value Leaf.

10This has the result that OCaml integers can hold one less bit than a machine word.
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Hence, it is impossible to fully determine until when actually performing the copy, what the
structure of a tree parameter will be. However, in many situations it is possible to make
guarantees about the type of a parameter and thus substitute an optimised copying routine.

In a similar manner to the dynamic stub generator developed by the author for Nemesis
IPC (see Section 4.4 and [Menage98a]), Rcane analyses type information about dynamically
loaded modules, to identify situations in which the types of parameters are known in advance.

A full implementation of Rcane would employ a mechanism similar to the Nemesis stub
generator: firstly the type for a parameter would be converted into a simplified representation,
and secondly this representation would be used to synthesise (or reuse) a suitable machine
code function.

Such type analysis is performed in the prototype, but time constraints have prevented imple-
mentation of fully synthesised copying routines. As a proof-of-concept, any parameters that
can be shown to be:

• blocks containing only integer values, or

• integer lists

are copied using optimised copying routines. Note that since ML represents all non-pointer
types as integers, any algebraic type with purely constant constructors may be regarded as
equivalent to an integer for marshalling purposes, increasing the range of possible optimisa-
tions.

6.7.4 Copying Services Between Sessions

Passing services (either server or client wrappers) between sessions as the parameters or results
of a service invocation is used as a mechanism to allow clients to bind to services. The tag on
a memory block for a server wrapper or client wrapper identifies it as such to the parameter
copier. Rather than directly copying the contents of the wrapper to the destination heap,
instead it acts as follows:

1. The info block for the service is located via the pointers available in the client or server
wrapper.

2. If the destination heap belongs to the server, a pointer to the existing server wrapper
is returned as the result of the copy operation.

3. If the destination heap belongs to an existing client of the service, a pointer to the
existing client wrapper for that client’s session is returned as the result of the copy
operation.

4. Otherwise, a handle and client wrapper for the service are created in the destination
heap, and added to the info block’s client table.
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In this way, services may be passed around by reference as parameters and results of service
invocations.

6.7.5 Service Modules

The service passing described above allows services to be passed across pre-established service
bindings. To “bootstrap” initial bindings between a client and a server, and to provide a
convenient way of binding to a standard set of services supplied by a server, Rcane supports
service modules, as described in Section 5.6.6. Section 6.6 described how modules are linked
and initialised in a session. This section describes how the procedure differs for service
modules.

Each service module is associated with a particular server. When a session binds to a service
module, rather than executing the initialisation code of the module in the context of the
client’s heap, the initialisation occurs in the server’s heap. Every element in the global entry
of a service module must be a service. Rather than simply storing the global entry in the
global vector of the client session (which would result in an inter-heap reference), the entry
is copied using the same mechanism as is used for service invocation parameters. This has
the effect of creating handles for all the exported services in the client’s session. Figure 6.7
shows how the services exported by a service module are made available to the client session.
The global entry for the service module (visible to Rcane clients as the interface exported
by the service module) hangs off the client’s global vector. In the server’s session, the various
services typically share some or all of their state.

 Client Session  Server Session 

Global vector
(namespace)

Service module
global entry

Garbage-collected
pointer

Service

Figure 6.7: Example of a service module

A service module may be classified as having per-client state or shared state. The initialisation
code of a per-client service module is executed when each new client binds to it – thus a new
set of services are created that are associated specifically with the client. A shared service
module is initialised once, when the server loads it. This creates a set of services that are
copied to each client that binds to the service module, with the result that all clients share
the same set of services. A server that wishes to access both shared and per-client state for a
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service may create two modules; the first module is a per-client service module that actually
creates the desired services, and the second is an ordinary module bound in the server’s
session, containing the desired shared state. The service module imports the state module,
giving the per-client services access to the shared state.

6.7.6 Garbage Collection of Services

At creation time, a service is specified as being either Retained or Collected – this allows
the server to control whether the service is kept alive as long as any clients hold a handle
on the service, or only while the server itself maintains a reference to the info block. For
any service that is specified as retained, Rcane maintains a heap root for that service’s info
block while clients are bound to the service, to ensure that the service does not get garbage
collected whilst it is in use.

When a service info block is eventually garbage collected, all client handles for that service
are marked as being revoked, causing future invocations using such handles to raise a Revoked

exception.

If the client handle becomes unreachable and is garbage collected11, the handle’s entry in the
service’s client table is removed.

Either the server or the client may explicitly force a service or a handle to be released (by
calling Service.destroy() or Service.release() respectively) without requiring the ser-
vice or handle to be garbage collected first. Further attempts to use a handle or service that
has been explicitly released cause an exception to be raised.

6.7.7 Abnormal Service Termination

Not all service invocations can be assumed to complete correctly. Since the client or server
sessions may exit at any time, or be terminated due to exhaustion of resources, Rcane must
be able to support abnormal termination of service invocations.

A structure describing each service invocation is linked in to a per-thread list and a per-service
list for the duration of the invocation. These lists allow Rcane to identify:

• the threads belonging to a session that are currently performing service invocations to
other sessions (in the event of a client exiting, or aborting an invocation), and

• the threads currently executing in a session’s heap that are in service invocations from
other sessions (in the event of a server exiting, or revoking a service).

If a service invocation is required to be terminated, the affected threads may be located
through these links, and exceptions raised at the point of the service invocation.

11This will not happen whilst the client maintains a reference to the client wrapper, since the client wrapper
contains a reference to the handle.
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Additionally, to allow servers to deal with the case where a client terminates whilst executing
in a critical region in a service invocation, it is possible to register backup threads for critical
regions that are executed as part of a service invocation (discussed in Section 5.6.2).

A backup thread allows a server to guarantee a certain level of resources – specifically, CPU
time and stack space – to a client thread, to prevent a CPU-starved thread from causing QoS
interference through spending too long in a critical section, or to allow the execution context
of a terminated thread to continue until it has exited the critical region.

In the prototype implementation, backup threads are assigned to client threads by allowing a
thread pool to be associated with a mutex; when the critical region protected by the mutex is
entered, and the mutex is locked, an idle thread from the associated thread pool is assigned
to be a backup thread for the client thread. If no idle thread is available from that pool,
the locking thread blocks until a thread is available. When the client exits from the critical
region, the backup thread is made idle again.

The existence of a backup thread has two significant effects on a client thread:

• The backup thread is scheduled like any other thread. However, when a backup thread is
due to be run, rather than actually running the backup thread (which has no execution
context, having been idle before being assigned to the client thread) the scheduler
instead runs the client thread. Thus the client thread receives CPU time from two
sources – from its own VP’s CPU guarantee, and from the CPU guarantee provided
by the server to the backup thread. Therefore client threads with sufficient CPU time
are not limited by the level of CPU resources assigned by the server, whilst the server
can bound the level of crosstalk caused by the critical region through assigning an
appropriate level of resources to the backup thread pool.

• In the event that the client thread is destroyed or the client aborts the service invocation,
the execution context (stack, registers and auxillary state) of the thread is transferred
to the backup thread. From this point on the backup thread acts as a normal thread,
continuing the execution of the critical section. When the critical section is completed,
the backup thread returns to the idle state.

6.7.8 System Services

Rcane uses a basic set of services to allow clients to communicate their requirements to the
System session.

The main interface is the Session interface, implemented as a per-client service module.
Each instantiation of this module maintains the state about a single session. Additionally,
the Session priv module in the System session provides auxillary routines and shared state.

As described in Section 5.2.1.2, the Session interface provides the primary point of access
for requesting QoS guarantees (for CPU, memory and network access), loading/linking code
modules, and session creation/termination.
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To support access to the network, the Rip and Arp service modules provide routing and address
resolution services. These modules were ported largely unchanged from PLANet [Hicks99c] –
some adaptation was required to fit into the resource-isolation model supported by Rcane.

6.8 Session Creation and Destruction

New sessions are created by invoking the Session.createSession() service exported by the
System session. Creating a session involves the allocation of a heap and a default VP (with
a single thread and best-effort access to the CPU) as well as Runtime housekeeping data for
the new session. Rcane aggressively caches objects such as heaps, threads and VPs to allow
session creation and destruction to be very lightweight. When a session is created, credentials
are passed to authenticate the entity that will be responsible for the session, and to provide a
mechanism by which Rcane may bill that entity for resource consumption (see Section 5.7).

Since Rcane aims to charge each session for the resources that it consumes, as much of the
session creation work as possible should be undertaken on a VP owned by the newly created
session, rather than on one owned by the creating session or the System session. When a
session is created, it initially has no modules linked and no data. To bootstrap the newly
created session, the SessionBoot service module, which is exported by the System Session,
is bound into it – this copies a single service, accessible as SessionBoot.bootstrap(), into
the new session. A callback event that invokes SessionBoot.bootstrap() is registered for
the session’s VP; at this point all further session creation work is performed by the session
itself.

Upon invocation of SessionBoot.bootstrap(), the code librarian loads/links the initial
module specified (in the call to Session.createSession()) for the new session. This will
in turn link in any dependencies of the initial module – typically these will include Safestd

(the standard library) and the Session interface itself.

When destroying a session (either through resource exhaustion or at its own request), the
following sequence of events occurs:

1. All client handles held by other sessions for services exported by the dying session are
marked as revoked. All client threads from other sessions that are in service invocations
to the dying session are jumped back into their calling sessions; in each case a Revoked

exception is raised at the point of invocation.

2. All of the dying session’s client handles are marked as revoked. All threads belonging
to the dying session that are in service invocations to other sessions are jumped back
into the dying session.

At this point, the dying session is completely isolated from other sessions – it has
no handles to other services (even to the System session), and no other sessions have
handles on its exported services.

3. The session’s networking resources are revoked.
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4. The session’s threads are all terminated.

5. Housekeeping information maintained by the System session is released.

6. The Runtime structures and heap are released.

6.8.1 Session Identifiers

Associated with each session is a network-wide unique session ID, composed of the network
address of the node at which the session originated, and a unique identifier within that node.

When a new session is created at a node, it may either be associated with the session ID of
the remote client that created it (provided that the remote client has not already created a
session at the current node), or may have a fresh session ID generated, with the current node
as the originating node stored in the session ID.

It is intended that this session ID eventually be used to support resource transfer across
multiple programmable nodes, thereby potentially reducing the billing overheads associated
with programmable networks. Such support is currently limited – the resource bound field
in Rcane virtual network packets may be used to transfer resource units between sessions
owned by the same client on different nodes. These resource units are not yet fully integrated
with the Rcane resource accounting mechanisms.

6.9 Summary

This chapter has described the key implementation details of a prototype of the Rcane

architecture built over the Nemesis Operating System.

For the prototype implementation, Objective Caml was chosen as the language and Nemesis
as the platform for Rcane. The rationale behind these choices was discussed, and a number of
deficiencies in OCaml were identified; in each case the deficiency was remedied, or else parallels
with existing research were presented that suggested that a remedy for such a deficiency was
practical.

Although the prototype implementation was developed over Nemesis, the Rcane architecture
could be implemented over any OS providing suitable support for QoS isolation; similarly,
any language with suitable safety properties could be used as the client language.

The chapter then discussed implementation details of the major features of Rcane. In each
case the design decisions that promoted effective QoS isolation and performance were pre-
sented. The EDF scheduling algorithm provides the CPU guarantees required by the Rcane

architectures; the abstractions of events and thread pools, which provide an interface for the
CPU scheduler to clients, were discussed. To provide the separated heaps that allow Rcane

to prevent crosstalk due to garbage collection, Rcane must keep track of the sets of threads
with access to each heap, and must ensure that inter-heap references cannot be created by
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untrusted clients. The implementation employs a similar mechanism for network transmis-
sion as for CPU scheduling; this allows effective transmission guarantees to be made. Packets
received over the network are demultiplexed as early as possible in order to prevent crosstalk
between different clients’ packets.

Inter-session services support lightweight communication between clients executing on Rcane;
several implementation details of services were described: their structure, the optimisations
employed by Rcane to improve copying performance and the mechanisms used to ensure
safety in the event of abnormal termination.

Also discussed were two control-path features of Rcane: the bytecode librarian and the
mechanisms for registering and deleting clients’ sessions.
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Chapter 7

System Evaluation

This chapter and Chapter 8 present the results of experiments carried out to test the prototype
implementation of Rcane. Aspects of the architecture are considered in terms of performance,
resource isolation, and flexibility.

The evaluation is structured into two parts. In this chapter, the basic Rcane system is as-
sessed – the results of micro-benchmarks are presented for the key features of the architecture
presented in Chapters 5 & 6. Chapter 8 examines the use of Rcane as a base architecture
for active network systems.

7.1 Evaluation context

7.1.1 Experimental equipment

The majority of the experiments presented in these chapters were performed on Intel Pentium
II machines running at 300 MHz connected to 100Mb/s Ethernet. Some experiments also
involved Intel PentiumPro machines running at 200MHz, connected to 10Mb/s Ethernet.

7.1.2 Instrumentation

The Rcane prototype was instrumented in order that events of interest (for use during
debugging and performance measurement) could be recorded in an in-memory log and later
flushed to disk for analysis. Events recorded in the log included:

• Scheduler entry/exit and scheduling logic

• State transitions for threads, thread pools and VPs

• Garbage collection activity
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• Packet transmission and reception

Logging of specific types of events was made configurable at compile time, allowing logs to
be kept only of the events of interest to a particular experiment, and preventing any wastage
of CPU cycles due to unwanted events being logged.

Events were recorded with cycle-time accuracy; the time taken for a single event to be logged
was found to be approximately 0.2µs.

7.2 Scheduler Performance

The fundamental advantage of a programmable network over a passive network is that end-
users may perform computations at nodes within the network, and hence receive lower latency
than if all interactions were required to take place between the end-user and the ultimate
destination. In order to provide low latency, it is vital that the user-supplied applications
running on the programmable node receive timely access to the CPU. Alternatively, if the
application is attempting to process or filter some form of multimedia data, it should receive
regular access to the CPU in order to prevent excessive jitter in its results. Thus an important
feature of Rcane that must be shown is that it allows users to request and receive the
guaranteed access to the CPU that they require.

To demonstrate the effectiveness of the CPU guarantees provided by Rcane, the time received
by a set of sessions was logged. Four sessions were created at various times through the
experiment. Each session used a single VP and was CPU bound.

All four sessions were started with no particular guarantee, but with access to best-effort
time. Sessions B, C and D were created at 3 second intervals following the creation of session
A, and requested 10%, 20% and 30% shares of the CPU respectively, each with a period of
4ms and with no access to extra time.

Figure 7.1 shows the percentage of the total CPU that each VP received over each scheduling
period (i.e. between consecutive deadlines). The scheduling period for each VP is used since
this is provides an accurate view of whether the contractual guarantee made to the session is
being honoured. Since session A’s VP is running without a guarantee, it is assigned a notional
scheduling period of 100ms; hence, the trace shown is clearly coarser than the traces for the
other sessions, whose VPs have fine-grained guarantees.

Also present in the system, but omitted from Figure 7.1 for clarity, are the System session and
the Best-Effort session. Figure 7.2 shows separate breakdowns for all sessions in the system,
including the System Session and the Best-Effort session.

As may be seen from the traces of time received, Rcane respects the CPU guarantees that
have been given to the various sessions. In particular, sessions B, C and D each initially
briefly consume varying amounts of CPU time (whilst running best-effort), but once they
reserve guaranteed allocations without use of best-effort time, they can be seen to accurately
receive the guarantees that they requested. Session A consumes any spare CPU time that
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Figure 7.1: CPU consumption by a set of sessions

is available, and so initially receives 100% of the CPU – however, as each of the guaranteed
sessions start in sequence, its share of the CPU is reduced.

The occasional spikes on the System session trace in Figure 7.2 (a) reflect periodic house-
keeping activity (such as responding to routing information packets from other Rcane and
PLAN boxes). The activity on the Best-Effort session trace in Figure 7.2 (b) reflects the work
it performs in requesting the creation of new sessions. It can be seen that the sessions with
guaranteed CPU time are virtually unaffected by this activity, whereas session A, which is
running with no guarantee, experiences a loss of processor bandwidth.

Thus it can be seen that sessions running on Rcane, by requesting a particular slice of
CPU time over a particular period, may bound the latency with which they can process data
received from other entities in the network, or calculate fresh data to be sent out to others.

Figure 7.3 shows the same experiment repeated, but with each session requesting access to
best-effort time in addition to any guarantees that they might also request. It can be seen that
the total time received by each session fluctuates considerably; this is due to the distribution
of best-effort time being bursty at the scale of the sessions’ scheduling periods. However, when
the best-effort time received by each session is excluded from the traces (see Figure 7.4), it
can be seen that the amounts of guaranteed time received by VPs belonging to sessions B, C
and D still accurately match the reservations made by them.

It was seen in Figure 7.3 that at a fine grain (at the granularity of the scheduling periods), the
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Figure 7.2: Total CPU consumption by a set of sessions (separated views)
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Figure 7.3: Total CPU consumption by sessions using best-effort time

amount of best-effort time received could vary substantially. Figure 7.5 shows the cumulative
best-effort time received by each domain, recorded at the end of each scheduling period for
each VP. It can be seen that at each point in time, the slopes of all running sessions are equal,
showing that over longer periods of time the scheduler is fairly allocating any slack time in the
system. As more sessions are added to the experiment, the amount of best-effort CPU time
received by each session (and hence the slope of the line on the cumulative trace) decreases.
As discussed in Section 6.3.1, in a complete implementation of Rcane, more sophisticated
schedulers – with features such as sharing out slack time in proportion to the amount of
guaranteed time reserved by each VP – may be used.

7.3 Service Performance

Rcane services are intended to provide lightweight communication between sessions. A major
use of such communication is to access services provided by the system; alternatively it may
be in order to access services provided by another session (e.g. enhanced routing tables) or to
allow a particular execution environment to share state between multiple sessions. Straight-
forward data sharing is not possible due to the isolated nature of different heaps in Rcane,
therefore the inter-session services need to have minimal overhead.

To measure the performance of the service mechanism, a series of test service invocations
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Figure 7.4: Guaranteed CPU time received by a set of sessions (separated views), when
best-effort time is also being received by all application sessions.

were performed with different types and sizes of parameters. Also performed, for comparison,
were a series of other non-service invocations. Each test was repeated one million times,
and the average was taken. The large number of iterations used for the tests ensures that
any amortised overheads due to garbage collection are accurately reflected. Such garbage
collection runs will only occur every few thousand invocations, depending upon the size of
the heap. The tests were repeated with substantially larger (several megabyte) heaps, which
were fully garbage collected before commencing each test, to attempt to measure the overheads
of copying without the overheads of garbage collection. However, these proved to be actually
slightly slower than the tests that involved garbage collection. This is presumed to be due
to the loss of cache locality when using a larger heap, and the cache pollution caused by the
garbage collection runs between each invocation.

Table 7.1 and Figure 7.6 show the times taken for the various invocations. These invocations
are:

127



0

1

2

3

4

5

6

18 20 22 24 26 28 30 32 34T
im

e 
re

ce
iv

ed
 (

s)
 (

re
co

rd
ed

 a
fte

r 
ea

ch
 V

P
’s

 p
er

io
d)

Real time (s)

A
B
C
D

Figure 7.5: Cumulative best-effort time received

Runtime call: An invocation from the Caml virtual machine into the Runtime.

Local function: An invocation of a Caml closure from within the virtual machine.

Callback: An invocation of a Caml closure from within the Runtime.

Null service: A full inter-session service invocation with a single integer parameter1.

Null service with timeout: A service invocation as above, but registering a timeout.

String service: An invocation of a service that takes a string, with string lengths varying
over 0–100 bytes.

Array service: An invocation of a service that takes an array, with the array size varying
over 0–100 elements (0–400 bytes).

List service: An invocation of a service that takes a linked list of integers, with the list
length varying over 0–100 elements (0–1200 bytes).

The time taken by the runtime call, local function call and callback is intrinsic to the ar-
chitecture of the OCaml virtual machine. It can be seen from Table 7.1 that a null service

1Due to the design of ML and the Caml VM, all functions take at least one argument. A void function is
represented as a function that takes a value of type unit, of which there is only a single value, (), represented
as an integer (zero) in the VM.
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Invocation Time (µs)

Runtime call 0.06
Local function 0.20
Callback 0.50
Null service call 1.50
Null service call with timeout 2.29

Table 7.1: Times for fixed-cost invocations

invocation is approximately six times slower than a local function call. An analysis of the
time spent in a service invocation is given in Section 7.3.1.

From Figures 7.6 (a), (b) & (c), it can be seen that in each case the cost increases roughly
linearly with the size of the parameters. Figure 7.6 (b) shows the time taken for array and
list services according to the number of elements being copied; Figure 7.6 (c) presents the
same data according to the total amount of memory being copied – each list element consists
of a two word cell plus a word of heap metadata.

In Figure 7.6 (b), optimised and unoptimised forms of the array and list invocations are
shown. The string invocations and the unoptimised form of the array and list invocations
represent three different modes of parameter copying for the generic copier:

• A string is a variable-sized object that may be copied in a single operation – the jagged
nature of the trace is due to word-copy optimisations in the memcpy() function.

• An array is a variable-sized object whose elements must each be checked and copied
individually.

• A list consists of a series of small fixed-sized objects each of whose elements must be
checked and copied in turn.

As described in Section 6.7.3, there are opportunities to optimise the copying based on type
information; e.g. a service parameter that is known to be an integer array can be copied in a
single pass as with a string.

In many cases, the nature of ML’s type system means that the type of an object cannot
be determined until copy time; however, where possible Rcane uses type information to
substitute optimised copying routines in place of the generic copier. It can be seen from
Figure 7.6 (b) that the optimised versions of integer array and integer list service invocations
are substantially faster than those using the generic marshaller. In the case of arrays, the
time taken to copy even a 100 element array is insignificant when compared to the time taken
for the remainder of the service invocation. For lists, the copying overhead is still substantial,
due to the multiple allocations and the interactions required with the garbage collected heap;
however, it can be seen to be significantly faster than with the generic copier.
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Figure 7.6: Service invocation times for varying numbers of parameters

7.3.1 Breakdown of time consumed in service invocation

In order to determine how much of the overhead of a service call is due to the mechanisms
used by Rcane, and how much is due to the particular language used to implement the safe
portions of Rcane, Figure 7.2 shows the breakdown of time amongst the various steps that
make up an null service invocation.

This process of invoking a service is described in fuller detail in Section 6.7. Briefly, these
steps consist of:

Local function invocation: Invoking the VM wrapper around the service handle.

Runtime invocation: Transferring control from the wrapper to the runtime.

Heap manipulation: Registering (and later deregistering) the calling thread with the server’s
heap, to ensure that any roots to server heap objects that are stored in the calling
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Activity Time
(µs) %

Cumulative Incremental

Local function invocation 0.24 0.24 15.2
Runtime invocation 0.34 0.10 6.3
Heap manipulation 0.60 0.26 16.5
Chain manipulation 0.77 0.17 10.8
Exception handling 0.90 0.13 8.2
Server callback 1.58 0.68 43.0

Total 1.58 1.58 100.0

Table 7.2: Breakdown of time spent in a service invocation

thread’s stack are correctly traced.

Chain manipulation: Linking the calling thread into the list of callers for the service, for
use in the event of server or client death.

Exception handling: Linking the runtime stack frame into the Caml exception chain, to
ensure that any exceptions raised by the service invocation are handled in the runtime
and appropriate recovery performed before returning to the client.

Server callback: Recursively invoking the OCaml virtual machine in the server’s heap to
call the actual service function.

Almost half the time taken by a service call is due to the costs of invoking the Caml virtual
machine on the server’s function. If the client specifies a timeout for the call, this adds an
additional 0.7µs to the time required, representing an overhead of 45%. This cost consists of
the time required to add and remove a timeout event for the service invocation.

By comparing Table 7.1 and Table 7.2, it may be seen that some of the steps take longer when
executed as part of a service invocation than when executed on their own – this is presumed
to be due to reduced cache locality.

7.3.2 Comparison with other IPC systems

Table 7.3 compares the performance of Rcane inter-session services with IPC primitives
provided by other systems2

Nemesis Null IPC tests measure the average time for 100000 iterations of a full Nemesis
IPC call; I/O Ping tests measure the time taken for an event to be passed over an I/O
Channel from one user-level thread to another in a different domain, and back. These
tests were performed for the case where both processes were in the same protection

2The figures in Table 7.3 for Windows NT, J-Kernel and L4 were taken from [Hawblitzel98].
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IPC type Hardware Time µs

Windows NT RPC PPro-200 109.0
Windows NT COM out-of-proc PPro-200 99.0

Nemesis Null IPC (same protection domain) PII-300 48.3
Nemesis I/O Ping (same protection domain) PII-300 39.5
Nemesis Null IPC (different protection domain) PII-300 69.8
Nemesis I/O Ping (different protection domain) PII-300 56.8

Rcane Null service invocation PII-300 1.5
J-Kernel Null LRMI (MS-VM) PPro-200 2.2
J-Kernel Null LRMI (Sun-VM) PPro-200 5.41
L4 Null IPC P-133 1.8

Table 7.3: Time taken for a null invocation by various IPC systems

domain (thus removing the need to perform a full context switch between the processes)
and also the case where each process ran in its own protection domain.

Windows NT RPC and COM tests measure a null invocation using two standard Windows
NT IPC mechanisms.

J-Kernel Null LRMI (Local Remote Method Invocation) measures a call through a J-Kernel
Capability [Hawblitzel98], running under a Microsoft JVM and a Sun JVM.

L4 Null IPC measures the time for an IPC in the L4 microkernel [Härtig97]

It may be seen from Table 7.3 that Rcane services are substantially faster than IPCs on
Windows NT or Nemesis; they are comparable with IPCs over the J-Kernel. J-Kernel and
Rcane both take a similar approach to protection, by employing multiple disjoint sets of data
in a single address space, isolated through the use of type-safe code. An exact comparison of
the efficacy of Rcane and J-Kernel is difficult, since while Rcane has more runtime support
than the J-Kernel – which is implemented purely in Java (JIT-compiled where applicable)
– the J-Kernel does not provide isolated heaps for each client. Thus Rcane has to perform
additional work on a service invocation to link (and later remove) the client’s thread into the
server’s heap.

The L4 microkernel has been optimised to provide fast IPCs between small processes through
the use of non-overlapping memory segments, thus avoiding much of the overhead of address-
space switching experienced by Nemesis and Windows NT IPCs. When the overhead due
to the Caml virtual machine is discounted from the Rcane service invocation times, and
accounting for the relative speed of the test equipment (300MHz vs. 133MHz) it can be seen
that L4 and Rcane achieve comparable performance.

7.3.3 Abnormal Termination

In order to deal with arbitrary behaviour from user-supplied code (in particular, clients or
servers exiting voluntarily or through resource exhaustion during a service invocation), Rcane
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services must be robust to abnormal termination situations. Four such scenarios were con-
sidered:

Server death: If a server session is destroyed or exits whilst a service invocation from a
client is in progress, the client thread must be cleanly transferred back to the invoking
session, and a Revoked exception raised.

Client death: If a client session or thread exits whilst in a service invocation to a server, the
thread must be cleanly disconnected from the invocation chain for that server before the
thread is destroyed. Garbage collection will ensure that any allocated data structures
are released.

Client abort: This is similar to client death, with the difference that it is initiated by the
client, and a Service.Aborted exception is raised in the client, rather than the thread
being destroyed.

Client death with backup: In either of the above cases, when the server was executing
within a critical region at the point when the abort/death occurred, and had registered
a backup thread pool for the critical region’s mutex the state of the client thread is trans-
ferred to the backup thread, allowing execution of the critical region to be completed
cleanly.

Experiments were performed in which a client made service invocations to a server, and the
different cases listed above were made to occur. In each case Rcane behaved as intended.
This demonstrates that the good performance provided by Rcane services does not come at
the expense of safe handling of (uncommon) abnormal termination cases.

7.3.4 Resource Backup

In Section 7.3.3 the thread backup mechanism of Rcane was evaluated to ensure that termi-
nation of a client thread within a server’s critical section does not result in corruption of the
data protected by that critical section.

As described in Section 5.6, since critical sections represent regions of mutual exclusion, it
is important that a server can prevent a resource-poor or malicious client from spending too
long in a critical section due to lack of CPU resources; otherwise crosstalk between clients may
be experienced. Such control is afforded to the server through the use of the thread backup
mechanism – by assigning CPU resources to the backup threads, server CPU resources may
be used on behalf of the client only in those sections of code that might cause crosstalk, such
as critical sections.

To demonstrate that this mechanism allows the server to provide an effective bound on the
crosstalk experienced by a client, a simple server and a pair of clients were constructed. The
bulk of the work performed by the server did not require access to a critical section, and
hence could be carried out without a backup thread. Additionally, each call also updated
some statistics about server usage; these statistics were protected through a critical section.
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Figure 7.7: The effect of resource backup on crosstalk

Of the two clients, the first client (referred to as fast) received a 1ms CPU guarantee over a
10ms period, and the second (slow) received a 1ms CPU guarantee over a 500ms period. In
order to simulate a heavily-loaded system, neither client was given access to best-effort CPU
time.

Three experiments were conducted:

1. The fast client was run on its own.

2. Both clients were run simultaneously; no resource backup was employed by the server.

3. Both clients were run simultaneously; the server backed up the critical section with its
own CPU resources.

In each case, the clients continuously invoked the services provided by the server, and the
rate of service completion by the fast client was measured. Figure 7.7 shows the results for
the three scenarios. It can be seen that when the fast client is executing alone, it achieves a
constant service rate.

When the slow client is also executing, but without resource backup in the server, the fast
client may be observed to occasionally experience severe crosstalk, for periods of up to 0.5s.
This is due to the slow client exhausting its CPU slice whilst executing within the critical
section. In this situation, the slow client does not receive any more CPU resources until
the start of its next period (after 0.5s), and the fast client is unable to obtain the mutex
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for the critical section since it is held by the slow client; thus it cannot make use of its
own guaranteed CPU resources. This is similar to but distinct from the problem of priority
inversion [Lampson80] – since Rcane’s CPU scheduler uses the notion of guarantees rather
than priorities, there is not the same potential for deadlock as in a priority inversion.

In the third case, when the server provides resource backup to the critical section, it can be
seen that the fast client does not suffer any such crosstalk – on the occasions when the CPU
resources of the slow client are exhausted while it is holding the critical section lock, the
resources of the server are used to ensure its progress until it has exited the critical section.

Rcane’s resource backup mechanism can thus be seen as an effective tool for supporting
the client-resourced nature of Rcane’s inter-session services, whilst still allowing a server to
bound the level of crosstalk experienced by clients when accessing shared data within critical
sections.

7.4 Garbage Collection Isolation

Rcane runs each session in a separate heap in order to eliminate crosstalk caused by garbage
collection – a session should not be inconvenienced due to the allocation behaviour of other
sessions. To demonstrate the utility of this approach, two scenarios were considered. In (a),
VPs A and B are running in the same session. Initially both are generating small amounts of
garbage. After a period of time, A begins generating large amounts of garbage. Scenario (b)
is the same, but with the two VPs running in separate sessions (and hence having separate
heaps). Figure 7.8 shows the outcome of these scenarios. In (a), both VPs are initially doing
small amounts of GC work. A is running best-effort, whereas B has a guarantee of 1ms
in each 4ms period. When A switches to generating large amounts of garbage, the time it
spends garbage collecting increases substantially. However, as shown by the noisy region at
the bottom right of the graph, B also ends up doing an irregular but substantial amount of
GC work. Although B has its own independent CPU guarantee, at times critical GC activity
(such as root tracing) is taking place when its thread is due to run; this GC work must be
completed before normal execution can be resumed. In (b), B is unaffected by the extra GC
activity caused by A, since it is running in a separate session and hence does not share its
heap; thus B’s own GC activity remains minimal.

This suggests that the decision to place each session in its own heap was a sound one. It should
be noted that this represents a worst case scenario, in that session A was allocating very large
amounts of memory with very little computation in between allocations, and thus stressing
the garbage collector; however, since Rcane is designed to accept code from untrusted users,
such byzantine behaviour may be seen from malicious or buggy clients. Isolating each client
and accounting their resource usage directly is fairer and more reliable than attempting to
identify this kind of behaviour based on heuristics or arbitrary limits.
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Figure 7.8: Avoiding QoS crosstalk due to garbage collection
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System Time (ms)

Rcane 1.7

Nemesis 13.9
Linux (null) 0.4
Linux (quit-static) 0.7
Linux (quit-dynamic) 2.8
Linux (ocaml) 20.0
Linux (java) 394.0

Table 7.4: Time to create and destroy a process/session

7.5 Session Creation/Destruction

Until the full potential of programmable networks is widely realised, it is difficult to predict the
typical lifetime of a session (representing a set of resource reservations) or the rate at which
new sessions will be created. However, since maintaining an unused resource reservation
on a node is likely to be expensive and wasteful, the architecture of Rcane should not,
if practical, preclude the possibility of clients creating and destroying sessions over short
timescales. Therefore the overhead of creating and destroying a session on Rcane needs to
be low.

Table 7.4 shows the time taken to create and destroy a session in Rcane, and compares it
with the time taken to create and destroy a domain in Nemesis and a variety of different
processes in Linux (running on equivalent hardware). The various cases are as follows:

RCANE: A wait4Last() function was added to the Session interface, to permit a session
to wait for its most recently created child session to exit, in a similar manner to wait4()

in Unix systems. The Best-Effort session repeatedly creates a session and waits for it
to exit. The child immediately exits.

Nemesis: A WaitFor() method was added to the DomainMgr interface to permit a session
to wait for a given domain to exit. A benchmarking program repeatedly creates a child
domain that exits as soon as the standard Nemesis environment has been set up.

Linux (null): The parent repeatedly calls fork() followed by wait4(), and the child im-
mediately calls exit() (without executing a new image).

Linux (quit-static): As above, but the child instead exec()s a statically linked program
that immediately calls exit().

Linux (quit-dynamic): As above, but the child binary is dynamically linked.

Linux (ocaml): As above, but the child binary is a Caml virtual machine, executing a
bytecode file that immediately quits.

Linux (java): As above, but the child binary is a Java virtual machine.
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Activity Time (%)

Creation Creating Runtime structures 9.3
Creating Core housekeeping structures 10.7
Linking of minimal environment 27.3
Dynamic linking of Caml/Rcane environment 30.6

Destruction Revocation of services 16.6
Releasing Runtime structures 0.8
Releasing Core housekeeping structures 4.7

Table 7.5: Breakdown of time spent creating/destroying a session

In each case, the figure in Table 7.4 represents the total time between successive creations in
many thousands of ongoing tests. In particular, the test for Rcane was repeated one million
times with no increase in the memory usage of the Rcane domain.

The session under test in Rcane performs very little work itself, but the environment in
which it runs is dynamically linked together at session creation time; a full Caml standard
library is available, along with a full set of services for accessing the Session interface3 that
provides the main interface between the system and client sessions.

It can be seen from Table 7.4 that Rcane compares well to the dynamically-linked binary
under Linux, particularly since in the current implementation of Rcane, all layers apart from
the Runtime are run as interpreted Caml bytecode.

The overhead of creating and destroying a session in Rcane is also substantially lower than
the cost of running a separate Caml (or Java) virtual machine for each client, or creating a
separate Nemesis process.

A breakdown of the time consumed in creating and destroying a session is given in Table 7.5.
This process is described in more detail in Section 6.8.

7.6 Network Performance

Without access to the network, an Rcane node is something of a white elephant; the CPU
and memory resources are likely to be available more conveniently and more cheaply on the
end-user’s own node. It is the combination of these flexible programmable resources with
the location within the network or close to other resources that enables the benefits of a
programmable network to be realised. In particular, similarly to the need for timely access to
CPU resources recognised in Section 7.2, timely access to the network is required to permit
users to gain the latency benefits from code mobility, or to process streams of multimedia
data.

Therefore, this section examines the network performance of the Rcane system, in terms of
the quality of service guarantees that it provides to clients executing on the system.

3As partially described in Figure 5.2
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7.6.1 Network Transmission

Figure 7.9 shows a trace of network output from three sessions, each attempting to transmit
continuously.

• Session D has no guaranteed bandwidth.

• Session E has a transmission scheduling period of 6ms, during which it receives 2ms
worth of link bandwidth. This 33% share equates to 33Mb/s on the 100Mb/s link used
for this experiment.

• Session F has a 6ms transmission scheduling period, and a dynamically changing guar-
antee (see below).

Session F starts with a guarantee of 25%. After about 12s, it requests 45%, thus reducing
the best-effort bandwidth received by D. After another 2s, it requests 65%. Now the link is
saturated and there is no best-effort transmission time available for D. After a further 2s it
returns to 25%, allowing D to begin transmitting again. It can be seen from the trace that
the desired resource isolation is achieved.

The apparent noisiness of the traces shown for the sessions with guaranteed resources is
explained by Figure 7.10, in which a 1 second period from the same experiment is shown
magnified. Sessions E and F are both seen to be oscillating around the actual value that they
had been guaranteed. This is due to the quantisation effects caused by the use of large (1500
byte) packets and small transmission periods.

The network transmission guarantee given to session E, 33Mb/s guaranteed over a 6ms period,
is equivalent to 16.66̇ packets per scheduling period. Since it is not possible to preempt access
to the network whilst a packet is in the process of being transmitted, sessions alternately
overrun their guarantee in one period, and then receive correspondingly less in the following
period, such that when the traces are averaged over two or more periods, the oscillation
becomes insignificant. In the case of session E, it manages to transmit either 16 or 17 packets
in each period.

This effect could be reduced through the use of a networking technology that uses a much
smaller maximum packet/cell size. For example, ATM uses fixed-sized cells of 48 bytes (plus
5 bytes of header information), which could therefore allow scheduling decisions to be made
on a finer granularity.

7.6.2 Network Reception

On a shared, unscheduled medium such as Ethernet it is not straightforward to provide
guarantees on the number of packets received at a node for a particular client. However, the
level of guaranteed buffering and CPU time that a particular client receives will affect the
amount of incoming data on a network stream that actually reaches the client. To demonstrate
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Figure 7.9: Network transmission rates
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Figure 7.10: Network transmission rates (magnified view)
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this, the bandwidth of data that could be processed by a session running on an Rcane node
was measured.

A session on a neighbouring node (belonging to the same principal, and bearing the same
session ID) transmitted approximately 97Mb/s across the intermediate link. A CPU bound
session with a 40% guarantee and a 10ms period is also running on the receiving node. The
buffer space reserved by the receiving session was varied between 1.5KB and 88KB; it was
guaranteed 10% of the CPU, with a scheduling period varying between 1ms and 20ms. More
details of the experimental setup, including the method used to launch the various sessions,
are given in Section 8.2.3. 10% of the CPU had been observed to be more than sufficient to
process the entire incoming data stream on an otherwise unloaded node.
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Figure 7.11: Network receive bandwidth as a function of CPU scheduling period and buffering

Figure 7.11 shows how the level of buffering and CPU scheduling period affect the amount of
data that can be processed. It can be seen that when the session runs with a short scheduling
period, it is scheduled sufficiently frequently to process all the incoming data even when its
buffering is relatively low. Similarly, when the session has large amounts of buffering, it is
able to process all the data even if its scheduling period is long.

However, the CPU-bound session has a guaranteed slice of 4ms every 10ms; as the receiving
session’s scheduling period increases, it finds itself interrupted for longer periods of time, and
thus for modest levels of buffering the sustained receive bandwidth falls – the receiving session
loses access to the CPU for long enough stretches of time that its buffers are filled up, resulting
in incoming packets being dropped in the network device driver. As the receiving session’s
period increases significantly beyond the 4ms slice that is being received by the CPU-bound
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session, no further reduction in processed bandwidth occurs.

It may also be seen that at very low levels of buffering, the amount of data that can be
processed drops off rapidly due to the inherent latency in the Nemesis I/O channels between
the network device driver and Rcane.

The ability to make guarantees to clients about the level of resources reserved for them is
essential to allow clients to make tradeoffs (such as a longer scheduling period4 but a larger
amount of buffering) so that they may meet their deadlines with maximum economy.

7.7 Summary

This chapter has presented an experimental evaluation of the key features of the Rcane

architecture in terms of performance and quality of service. The evaluation was structured
into five main sections.

The scheduler was examined, and was shown to provide effective guarantees of processor
bandwidth to sessions running in Rcane. Such guarantees are vital to gain the latency
improvements associated with code mobility; they are also required for jitter-free processing
of streams of data within a network.

The Rcane inter-session service architecture was examined. Rcane services were shown
to be efficient, and comparable with some of the fastest current IPC primitives. The type-
based marshalling optimisations performed by Rcane were shown to provide substantial
improvements over a marshalling strategy that takes no account of type information. The
breakdown of a service invocation showed that a substantial portion of the overhead in a
service invocation is inherent in the Caml virtual machine used by this implementation. These
results demonstrated that Rcane’s services provide an effective lightweight communication
mechanism between otherwise isolated sessions.

Such isolation was seen to be effective at ensuring sessions received their CPU guarantess
rather than being interrupted by garbage collection activity due to other sessions; the ap-
proach taken by Rcane of providing multiple independent heaps provided good guarantees
even in the presence of heavy garbage collection activity caused by other sessions’ pathological
use of memory.

Rcane’s sessions were shown to be a lightweight alternative to processes in a general-purpose
operating system; in particular, creating and destroying an Rcane session was seen to be
substantially faster than instantiating and destroying a full virtual machine for each client.
Such a property is likely to be required of a node in a programmable network, as clients
may wish to cancel their reservations when not needed, or transfer their reservations around
the network. When running untrusted code, and in situations in which users’ sessions may
be terminated due to lack of resources, Rcane must be capable of correctly handling ab-
normal termination situations without error. The different abnormal cases were considered

4Since a shorter scheduling period requires more frequent reschedules and hence more scheduler overhead,
it would be likely that an active node would charge more for a reduced scheduling period.
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experimentally; in each case the correct behaviour was observed.

Timely access to the network is essential if end-users are to make effective use of a pro-
grammable network platform such as Rcane. Rcane was seen to provide effective resource
guarantees for both network transmission (bandwidth) and network reception (buffering).
The ability of a session to trade off its CPU scheduling requirements against its network
buffering requirements was demonstrated.

The experimental results presented in this chapter have shown that at a system level, Rcane

provides the resource isolation and guarantees required for an effective programmable network
platform. The next chapter investigates the use of Rcane as an active network platform.
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Chapter 8

RCANE as an Active Network
Platform

The previous two chapters presented an implementation of Rcane and evaluated key aspects
of the system. It was demonstrated that Rcane provides a platform with good resource
isolation and guarantees. In order to properly act as a programmable network node, Rcane

must be be sufficiently flexible to accommodate the multiple different styles of programming
that active networks, open signalling and other programmable network applications require.

This chapter examines the use of Rcane as the basis for an Active Network node, with
support for multiple different execution environments:

• The PLANet environment;

• The ANTS environment;

• Active Reliable Multicast.

8.1 Active Networks

In an active network, some or all of the nodes in the network may have their functionality
programmatically extended by end-users of the network. The environment in which such
user-supplied code may execute is known as an Execution Environment (EE). The EE defines
the language or languages in which the code should be written, and the services that are
available to clients of the EE. It has been suggested that IP itself constitutes a simple EE,
using a language with one principal (implicit) service, route-and-forward-packet(), and a
collection of less commonly used services (ICMP messages).

In earlier active network research projects, each node has generally supported only a single
EE. Two research efforts are underway to make it more straightforward to use multiple EEs
on a single node:
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• The Active Network Backbone (ABone) [ABone] permits multiple EEs to run on a
single Unix node as separate processes. The Active Network Daemon [SRI99] receives
packets in the Active Network Encapsulation Protocol (ANEP) [Alexander97a] and
demultiplexes the packets to the relevant EEs.

• The NodeOS [Peterson00a] aims to provide a low-level operating-system style interface
suitable for implementing active network EEs.

In both of these efforts, the main resource principal is the EE – an EE is a program that
controls resources on behalf of multiple end-users of the network. Whilst this model may
facilitate the straightforward development of an EE, it makes it difficult for end-users to ac-
curately control their own resources, particularly if they are interacting with multiple different
EEs simultaneously.

The approach taken by Rcane is that the session is the resource principal, and that EEs
should effectively be regarded as library code1 that a session may instantiate to provide the
desired environment. Thus a client with simple needs may interact directly with the raw
interfaces provided by Rcane, whereas a client with more complex needs may instantiate one
or more different EEs to provide a suitable environment services. In this way, the client has
full control over its resources, and can allocate them to its tasks as it wishes, rather than
being forced into a particular strategy provided by the EE.

A further advantage of this approach is that EE writers do not need to take resource manage-
ment specific issues into account – instead, they simply provide hooks through to Rcane’s
resource management, and leave the details to Rcane.

It should be noted that there is nothing to prevent an end-user or a service provider from
creating an Rcane session that acts as a traditional EE supplying active network services to
other end-users; in this situation, the EE could still make use of Rcane’s resource management
facilities to help apportion resources between the different users of the EE. However, some
features of Rcane – such as the heap isolation – are not applicable when isolating multiple
activities within a single session; furthermore, the users of such an EE would then be forced
to follow the resource allocation and programmability features of the EE.

The next two sections describe the implementation of two active network EEs over Rcane –
PLANet and ANTS. These were chosen for several reasons:

• They are currently the two most popular EEs in use in the Active Networking commu-
nity.

• They represent very different computation models: PLANet supports programs writ-
ten in an extremely restricted language and carried with each packet, whereas ANTS
supports demand-loaded protocol code in a general-purpose language.

• They are both complex EEs requiring a high level of flexibility in their underlying
platform.

1The view that an EE is effectively a library available to applications is also finding favour in discus-
sions [Peterson00b] regarding the NodeOS project.
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In each case, an overview of the EE is given, followed by a discussion of the suitability of
Rcane as a platform for supporting that EE.

8.2 PLANet

8.2.1 Overview of PLANet

PLANet [Hicks99c] is an EE that supports the execution of programs written in the Packet
Language for Active Networks (PLAN) [Hicks98]. PLAN is functional language reminiscent
of ML, but with very restricted functionality – in particular, unbounded recursion and looping
are forbidden. PLAN programs construct complex behaviour by invoking services – routines
written in a less restricted language, which have full access to the resources on the node. Such
services are privileged code, and hence cannot generally be loaded by untrusted users.

A fundamental service provided as a primitive by PLAN is OnRemote() – this causes a remote
evaluation of a PLAN function on a different node. Such an evaluation is implemented by
sending a PLAN packet to the remote node. The body of the packet contains any PLAN code
required for the evaluation – the function may either be specified by a name to be looked
up at the remote host, or may be sent with the packet – along with any parameters that
the function needs. Some of these parameters may be for control purposes, and others may
represent data being transferred by the packet.

Other higher-level services provided by a typical PLANet node include:

• Fragmentation and reassembly of packets;

• Reliable delivery;

• Compression;

• Checksumming.

These services all make use of the concept of a chunk [Moore99b] – a first-class PLAN object
representing a delayed function call. When a remote evaluation is made, the chunk is mar-
shalled into a packet and sent to the remote node. Such marshalling may also be performed
by services that wish to provide layered protocols.

For example, suppose we wish to execute the test() function on a remote node, passing a
parameter that is larger than the MTU of the intervening links. The chunk representing this
remote evaluation would be specified in PLAN as |test(bigArgument)| – the vertical bars
indicate that this is a chunk, rather than a direct function call2.

Attempting to call OnRemote() with this chunk to evaluate the test function on the remote
node would result in the raising of an MTUExceeded exception. Consequently the packet must

2In the latest versions of PLAN this would actually be written as |test|(bigArgument) due to syntax
changes.
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be fragmented before being sent, and then reassembled at the remote node. The fragmentation
process is shown graphically in Figure 8.1 and described below.

fragment(|test("AVeryLongParam")|)

010110100 101100100 111001010

010110100101100100111001010

|reassemble(key,
"010110100")|

|reassemble(key,
"101100100")|

|reassemble(key,
"111001010")|

|test("AVeryLongParam")|

010110100 101100100 111001010

010110100101100100111001010

|reassemble(key,
"010110100")|

|reassemble(key,
"101100100")|

|reassemble(key,
"111001010")|

split

recombine

fragment()

reassemble()

marshal

unmarshal

test()
 Host A  Host B 

PLAN Chunk PLAN Service PLAN Invocation

OnRemote()

Figure 8.1: Fragmentation in PLAN – an example of the use of chunks

The fragment() service takes a chunk, marshals it into a buffer, and splits this buffer into
fragments smaller than the MTU, taking into account the overhead introduced by fragmen-
tation. Each of these fragments is wrapped into a chunk that, when evaluated, passes the
fragment as a parameter to an invocation of the reassemble() service; an additional param-
eter is a key distinguishing between fragments from different packets generated by a single
client. The fragment() service returns these smaller chunks to the program, which may now
call OnRemote() without fear of exceeding the MTU limit. When these chunks are evaluated
at the far end, each call to reassemble() stores a fragment of the original chunk in a table
keyed on packet ID – once all the original fragments have been received, they can be stitched
together to form a larger buffer. This buffer is then unmarshalled to recreate the original
chunk, which is in turn evaluated to cause the desired invocation of test().

Other services may be invoked to transform chunks in a similar way, so as to provide ar-
bitrary encapsulation and layering of protocols. For example, an invocation of the chunk
fragment(checksum(|test(arg)|)) returns a list of fragments that, when reassembled into
a single chunk, may be error-checked before being evaluated. Conversely, the invocation
checksum(fragment(|test(arg)|)) returns a list of fragments that will each be individu-
ally error-checked at the remote node before being reassmbled into the original chunk.
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PLANet contains a very simple form of resource control – when a packet is sent into the
network, it is associated with a resource bound value (RB). Each time a packet is routed by
a PLANet router, its RB value is decremented. The RB is analagous to a hop-count or time-
to-live field in an IP packet, with two extensions: a unit of RB is consumed on any recursive
invocation; and when creating a new packet, the “parent” packet may choose how much of
its RB to transfer to the new packet. The concept of the RB ensures that no PLAN packet
can consume indefinite amounts of bandwidth or CPU time without connivance from PLAN
services, which are trusted to manipulate packets’ RB values only in safe ways. It does not,
however, give any guarantee of timely access to resources, nor place concrete limits on the
resources that can be consumed.

8.2.2 RCANE Implementation of PLANet

Since several of the low-level networking interfaces (but not implementations) that Rcane

presents to clients were originally derived from interfaces used by PLANet, integrating PLANet
with Rcane was relatively straightforward. PLANet has been the primary EE running over
Rcane for large portions of the development, and has been used in experiments as a vehicle
for transferring code to the Rcane box and for performing dumps of instrumentation traces,
ARP-style host resolution, and routing services.

The lower-levels of the PLANet networking code were removed, since similar functionality –
with the addition of resource isolation properties – is provided by Rcane. The main PLAN
packet handler routine is now passed as a channel handler to the Rcane networking interfaces.
Several portions of PLAN had to be reorganised to take into account the fact that functions
previously handled by the PLAN EE itself were now being provided by Rcane, in the System
session.

Since Rcane allows clients to reserve resources – in particular, heap memory for storing
PLAN function definitions – clients may specify a particular PLAN function to be attached
directly to the handler for a particular Rcane flow or subflow. This provides the convenience
and safety of PLAN programs but without the additional per-packet overhead of repeatedly
transferring and unmarshalling the required PLAN code or performing a symbol table lookup
to find a specified function. Such an extension is impractical without an environment such
as Rcane in which client code and data resources can be associated with particular network
connections.

PLANet running over Rcane interacts with unmodified versions of PLANet running on Unix
boxes, demonstrating that it is not necessary for all nodes in a network to be running an
implementation of Rcane in order to benefit from Rcane’s resource control models.

The prototype implementation of Rcane uses PLANet to provide its basic network services,
such as routing table updates, neighbour discovery, address resolution (analogous to ARP)
and session creation.
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Figure 8.2: Experimental topology for network receive bandwidth testing

8.2.3 Experimental use of PLANet

To illustrate the use of PLANet over Rcane, and its interaction with standard PLAN nodes,
Figure 8.2 shows the setup used by the network receive experiment described in Section 7.6.2.

Vixen and Barehands are Rcane nodes, and Saracen is a Linux node running a standard
PLAN daemon. All three machines are connected via switched Ethernet; separate PLANet
UDP virtual networks connect Saracen to each one of the Rcane nodes. A private 100Mb/s
Ethernet connects Vixen and Barehands, over which is run a PLANet Ethernet virtual net-
work.

A PLAN client running on Saracen connects to the PLAN daemon and sends a PLAN packet.
This packet is evaluated within the daemon, and proceeds to send remote invocation packets
to Vixen and Barehands. In each case, these packets create a session at the receiving node
for the client. Each packet also contains the contents of a bytecode module to be loaded
into the newly created session. The module loaded at Barehands continuously sends packets
across the 100MB/s private link between Vixen and Saracen. The module loaded at Vixen
requests guarantees for CPU time and network access, and then processes incoming packets.
It monitors how its processing rate varies when it requests different levels of network buffering
and CPU scheduling period.

An unrelated session is also running on Vixen; it is started at node initialisation, and repre-
sents contention for the CPU from other clients of the node. See Section 7.6.2 for details of
the results of this experiment.
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8.3 ANTS

8.3.1 Overview of ANTS

The Active Node Transfer System (ANTS) [Wetherall98] uses a demand-loaded approach to
load Java code on to a network node. Each packet (or capsule) contains a type identifier
that specifies the Java class that should be used to process the payload of the packet. The
type identifier is typically the MD5 [Rivest92] checksum of the Java class file – since the
behaviour of the processing algorithm is defined by the code, which is in turn used to generate
the checksum, it is impossible to register a malicious protocol that will receive packets not
intended for it3.

When a packet is received at a node and its type identifier has been unmarshalled, ANTS
looks in a code cache to obtain the relevant Java class; if this class is found, it is used to
process the packet, otherwise a request is sent to the upstream node to ask for the relevant
Java code. Since ANTS has just received the packet from this upstream node, it is very
likely that the upstream node has a copy of the relevant code in its code cache. In this case
the upstream node forwards a copy of the code for the packet and any related packet types
belonging to its Protocol (an ANTS Protocol represents a collection of related packet types
that may be used by a particular communications protocol), and the downstream ANTS node
loads this code and uses the appropriate class to process the packet. In the event that the
upstream node also has no copy of the appropriate class, the packet is dropped.

This model of code propagation allows protocol definitions to be “pulled” through the network
behind the first packet of a particular protocol. Thus, over time, those nodes being used by
flows from a given protocol will tend to have the code for that protocol in their code cache.

8.3.2 RCANE implementation of ANTS

Since ANTS is written in Java, and the current implementation of Rcane has support only
for OCaml bytecode, a straight port of ANTS to Rcane was not possible. Instead, a simple
version of ANTS was written in Caml to run over the Rcane virtual network interfaces.

The structure of ANTS over Rcane is shown in Figure 8.3. Each OCaml module that
implements a protocol defines a function to process packets from that protocol. The code
table provides a mapping from a module digest (the MD5 checksum of a OCaml bytecode
module) to the protocol processing function implemented by that module.

The Ants.demux() function acts as the handler for network packets for a particular client. A
session creates an ANTS environment, and passes a reference to Ants.demux() to the Rcane

networking layer. When Rcane passes a packet to Ants.demux(), the type identifier of the
protocol type is retrieved from the packet, and the appropriate processing function is called.

3Theoretically, if one could generate a malicious protocol whose Java bytecodes checksummed to the same
MD5 digest as the protocol being attacked, one could subvert the security of the ANTS model – however, this
is regarded as an intractable problem.
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Figure 8.3: The structure of the ANTS implementation on RCANE

If no module has been registered for the specified protocol type:

1. ANTS asks Rcane whether a bytecode module with the appropriate digest has been
loaded on the node by a different session. If such a module is available, ANTS binds to
it, and registers its protocol processing function in the code table.

2. If the appropriate module is not found, the packet is added to a queue for that protocol
type and (if necessary) a code request packet is sent to the upstream node. This request
is itself an ANTS packet.

3. When a code reply packet containing the requested bytecode module is received from
the upstream node, ANTS calls into Rcane to link the bytecode module and bind it
into the session in which ANTS is running. The bytecode module is initialised, and its
processing function is registered in the code table.

Although each session will have its own code table and instantiations of the protocol modules,
the actual bytecode for each module is shared by all sessions, coordinated by the bytecode
librarian in the System session.

The protocol processing modules may pass a partially processed packet back into the ANTS
demultiplexer, thus allowing protocol layering in a natural way. As an example, the problem

151



of fragmentation, which was presented in Section 8.2.1, is now considered for the Rcane

implementation of ANTS.

Figure 8.4 shows how a custom protocol could be layered over Frag, a fragmentation and
reassembly protocol when running on Rcane. When the first packet of the stream is sent out
the following steps occur, assuming neither Frag nor Custom have been used recently at the
destination:

Loader

Frag

Custom

 Host A  Host B 

Demux Demux

FragApplication

Custom

Librarian
(System
Session)

Loader
Librarian
(System
Session)

Protocols not initially
present on Host B
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Figure 8.4: Fragmentation in ANTS

1. The application calls Custom, which calls Frag, which fragments the packet.

2. Frag sends the fragments to B.

3. Demux on the destination looks up Frag and fails to find it, and hence calls the Loader.

4. Loader on B sends a request packet for Frag.

5. Loader on A queries the code table and/or the librarian and sends a reply packet
containing bytecode for Frag.

6. Loader on B loads Frag.

7. Demux passes the fragments to Frag.

8. Frag reassembles the fragments into the original packet and passes it back to Demux.

Steps 3–6 are repeated in order to load Custom.

9. Demux passes the original packet to Custom.
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Future packets from the same stream reaching Host B would be directed directly to Frag,
reassembled, and passed to Custom with no further network traffic.

This approach differs from the approach taken by PLANet in that users of a PLAN network
are restricted to the services, such as fragmentation, installed by the node managers; therefore
service innovations may occur over a longer time scale than users would like. With ANTS,
end users can easily upgrade the services that they use within the network by simply sending
packets bearing the module digest of the new service implementation. However, current
versions of ANTS do not fully support untrusted code, due to a lack of resource control over
user-supplied protocols [Wetherall99a].

These differences are largely removed when running over Rcane: both the ANTS and PLANet
environments allow users to load their own code, although the out-of-band (PLANet) versus
demand-loaded (ANTS) distinction still exists. The resource isolation provided by Rcane

means that each user has a great deal of flexibility to customise their own environment, but
cannot affect other users either in terms of resource starvation or by subversion of the EE by,
for example, replacing a commonly used service in the PLAN symbol table.

8.4 Active Reliable Multicast

Much previous work has been done on implementing effective reliable multicast. Standard IP
multicast [Deering89] provides IP delivery semantics to multiple recipients – i.e. delivery is
unreliable, and there is no guarantee that the sender will be notified if the packet does not
reach the destination. This lack of reliability has resulted in multicast mainly being used for
video and audio applications, in which the loss of data merely degrades the subjective value
of the application to the human user rather than causing inconsistencies between the various
nodes in a distributed system. In contrast, reliable multicast aims to provide reliability
on top of the multicast delivery, allowing the use of multicast for applications, such as a
shared whiteboard, that are transferring data other than media streams. Additionally, reliable
multicast may provide congestion control to reduce the load placed on the network by a
particular flow during periods of overload, and causal delivery to prevent out-of-order delivery
of data.

Many different reliable multicast solutions have been proposed, including SRM [Floyd97];
indeed, the IETF has felt it necessary to issue guidelines [Mankin98] to those developing new
reliable multicast transports, giving criteria that all new proposals should meet and suggesting
that:

Due to the nature of the technical issues, a single commonly accepted technical
solution that solves all the demands for reliable multicast is likely to be infeasible.

Protocols such as multicast have traditionally been implemented in network routers. In a field
such as reliable multicast, however, where there is no clear agreement over the protocols to
deploy, there is a risk that either different vendors will deploy incompatible solutions, or that
many end-users will find that the deployed solutions are unsuitable for their requirements.
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Consequently this appears to be an ideal domain for active networks – by providing a pro-
grammable interface on a network router, the vendors allow those implementing reliable
multicast to deploy protocols and algorithms that suit their particular communication re-
quirements, rather than restricting end-users to vendor-supplied protocols.

An example of such a protocol is the Active Reliable Multicast protocol (ARM) [Lehman98].
ARM was originally developed to run over ANTS, and to provide reliable one-to-many multi-
cast semantics with no specific multicast support from the intervening network – the network
needs only to provide programmability on a subset of its nodes.

Nodes running ARM maintain a cache of recent data. When a downstream ARM node notices
that a packet has been dropped, it sends a NACK back up the multicast tree. When the next
upstream ARM node receives the NACK, it will check its data cache for the requested packet;
if the packet is present, it will be forwarded to the downstream node. If the packet is not
present, the upstream node notes the fact that the downstream node needs a copy of the
packet, and forwards the NACK to the next upstream node. NACKs for the same packet
from multiple downstream nodes are coalesced, resulting in only a single NACK being passed
to the next upstream node if the packet is not found in the cache.

When retransmissions are received, they are only forwarded to those nodes that have expressed
an interest in that packet’s retransmission, i.e. those nodes that have previously sent a NACK.

Thus ARM aims to reduce the bandwidth requirement for a reliable multicast stream in two
ways:

• Upstream bandwidth is reduced since NACKs are coalesced. This helps prevent the
phenomenon of NACK implosion, in which a packet lost at an early stage in the multicast
tree causes a NACK from many (or all) receivers to be sent to the original sender.

• Downstream bandwidth is reduced since retransmissions are selectively targeted to the
specific branches of the multicast tree that failed to receive the packet previously, and
retransmissions from ARM caches in the network need not traverse the whole path from
the sender to the receiver.

Furthermore, the latency for retransmissions is reduced; with no support in the network
for caching and retransmissions, a NACK must travel all the way from the receiver to the
sender, and the retransmission must travel from the sender to the receiver. This results
in a minimum latency of one round-trip time to recover from a lost packet. Alternatively,
the receivers themselves must coordinate to supply retransmissions to one another [Floyd97].
This has the drawback that multiple receivers may send the repair packet simultaneously;
thus in order to prevent flooding the network with repair packets, each such receiver must
wait a random amount of time before sending the repair, and aborting if it detects a repair
from another receiver. With ARM caching in the network, the minimum recovery latency
is a round-trip time from the receiver to the next upstream ARM node, rather than to the
sender (as when the sender is responsible for repair packets), or a round-trip time to another
receiver plus a random element (as when receivers are responsible for repair packets).

154



ARM nodes would be most valuably located near the ends of links that are expected to suffer
loss; in this way the loss may be noticed and repaired at the earliest possible time, and the
retransmission – which represents wasted use of the network links – will have the least distance
to travel.

In [Lehman98], an ARM network is shown to have a recovery latency4 of 0.2 RTT, com-
pared with SRM [Floyd97], which approaches 1.4 RTT with 100 nodes in a multicast group.
Furthermore, the majority of ARM’s benefit, resulting in a recovery latency of 0.4 RTT,
is achieved when only 30% of the ARM routers cached fresh packets (as opposed to repair
packets, which were cached by all ARM routers). Also shown was that ARM could control
NACK implosion to the same level as SRM when only “strategic” nodes – those with more
than two outgoing links in the multicast tree – were running ARM, with other nodes running
a standard multicast router; such strategic nodes typically constituted less than half the set
of possible routers.

8.4.1 ARM on RCANE

The reduction in latency and repair bandwidth achieved by ARM is at the expense of increased
memory (and, to a much lesser extent, CPU consumption) on the ARM nodes, since they need
to cache data for later retransmission. In a programmable network without reservations, the
deployment of a protocol such as ARM could be expected to lead to excessively large caches
being maintained. Since the utility function of the cache is likely to monotonically increase
with the size of the cache, there is little incentive for users to limit their usage of memory.

A possible solution would be to put a fixed limit on the amount of ARM caching at a particular
node; however, this would have two drawbacks:

• It would not directly provide a way to favour important traffic, or traffic that would
especially benefit from caching.

• Since the network is programmable, it would not prevent end-users from running their
own ARM-like protocol that did not respect such limits.

Alternatively, this problem can be solved through the use of a programmable network platform
such as Rcane, which is capable of providing, and accounting for, robust resource guarantees
to clients.

The implementation of ARM described in [Lehman98] maintains a single ARM cache for all
clients; under Rcane, a separate session would be created for each multicast stream, or group
of related streams, at the nodes where the stream’s users wished to employ active processing.
ARM is treated as a shared library, which each client session may instantiate to perform
active multicast processing.

4The recovery latency is defined as the time from a receiver detecting a packet loss to when it receives the
first repair for that loss.
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An implementation of ARM has been developed to run over Rcane. The low-memory call-
backs described in Section 6.4.3 are used to inform ARM that it is approaching the limit of its
reserved heap size. At this point older packets, along with older structures describing NACKs
received and pending retransmissions, are recycled to reduce garbage collection overheads or
released to be reused as a different type of object. ARM records the numbers of NACKs
received, and the number of times that the packet requested by a NACK was not found in
the cache. At intervals it checks the ratio of these, and if the ratio is too high, it deduces
that the amount of caching it is using is insufficient to effectively deal with the loss on the
downstream links, and requests a higher memory reservation from Rcane (assuming that the
client is willing to pay for an additional memory reservation).
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Figure 8.5: Experimental topology for ARM testing

Figure 8.5 shows the experimental setup used to demonstrate the use of ARM over Rcane.
Rocket, Vixen and Barehands are each running Rcane and are connected by 100Mb/s Eth-
ernet. Saracen is running a PLAN daemon and is used to control the Rcane machines. The
link between Vixen and Rocket is assumed to be non-lossy. The link between Vixen and
Barehands is artificially made very lossy, by dropping packets at Barehands with a given
probability. Sessions on all three nodes are started by a client who wishes to transfer an
ARM flow from upstream of Rocket to downstream of Barehands. Thus Rocket is acting as
an ARM sender, Vixen as an ARM router and Barehands as an ARM receiver5. Initially, 25%
of packets from Vixen to Barehands are dropped; after 90 seconds 50% are dropped. Vixen
is configured to attempt to increase its reserved heap size if it discovers that it is servicing
less than 90% of the NACKs from its cache over a 1 second period.

Figure 8.6 shows the memory usage of the ARM router on Vixen, along with the total number
of packets sent, the number of NACKs received from Barehands and the number of cache

5Clearly in a real situation Rocket would be receiving from an upstream node, and Barehands would be
sending to a set of downstream nodes; this was not practical due to lack of suitable networking infrastructure.
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Figure 8.6: Memory usage, packet counts and cache hits for an ARM stream

“hits” (NACKs that could be served from the cache). It can be seen that the heap consumed
by ARM quickly grows to approximately 180kB; at this level, Vixen is able to service over
90% of the NACKs that it receives from Vixen directly from its cache. After 90 seconds
the loss on the link from Vixen to Barehands doubles to 50%. At this point, the number
of NACKs received from Barehands increases significantly, and the percentage of NACKs
serviced from the cache falls noticeably below 90%. Thus ARM increases its reserved heap
size in an attempt to reduce the number of misses; the heap size grows to approximately
370kB over the course of 40 seconds, at which point the level of NACK hits reaches the target
of 90%, and the heap size stabilises.

This demonstrates the ability of Rcane to constrain the amount of memory used by different
clients on a node – an essential property of any practical programmable network platform.

8.5 Summary

This chapter has illustrated how Rcane provides support for multiple different active network
and mobile code solutions. Two different active network models – PLANet, in which code is
carried with each packet, and ANTS, in which code is loaded out-of-band – were implemented
over Rcane.

Although PLANet has limited support for preventing packets in an active network from con-
suming unbounded amounts of bandwidth or CPU time, neither ANTS nor PLANet support
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the allocation of resources to clients, nor guarantee timely access to those resources.

When running over Rcane, both of these environments are treated as libraries available for
use by applications; it thus suffices for access (or hooks) to Rcane’s resource control interfaces
to be provided in the environment.

The problem of reliable multicast was considered. Due to the difficulty of defining a single
reliable multicast protocol that meets all users’ requirements, this appeared to be an area
in which active networking could be a practical solution; the benefits experienced through
the use of ARM, an Active Reliable Multicast protocol, were discussed. However, without
resource control between clients, such solutions could lead to excessive resource usage on
nodes within the network. Rcane was seen to provide an effective platform for controlling
such resources.
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Chapter 9

Conclusions and Scope for Future
Work

This dissertation has examined the requirement for resource control in open programmable
networks. An architecture for supporting such resource control was presented, named Rcane

– the Resource Controlled Active Node Environment. A sample implementation was examined
and evaluated. This chapter summarises the work and its conclusions and makes suggestions
for further areas of study.

9.1 Summary

Chapter 2 described the background to this research. It began by looking at “passive” end-
to-end delivery networks, and their evolution into programmable networks, in which end-
users may customise the processing in some or all of the nodes in a network. A review of
the rationale for two of the main forms of programmable networks – active networks and
open signalling architectures – was presented, followed by a taxonomy of different levels of
programmability and a review of platforms currently used for programmable networks. In
particular, the NodeOS – an attempt to define a common standard for programmable nodes
in the same way that IP provides a common standard for datagram routers – was discussed.
Related work in safe languages, resource control and extensibility was surveyed.

Chapter 3 examined the requirement for resource control within programmable networks.
The high variance in traffic seen in current wide-area networks suggested that even in passive
networks, the overheads of resource reservations may turn out to be cheaper than the costs
of overprovisioning best-effort networks.

Open programmable networks were defined as networks in which some subset of the nodes
provided programmable facilities accessible to all users of the network. The fact that users of
programmable networks have much more flexibility, and that their resource usage cannot be
conveniently limited through the use of bandwidth throttling, suggested that the requirement
for resource usage was likely to be greater in programmable networks than in traditional
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passive networks.

Two different approaches to resource control, through proof properties and scheduling, were
considered. The resources that required control, such as CPU cycles, network bandwidth and
various types of memory, were discussed, along with possible approaches to controlling each.

In Chapter 4, the Nemesis Operating System was discussed. The features that it provides to
facilitate resource control were examined.

The Rcane architecture was introduced in Chapter 5. The design principles underpinning
the architecture were presented:

• Untrusted clients should not be able to adversely affect the operation of the node, thus
the system should be partitioned into multiple layers of security.

• Resource consumption should be accountable to the entity causing it to occur, thus
computation activities should, where possible, be partitioned on a per-client basis rather
than through shared servers.

• Clients with guaranteed resources should not experience interference with those guar-
antees due to the actions of other clients.

The concept of a session was introduced as a means of accounting for resources consumed
by a remote client, and the abstractions used by the architecture to support scheduling and
accounting of various resources were presented. Each session can reserve one or more alloca-
tions of guaranteed CPU time, or VPs; a session’s activities may be multiplexed over its VPs
flexibly, according to its own priorities, through the use of threads and thread pools. Events
allow the deferral of computations to a specified later time. Channels were presented as an
abstraction of network streams; all processing associated with a channel is accounted to the
owning client, and scheduled accordingly. Rcane gives each session its own isolated heap to
prevent garbage collection crosstalk; to permit lightweight communication between sessions,
a form of thread-migrating IPC called a service was introduced. The possible approaches to
providing such services were examined in detail. A discussion of accounting and billing issues
followed, accompanied by the related topic of detecting and preventing DoS attacks.

Chapter 6 described a prototype implementation of Rcane. The system was implemented
over the Nemesis operating system and the Objective Caml bytecode interpreter. Nemesis
was chosen for its good resource isolation properties; OCaml was chosen as a simple and flex-
ible interpreter previously successfully used in active network research. Several deficiencies
in these two systems that had to be remedied were discussed. Key aspects of the implemen-
tation were then presented. A modified form of EDF is used by Rcane to support effective
guaranteed allocation of CPU time; Nemesis uses a similar form of scheduler to control net-
work transmission bandwidth. To support Rcane’s multiple heap architecture, the system
must keep track of which threads have access to a particular heap, and ensure that garbage
collection runs involve all appropriate threads. The implementation of inter-session services
was described, along with details of optimisations to improve parameter marshalling, and
mechanisms to handle abnormal termination.
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An evaluation of the resource control facilities offered by Rcane was undertaken in Chapter 7.
Rcane was shown to provide effective resource isolation between multiple non-cooperative
clients, and to provide lightweight mechanisms for communication and session creation. Reser-
vations of CPU and network output bandwidth were examined, and found to be respected;
garbage collection interference between different sessions was found to be significantly reduced,
compared to the situation in which multiple clients execute in the same garbage-collected
heap.

Finally, the application of Rcane to existing programmable network execution environ-
ments (EEs) was considered in Chapter 8. Two active network environments – PLAN and
ANTS – were ported to or rewritten for Rcane. An overview of each EE was presented,
together with details of their Rcane implementations. The problem of packet fragmentation
was presented for each EE to provide a comparison between the two approaches.

The advantages gained by running these EEs over Rcane were discussed. Neither EE previ-
ously had significant support for resource control; the use of Rcane as a platform means that
such resource control need not be provided by the EE, but can be delegated through the pro-
vision of access to Rcane’s interfaces. The Active Reliable Multicast protocol – designed to
reduce recovery latency and bandwidth consumption in reliable multicast streams – was also
implemented; the effectiveness of Rcane’s memory consumption control was demonstrated.

9.2 Future Work

This section considers open problems in the area of resource control in programmable networks
which could not be addressed in this dissertation due to lack of available time. Two main
areas are considered: issues affecting a single node, and the integration of a single Rcane

node into a larger programmable network.

9.2.1 Issues Affecting a Single Node

Several aspects of the Rcane architecture and prototype implementation with regard to
resource control on an individual node in a programmable network have put forward issues
that deserve further attention.

9.2.1.1 Persistent Storage

Rcane has not focused on providing access to persistent disk storage – although less transient
than independent capsules, the computations considered have either been relatively stateless
or sufficiently short-term not to require disk storage. However, it is envisaged1 that some
clients in a programmable network may have requirements for access to disk storage. An
OS such as Nemesis, which already has support for scheduled disk access with low levels of

1The NodeOS Draft Specification, for example, contains an API providing POSIX-like file access.
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inter-application crosstalk [Barham97], would provide a useful base for the development of
effective resource-controlled mechanisms for persistent storage support.

9.2.1.2 Virtual Memory

For simplicity, this dissertation has not considered the use of paged virtual memory. This
is not considered a great drawback, since an application that is paging to disc is likely to
experience sufficient latency that any benefits of executing within the network – closer to the
resources with which they wish to interact – are lost. However, as with persistent storage,
some end-users with high latencies on to the network coupled with requirements for large
amounts of state within the network may find it profitable to request an allocation of virtual
memory in addition to physical memory.

Given support for persistent storage mentioned in the previous chapter, it may prove to be
sufficient for such applications to manually “page” their important data structures in and out
of files. A possible improvement on this scheme would be to utilise the Nemesis self-paging
architecture [Hand99]. This would allow each session’s heap to be backed by a Stretch Driver
– an abstraction for controlling virtual memory. Each Stretch Driver would have a connection
to a disk with a given level of QoS, and a certain set of physical pages to populate with virtual
pages.

9.2.1.3 Inter-Session Services

The type-based optimisations for inter-session service argument copying described in Sec-
tion 6.7.3 are currently rather limited. Further work needs to be done to provide more
effective generation and sharing of marshalling routines. The mechanisms used by Nemesis’
IPC marshalling system should prove to be adaptable to this task.

Also an open problem is the development of further and richer mechanisms to support the
efficient aborting of services without compromising the state of servers.

9.2.1.4 Selection of Resource Levels

Calculating the level of resources that should be requested in an environment such as Rcane

is not straightforward. Techniques such as progress-based feedback may be used to measure
whether an application is satisfying the user’s requirements, and purchase additional resources
if not; alternatively task requirements, reservations and node resources may be specified in
some generalised resource units.

For example, the Eclipse [Bruno99] project measured processor bandwidth reservations in
terms of SPECint95 [SPEC95] units; for a given platform, these units could be calibrated
by running the standard SPECint95 benchmarks. The NodeOS [Calvert98] has proposed
logarithmic “standard RISC cycles” to serve a similar purpose.
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A further possibility would be to measure applications’ resources usage at run time to deter-
mine their actual resource requirements; such measurements could be used either to provide
feedback to applications, allowing them to adapt their reservations based on their past us-
age, or to enable Rcane to provide a higher degree of multiplexing but with “probabalistic
guarantees”, as described in [Barham98].

9.2.1.5 Integrated Scheduling

Currently Nemesis supports only a single scheduling domain (sdom) per domain. A scheduling
domain represents a guarantee from the CPU scheduler in the Nemesis kernel. Thus in order to
provide different CPU guarantees to client sessions, Rcane must request a single guarantee
with sufficiently low period and high slice to be able to meet its sessions’ guarantees, and
employ a user-level EDF VP scheduler above the kernel CPU scheduler, integrated with the
pool/thread scheduler.

Current research [Stratford00] is investigating the separation of the sdom abstraction from
the domain, and thereby allowing a single Nemesis domain to have multiple sdoms. Building
on this work to provide each Rcane VP with a separate sdom would simplify the structure
of Rcane and potentially reduce scheduling overheads.

9.2.2 Network Integration

The work presented in this dissertation has focused mainly on resource control at a single
node, without full consideration for bandwidth reservations on shared links, or global resource
policies. Such a network may be fully programmable, or mainly passive with programmable
nodes placed at strategic locations.

9.2.2.1 Bandwidth scheduling

The current implementation of network scheduling in Rcane is concerned only with the local
link bandwidth. To gain the full benefit from the resource reservations provided by Rcane,
the network scheduling would need to be integrated with end-to-end bandwidth reservations.
It would be necessary to provide the ability to reserve bandwidth and buffering for flows
on routers and switches (either programmable or passive) between the node and the remote
resources with which it was communicating.

9.2.2.2 Resource Transfer

More work is required to integrate Rcane’s resource reservations with global resource allo-
cation schemes. For example, it ought to be possible for a single session to transfer resources
very straightforwardly from one node to another. The resource bound used in Rcane virtual
network packets provides a very trivial form of such resource credit transfer; however, this
has not been fully integrated with the actual resource reservation mechanisms.
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9.2.2.3 Billing

The billing schemes proposed in Section 5.7 have not been implemented. Linking the ac-
counting information gathered by Rcane to some concrete form of billing will be vital for
the effective deployment of an open programmable network.

9.3 Conclusion

It is the thesis of this dissertation that resource control in active and programmable networks is
essential if the flexibility offered by such networks is to be made open and available to general
end-users of the network; and that such resource control can be practically accomplished.
To this end, arguments have been presented to support the case for resource reservations in
programmable networks. An architecture for providing such support has been exhibited, and
its implementation and evaluation have been examined. It is concluded that the dissertation
supports the thesis.
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Appendix A

An Outline Design for an Objective
Caml Verifier

In Chapter 6 the lack of bytecode verification for OCaml was discussed. This appendix
presents a brief outline of a design for a verifier for the OCaml virtual machine. The design
is not complete, and the verifier has not been implemented due to time constraints; however,
this design supports the proposition made in Section 6.2.7 that the lack of a verifier for OCaml
is not an insurmountable deficiency.

A.1 Introduction

In order to safely execute a bytecode module supplied by an untrusted remote client, it may
be necessary to verify that the bytecode respects certain invariants; in the case of OCaml
bytecode [Leroy97], such verification must check that the bytecode respects the Caml type
system.

Verification involves tracing all possible paths through a module and ensuring that at each
instruction, no type violation is committed. Such violations may be detected by showing the
possible occurrence of one of several conditions:

• Using a pointer in an arithmetic context.

• Dereferencing an integer.

• Dereferencing an abstract object.

• Returning a value of the incorrect type from a function call.

• Passing a value of the incorrect type to a function call.

• Storing a value of the incorrect type in a structure.
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• Modifying an immutable value.

These are all variations on the basic violation – i.e. using a value of one type in a context
that expects a different type. The design presented in this chapter is for a a verifier that can
identify such violations in OCaml byte code; since the verification is performed on bytecode
rather than on source code, it may be used to verify OCaml virtual machine code generated
from any source language, not just OCaml itself.

A.2 Concepts

In order to attempt to perform a violation of the type described in the previous section, the
program must obtain the value from somewhere. In the case of the OCaml virtual machine,
the set of addressable locations consists of:

• The accumulator – a single location that is used for most operations, including arith-
metic, dereferencing, and the return value from a function call. The type of the value
stored in the accumulator changes regularly at runtime.

• The stack – a per-thread set of values, used for temporary storage and parameter
passing. Entries may be pushed on to or popped off the top of the stack at runtime.
The type associated with a particular stack location may not altered without popping
that location from the top of the stack and pushing a value of a different type.

• The environment – a per-closure structure that is initialised when the closure is created.
The types of the fields in the environment are constant for a particular closure.

• The global vector – any values accessible through interfaces imported by the current
module. The types of the contents of the global vector are constant for a particular
module

Associated with each bytecode location is a tuple (A,S, E ,G) consisting of the types of ac-
cumulator, stack, environment and global vector respectively. A simple fragment of Caml is
given in Figure A.1; Figure A.2 shows how this tuple might be represented by the verifier.

The types of the stack and accumulator values are generally individual to each instruction;
however, in the case of an instruction that does not modify the type of the accumulator
nor perform any stack modifications – such as the ADD instructions in Figure A.2, the same
stack/accumulator record may be shared with the next instruction. All stack/accumulator
records for a given function share an environment record – in this case, the functions are simple
enough that they have no environment, so there can be no valid access to the environment.
All environment records in a module share the same global vector record.

Three different kinds of type may be stored in these tuples:

• unqualified types such as int, int ref, float, and int → string.
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Function to increment its argument
let inc x = x + 1

Function to increment its
argument’s referent
let incref x = x := !x + 1

(a) Fragment of Caml code

PC Instruction Meaning

0 ACC0 Acc ← Stack [0]
1 ADD 1 Acc ← Acc +1
3 RETURN 1 Return

5 ACC0 Acc ← Stack [0]
6 GETFIELD0 Acc ← Acc[0]
7 ADD 1 Acc ← Acc +1
9 PUSHACC1 Push Acc; Acc ← Stack [1]
10 SETFIELD0 Acc[0]← Stack [0]; Pop
11 RETURN 1 Return

(b) Compiled bytecode

Figure A.1: Sample Caml code fragment and its compilation in OCaml bytecode

int

int

<empty>

int

<empty> <empty>

int ref

int ref

<empty>

int ref

int

int ref

int ref

int

int ref

int ref

int ref

Global Vector

1ACC 0 ADD RETURN 1 ACC 0
GET
FIELD
0

ADD 11 PUSH
ACC 1

SET
FIELD
1

RETURN

Stack

Accumulator

Environment

Figure A.2: Verifier state for simple functions

• universally qualified types such as α list and α× β → α.

• unknown types.

A.3 Verification

The verification process involves ensuring that this set of (A,S, E ,G) tuples can be created
for all executable instructions in a module, without any inconsistencies. Certain locations
in the bytecode – such as the operand locations for instructions spanning multiple bytecode
locations – will not be executable and hence do not require a tuple associated with them.

The verifier should maintain a stack of locations to be checked; this will be initialised to
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Instruction Pre state (PC = n) Post state(s)
Acc Stack Env PC Acc Stack Env

SETFIELD0 (α, . . .) (α, . . .) E n + 1 empty (. . . ) E

APPLY2 α→ β → γ (α, β, . . .) E n + 1 γ (. . . ) E

GETGLOBFIELD ? S E n + 3 G[m][f ] S E

ACC2 ? (α, β, γ, . . .) E n + 1 γ (α, β, γ, . . .) E

MAKEBLOCK3 α (β, γ, . . .) E n + 1 (α, β, γ) (. . . ) E

BRANCHIF int S E n + 2 int S E

" " " " n + o int S E

ADDINT int (int,. . . ) E n + 1 int (. . . ) E

ENVACC1 ? S (α, . . .) n + 1 α S (α, . . .)

Figure A.3: Verifier logic for a subset of the OCaml virtual machine

contain the first location of the module’s initialisation code. To verify a particular location,the
possible set of (PC × state) pairs must be calculated. For each pair in this set the tuple at the
new PC must be unified with the new state, possibly specialising any unknown or qualified
types in the new PC’s tuple, and the new PC must be pushed on to the location stack if it
has not already been processed, or if the unification process has resulted in a changed state
for the new PC. In the case of an instruction that creates a new closure, the PC of the closure
must also be pushed on to the location stack, along with any information known about the
types of values in its environment and parameters. If the unification stage fails, then the
bytecode does not respect the virtual machine’s type system and should be rejected.

The transformation from (PC, state) to (PC′, state′) is specific to the instruction at the
location being verified. Figure A.3 gives this transformation for a representative subset of the
OCaml virtual machine instruction set:

SETFIELD0 updates the value of the first field in a record; the destination record is found in
the accumulator, and the new value is on the top of the stack.

APPLY2 calls a two argument closure; the closure is found in the accumulator and the two
arguments are on the top of the stack.

GETGLOBFIELD obtains a value from the global vector. The module m and the field f are
taken from the two bytecode locations following the instruction.

ACC2 loads the value at stack position 2 into the accumulator.

MAKEBLOCK3 allocates a new heap block that is three words long. The block is initialised from
the values in the accumulator and the top two stack locations.

BRANCHIF branches if the integer value in the accumulator is non-zero. The destination offset
o is taken from the bytecode location following the instruction.

ADDINT adds the value on the top of the stack to the accumulator.
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ENVACC1 loads the value at environment position 1 into the accumulator. In the OCaml heap,
a closure and its environment are the same object – the first value in the object is the
bytecode location of the function referred to by the closure, and the subsequent values
constitute the environment of the closure. Therefore environment position 1 is actually
the first value in the environment proper.

State transformations for other OCaml VM instructions may be constructed in order to
complete the design for the verifier.
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