
Technical Report
Number 559

Computer Laboratory

UCAM-CL-TR-559
ISSN 1476-2986

Pronto: MobileGateway with
publish-subscribe paradigm over

wireless network

Eiko Yoneki, Jean Bacon

February 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2003 Eiko Yoneki, Jean Bacon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Pronto: MobileGateway with Publish-Subscribe

Paradigm over Wireless Network

Eiko Yoneki and Jean Bacon

University of Cambridge Computer Laboratory,
William Gates Building, J J Thomson Avenue

Cambridge CB3 0FD, UK
{Eiko.Yoneki, Jean.Bacon}@cl.cam.ac.uk

Abstract. This paper presents the design, implementation, and evalu-
ation of Pronto, a middleware system for mobile applications with mes-
saging as a basis. It provides a solution for mobile application specific
problems such as resource constraints, network characteristics, and data
optimization. Pronto consists of three main functions: 1- MobileJMS

Client, a lightweight client of Message Oriented Middleware (MOM)
based on Java Message Service (JMS), 2-Gateway for reliable and ef-
ficient transmission between mobile devices and a server with pluggable
components, and 3-Serverless JMS based on IP multicast.
The publish-subscribe paradigm is ideal for mobile applications, as mo-
bile devices are commonly used for data collection under conditions of fre-
quent disconnection and changing numbers of recipients. This paradigm
provides greater flexibility due to the decoupling of publisher and sub-
scriber. Adding a gateway as a message hub to transmit information in
real-time or with store-and-forward messaging provides powerful opti-
mization and data transformation. Caching is an essential function of
the gateway, and SmartCaching is designed for generic caching in an
N-tier architecture. Serverless JMS aims at a decentralized messaging
model, which supports an ad-hoc network, as well as creating a high-
speed messaging BUS. Pronto is an intelligent MobileGateway, pro-
viding a useful MOM intermediary between a server and mobile devices
over a wireless network.

Keywords: Gateway for mobile and wireless systems, Message oriented
middleware, Publish-Subscribe, JMS, SmartCaching, Ad-hoc Network

1 Introduction

Computing devices are becoming increasingly mobile at the client end, and they
are based on new communication models. A large-scale distributed system must
offer load sharing and load reduction for good performance. These two key is-
sues are more complex for mobile/wireless-based applications and web-based
services. In a mobile/wireless network environment, latency is high, bandwidth
is low, and the connection can be interrupted at any time. Mobile devices have
a small footprint and often use different transport mechanisms to connect to

4

the network, and many devices are not programmable. The architecture of a
distributed system at this level needs careful consideration of many factors, in-
cluding client applications, middleware tiers, and network characteristics all the
way up to the server. It is essential to provide the core function for such a system
as semantics-based middleware.

This paper presents Pronto, a middleware for mobile applications. The basis
of Pronto is a Message Oriented Middleware (MOM) based on Java Message Ser-
vice (JMS) [33] in both centralized and decentralized forms. Pronto introduces
a gateway for reliable transmission and efficiency between mobile applications
and servers, taking advantage of plug-in components for caching, device-specific
transport, compression, semantic transcoding, and message transformation, as
well as supporting disconnected operation. Pronto provides a useful MOM lay-
out from a server to mobile devices over a wireless network, and its performance
is optimized by applying and comparing different techniques. To demonstrate
the potential of Pronto, several applications were written. Below, the three main
functions forming the basis of Pronto are described.

MobileJMS Client: Several communication mechanisms such as Remote Pro-
cedure Call (RPC) and Remote Method Invocation (RMI) have been used for
sharing the workload in distributed systems. JMS is a recent Java technology,
providing an Application Programming Interface (API) for inter-client communi-
cation among distributed applications. It provides a communication mechanism
that differs from other mechanisms such as EJB (Enterprise Java Beans), Sun’s
JINI, CORBA (Common Object Request Broker Architecture), which define a
higher level of logic for applications. JMS is a service-oriented API specifica-
tion, prescribing messaging functionality in terms of interfaces. It offers publish-
subscribe and point-to-point paradigms and expands previous messaging ca-
pabilities [1]. It is now evident that peer-to-peer or client-server communication
models cannot cover all distributed inter-process communication: intercommuni-
cation is commonly achieved using directed links between tightly coupled senders
and receivers, where the message destination must be known at the time of send-
ing, which is difficult with changing destinations or varying numbers of recipients.
By contrast, MOM encourages ’loose coupling’ between message producers and
message consumers with a high degree of anonymity, giving the advantage of
the removal of static dependencies in a distributed environment. This permits
a dynamic, reliable, and flexible system to be built. JMS provides the architec-
ture for MOM and it is implemented in Pronto. The challenge is to accommodate
JMS with mobile devices less powerful than workstations. The specifications and
interfaces of JMS are complex, but not all functions are mandatory for a mo-
bile/wireless environment. Thus, considering the mobile device peculiarities, one
of the aims is to create a mobile-specific JMS client API. More widespread use
of mobile devices will generate an increasing need for decoupling of distributed
objects. MOM adds high scalability and easy integration into heterogeneous net-
works. This is described in more detail in Section 3-4.

Gateway and SmartCaching: Given the characteristics of mobile devices and
wireless networks, more work is required for better performance. Some important
points are specified below:

5

– Wireless networks become increasingly packet-oriented, and reducing the size
of data for transmission is beneficial.

– Because of low bandwidth, high latency, and frequent disconnections, de-
pendable caching is essential.

– A data source can be interpreted in different formats and semantics depend-
ing on the specifications of mobile devices and wireless networks. Semantic
transcoding technology should give advantages for efficient data flow.

– Many devices are non-programmable, and a gateway has to bridge messages
between non-programmable devices and a server.

In Pronto, an intermediate gateway (called Gateway) is introduced as a ’traffic
controller’ to provide reliable transmission and efficiency between clients and a
server through pluggable components. Plug-in components themselves are not
discussed in this paper except for caching. SmartCaching is designed and used
in Gateway (see Section 5-6 for details).

Serverless JMS: A goal of Serverless JMS is to adapt JMS into a decentralized
model. This model will perform best over an ad-hoc network, and a high-speed
transmission of a large number of messages, e.g. to distribute the workload of a
server to several servers. Many underlying transmission media such as Ethernet
provide support for multicast and broadcast at the hardware level. Implementing
Serverless JMS using the IP multicast service [26] over such a network leads to
a significant performance improvement (see Section 7 for details).

2 Background

This section provides a brief overview of the characteristics of mobile/wireless
networks, mobile devices, and JMS.

2.1 Mobile/Wireless Networks

In a mobile/wireless network [6] a communication is not only connection-based,
but also packet-oriented. With a packet-oriented bearer such as GPRS (General
Packet Radio Service) or UMTS (Universal Mobile Telecommunications Sys-
tem), a device can send and receive information packets without dialling into
a network service provider. With packet data, users typically pay for the time
they communicate data and not for idle time. Packet-oriented bearers are better
suited for the connectionless model of JMS, and reduction of the amount of data
transmitted is crucial. The ad-hoc network, another feature of a mobile/wireless
network, is a dynamically re-configurable wireless network without a fixed in-
frastructure that does not require the intervention of a centralized access point.
Thus, the network devices are only part of the network during communication
sessions. The message domain publish-subscribe in JMS can reside on an ad-
hoc network, but not the implementation based on a centralized server model of
JMS. Here Serverless JMS will play an important role.

2.2 Mobile Devices and Mobile Applications

Mobile devices have different characteristics from workstations and specific issues
that need to be addressed are described below:

6

– Mobile devices have small ROM and RAM footprints as well as low usage
of CPU cycles and battery power. A client library of a middleware should
therefore have a small memory footprint.

– Applications on mobile devices frequently lose and regain network connectiv-
ity. Middleware should provide a direct or indirect function to insure ongoing
communication or provide an interface to applications that allow the main-
tenance of communication during the disconnect operation.

– There are various bearers such as 2G, 2.5G, 3G, Bluetooth, and IEEE 802.11.
Middleware needs to offer an interface of communication abstraction on top
of various wireless bearers.

– There are different operating systems on mobile devices and, thus far, no one
has managed to dominate the market. A multi-platform middleware should
be implemented in the platform independent language Java and compatible
with Java standards such as J2ME (Java 2 Micro Edition) [34] or Personal
Java. Recent developments of J2ME help this aspect, and it supports the
following two ranges of mobile devices:

Pocket PC devices: for example, Compaq iPAQ or Sharp Zaurus PDA con-

taining high-speed processors with a good amount of memory. J2ME Connected

Device Configuration (CDC) runs on this range of devices. CDC is a full feature

Java2 VM building block for the next generation of consumer electronic and em-

bedded devices. RMI [36] is supported.

Small footprint J2ME CLDC capable devices: for example, Nokia 6310i,

Motorola i85, or Personal Digital assistant (PDA) such as the Palm. Sun’s K

virtual machine (KVM) is designed for these devices. Combined with a set of

device-specific Java API, such as Mobile Information Device Profile (MIDP) and

Connected Limited Device Configuration (CLDC), J2ME provides a complete run-

time environment for small resource-constrained devices.

– Although an applet or a web service is not a mobile device, it has similar
characteristics.

2.3 Java Message Service (JMS)

JMS defines a common set of interfaces and associated semantics, providing a
common way for Java programs to create, send, receive, and read messages. The
initial version 1.0 specification was released by Sun Microsystems in 1998 [33,

21]. The messaging service provides support for passing messages between dis-
tributed applications in a reliable, asynchronous, loosely coupled, and language-
and-platform independent manner. The common building block of a messag-
ing service is the message. The message consists of events, requests and replies
that are created by and delivered to clients. In JMS, messages come in several
types such as BytesMessage, MapMessage, ObjectMessage, TextMessage, and
StreamMessage. Not all message types are essential in the mobile-tier. Messag-
ing services such as persistent delivery, durable subscription, the time-to-live
option on a message, and transactions display the range of delivery methods.
Asynchronous messaging is a key integration point in a mobile/wireless environ-
ment. JMS defines two messaging paradigms, publish-subscribe and a point-to-
point, the latter being less suited for mobile-tier. JMS does not define standard

7

address syntax, using instead the Destination object that encapsulates the ad-
dress [10]. In the publish-subscribe paradigm, the Destination is called Topic.
Producers send messages to the Destination, which in turn delivers messages
to consumers. Messages are sent to the Destination rather than specific proces-
sors or ports. Communication is typically one-to-many and asynchronous. The
publish-subscribe paradigm supports the development of location-independent
applications that can be moved from one machine to another without affecting
their peer applications. JMS works well in an environment where network con-
nections sometimes break, and the available bandwidth can vary within a short
time. MOM’s characteristics (intuitive programming model, latency hiding, guar-
anteed delivery, store-and-forward) are highly appealing for mobile applications.
The JMS server side is typically implemented by Java application servers, which
provide a host of Java technology-based services, as well as by MOM, which
operates either alone or in concert with other distributed computing software.

3 System Overview

As discussed above, the publish-subscribe communication paradigm is well suited
for a mobile environment, as mobile devices are used for data collection under
conditions of frequent disconnection and changing numbers of recipients. Adding
a gateway as a message hub to transmit information in real-time or with store-
and-forward messaging will give more powerful optimization of data reduction
and transformation including a caching function. Pronto is designed as a mid-
dleware, forming a collection of generic distributed services that are application-
independent. The implementation of Pronto is 100% in Java and it consists of
the following 4 main packages with different Java platform profiles such as J2SE,
J2ME with+CDC and J2ME+CLDC:

– MobileJMS Client: A lightweight JMS client library.
– Gateway: A bridge for mobile clients and a framework for optimization

functions, implementing two modes: ’Local’ and ’Remote’.
– SmartCaching: Generic caching function for N-tier is used in Gateway.
– Serverless JMS: MobileJMS client in the decentralized model.

Currently a simple JMS server was implemented for Pronto to support Mobile-
JMS Client, which is out of scope of this paper.

3.1 Distributed Systems with Pronto

Fig. 1 shows an overview of a distributed system with Pronto. Four different
deployment possibilities are illustrated:

A - Application with MobileJMS Client: An application in a mobile device
uses a MobileJMS Client API. It communicates directly with the JMS server.
B - Application with MobileJMS Client and LocalGateway: An appli-
cation in a mobile device uses MobileJMS Client API. LocalGateway can run as
a separated thread from the application or within the application and performs
caching and transcoding through plugged-in components.
C - Application with MobileJMS Client and RemoteGateway: An ap-
plication in a mobile device uses a MobileJMS Client API. RemoteGateway is

8

running as a separate process. Currently RMI-based transport between a Re-
moteGateway and MobileJMS Client is implemented.
D - Non-Programmable Devices with RemoteGateway: Non-programmable
devices require RemoteGateway to perform proper transportation and mes-
sage transformation for the target device. RemoteGateway represents every sub-
scriber and publisher for the non-programmable device. A non-programmable
device can be any entity as far as it implements the Transport interface defined
by Gateway.

JMS (TCP/IP)

 Transport Plug-in
 Components
 (SMS, WAP…)

 JMS
 Server

Publisher

Subscriber

 Transform Plug-in
 Components
 (Compression..)

 SmartCaching

 Mobile
 JMS
 Client

 Local
Gateway

Message
Database

JMS (TCP/IP)

 JMS
(TCP/IP)

 JMS
(TCP/IP)

Mobile
 JMS
 Client

Mobile
 JMS

Client

RMI

SMS

Vo ice

Email

WAP

IMode

B

A

C

D

 Remote
 Gateway

Device Specific
Communication

 Applicat ion
 on
 Mobi leDevice

 Applicat ion
 on
 Mob ileDevice

Application
 on
 Mobi leDevice

Non-Programmable
 Mob ile Devices

 Serverless JMS

Fig. 1. System Overview of Distributed System with Pronto

3.2 Disconnect Operations

Most work dealing with the disconnectedness of computing devices revolves
around data replication and synchronization. Data replication involves copying
data from a central repository to a mobile device. Synchronization is a similar
concept but also allows for changes made in either copy of the data to be prop-
agated to the other end. In Pronto, the following approaches are designed for
disconnected operation:

– Durable subscription in JMS: Non-durable subscriptions last for the life-
time of the subscriber object. The client will only see the published messages
while the subscriber is active. A subscriber can be durable as an option by
registering a durable subscription with a unique identity.

– Gateway Cache: Gateway maintains the cache even if applications are inac-
tive. Applications can use the Gateway cache after regaining the connection.
The applications can use the ’pull’, ’subscribe’, and ’snapshot’ operations of
SmartCaching at appropriate occasions. For example, an application spawns
a background activity that synchronizes the on-device messages when con-
nected. The application can choose to use either LocalGateway cache or
RemoteGateway cache.

9

3.3 Serverless Model

A JMS scheme is provided as a decentralized model: Serverless JMS. A publisher
acts as a temporary server and keeps a subscription list. Serverless JMS can be
embedded in Gateway as a plug-in component. Fig. 2 shows the message flow.

Publish

Publish

 IP Network
 (ex. IEEE 802.11B)

 Serverless JMS X

Publisher Application

 Serverless JMS Serverless JMS

 X Serverless JMS

 Publisher Application

 Serverless JMS

Subscription
 List (Topic

Subscription
List (Topic A)

X: Serverless JMS stops non-subscribed message delivery.

Subscriber Application
 on Topic A

Subscriber Application
 on Topic B

Subscriber Application
 on Topic A, B

Fig. 2. Serverless JMS over IEEE 802.11 Network

3.4 Gateway Cascade

Gateway can be used to distribute JMS messages to the target Gateways where
they are sent to the devices. JMS BUS is a Serverless JMS over a high-speed
bus. A high-speed bus can be LAN-based or WAN-based as far as the routers
allow IP multicast. A deployment example is shown in Fig. 3.

Publisher

J
M
S

B
U
S

J
M
S

B
U
S

Gateway

 Local
 Gateway Applicatio

n

Subscriber

Mobile Device

 IEEE
 802.11B

IP net

 SMS

MobileIPNet

LAN

Cache

JMSServer Gateway

Gateway

Gateway

Gateway

Gateway

Cache

Cache

Cache

Cache

JMSServer

Fig. 3. Gateway Cascade

4 MobileJMS Client

MobileJMS Client is designed by following the JMS API model. In order to spe-
cialize JMS to a mobile environment the points below are considered:

Connection: A connection represents an open connection to the JMS server.
JMS does not define any specific transport mechanism. In Pronto, HTTP via
TCP/IP is implemented, which allows the applets using MobileJMS Client to

10

connect through firewalls to the JMS server. Most JMS servers provide HTTP
connection, and J2ME supports HTTP.
Session: Connection creates Sessions. A session is a single-threaded context
that handles message-passing operations. A JMS server has a session pool and
can execute separate messages concurrently, thus improving performance. If a
client code needs to receive asynchronous messages concurrently, the client can
use multiple sessions to partition client operations, i.e., one client thread can
drive one session while another client thread can drive another. Each session ob-
ject serializes execution of message listeners. Thus, message listeners can share
session-related resources. In order to avoid the complex threaded model, connec-
tions and sessions share one thread to receive a message in Pronto.
Message: A message is a lightweight object consisting of a header and body.
The header contains identification and routing information and is optimized to
be as small as possible. The body contains application data. Essential message
types such as TextMessage, BytesMessage, and ObjectMessage from the five
message types defined in JMS are implemented.
Thread-Safety: In general, the JMS specification requires a thread-safe imple-
mentation for all objects, but only Destination, Connection, and Connection-

Factory objects support concurrent use in Pronto.
Durable Subscription: A durable subscriber registers a durable subscription
with a unique identity. A subsequent subscriber with the same identity resumes
the subscription in the state left by the previous subscriber. If there is no active
subscriber for a durable subscription, JMS retains the subscription’s messages
until they are received by the subscription or until they expire.
Message Flow: For durable/persistent messages, each message is stored by the
JMS server before delivery to the consumer and is removed after delivery. This
has a huge impact on performance. The message has an expiration time from
the time-to-live beyond the time of publication. For non-durable/non-persistent
messages, the time for delivery to the Destination depends on message num-
bers and Destination sizes. Redelivery delay time defines when to redeliver a
message after a failure. With shorter times, the frequency of redelivery is high,
thus increasing network traffic. Pronto follows the design of the message flow as
described, and it is important to set a sensible time interval to improve perfor-
mance over a mobile/wireless environment.
Message Selector (Content Based Subscription): Topics can be struc-
tured into hierarchies, and subscriptions can be a part of the hierarchy. This
provides content-based messaging and greater flexibility for applications as there
is less coupling between producers and consumers. Content-based addressing is
more consumer-oriented, whereas subject-based addressing is producer-oriented.
A topic hierarchy is not part of the JMS specification, but it can be effective
in a mobile/wireless environment to control traffic. The current Pronto provides
’Message Selector’ for content-based subscription. Message Selector is a filter for
a topic defined by the consumer. The JMS server evaluates Message Selector and
does not deliver non-qualifying messages. In Pronto, this filter is implemented
within XML based TextMessage. A message selector is a string, whose syntax
is based on a subset of SQL92 conditional expression syntax. In the example of
Fig. 4, only the second message published will be delivered to the subscriber.

11

Publ i sher :

 Text Message t ex t message = sessi on. cr eat eTex t Message
 (‘ <?xml ver si on=\ ’ 1. 0\ ’ encodi ng=\ ’ UTF- 8\ ’ ?><Li st ><Mi l l i onai r e Name=\ ’ Bahl er I ncome=500\ ’ / ></ Li st >‘) ;
 publ i sher . publ i sh(t m, Message. PERSI STENT) ;
 t ext message = sess i on. cr eat eText Message
 (‘ <?xml ver si on=\ ’ 1. 0\ ’ encodi ng=\ ’ UTF- 8\ ’ ?><Li st ><Mi l l i onai r e Name=\ ’ Gat es I ncome=10000\ ’ / ></ Li s t >‘) ;
 publ i sher . publ i sh(t m, Message. PERSI STENT) ;
Subsc r i ber :

 connec t i on. st ar t () ;
 subscr i ber = sessi on. c r eat eXMLSubscr i ber (t opi c, ‘ Mi l l i onai r e. I ncome >= 5000 ‘) ;
 subscr i ber . set MessageLi st ener (new Li st ener (subsc r i ber)) ;

Fig. 4. Message Selector Use

5 Gateway

In an N-tier architecture, proximity to the data source requires a finer granular-
ity of filtered subscription to identify the data, while increasing distance to the
source makes the data more localized. All data requests converge onto a data
source that has to identify the needs of requesters. Close to the periphery, each
requestor already knows the needs, be it through object identity or predicate def-
inition. Thus, the counter-intuitive principle is to have a fine-grain subscription
close to the data source and a coarse-grain subscription further away from the
source. Gateway is a message hub and distributes messages into several Gate-
ways and applications, and messages commonly contain requests and responses
to/from the data source.

 Cache Manager

 Subscriber

 Gateway

Transport

Publisher

 Cache

Subscriber List
 on Topic

Publisher List
 on Topic

SMS

 SMS
Transport

Email
 Email
Transport

Cache Listener
 List on Topic

Client

Client

 Multicast
 JMS

BUS

Pull Cache

Notification

 JMS

Server

. . .

 Plug-In Function

MessageTransform

MessageTranscode

 SmartCaching

Fig. 5. Overview of Gateway Operation

An overview of the operation of Gateway is shown in Fig. 5. A part of Gateway
acts as a publisher and subscriber using a MobileJMS Client to serve as a proxy
of a message controller. Another part performs a series of message transfor-
mations on subscribed and published messages. For non-programmable devices,
Gateway defines a Transport interface to communicate with non-programmable
devices. Gateway technology is based on a ’store-and-forward’ communication
model, transforming messages above the transport level. This offers load sharing

12

and load reduction for good performance. All plug-in components are defined
in the XML configuration file. The configuration information is shared between
Gateway and the client applications. Note that the configuration information
has to be managed (e.g., by JNDI) to be accessible by both parties. Any specific
configuration utility is not yet implemented in Pronto.

Plug-In Components: To gain performance for a distributed system, ’server
performance’, ’network and middleware latency’, and ’presentation and transfor-
mation complexity’ have to be considered. Caching, compression, and semantic
transcoding are good candidates to reduce data size and network traffic and suit-
able for the plug-in functions. Security (encrypting/decrypting data) functions
can also be plugged into Gateway.
Semantic Transcoding: Semantic transcoding offers more than simple im-
age data transcoding. The information itself is made more abstract (to provide
compaction), and the data should be evaluated whenever necessary. In a mo-
bile/wireless environment, a reduction of data size on the network dramatically
increases performance and the concept of semantic transcoding in the mobile
environment is important. In semantic transcoding the data are linked to an an-
notation [22]. Annotations can be corresponding text for a video clip, a summary
of a document, greyscale/downsized/low-resolution image data, or a linguistic
annotation of the content for voice synthesis.
Local and Remote Gateways: Gateway itself is defined as an interface, and
two implementations are available. LocalGateway resides in a mobile device aside
the MobileJMS client and can be instantiated as a separate thread. RemoteGate-
way resides between the JMS server and the client and is currently implemented
using RMI. RMI is part of the J2ME/CDC package. Mobile devices can take
advantage to use either LocalGateway or RemoteGateway depending on the ap-
plications.
Non-Programmable Transport: Transport is an interface to manage the non-
programmable devices. The registration of a Transport to Gateway activates a
subscription to a JMS server on the specified topic. Messages that are delivered
to Gateway will be forwarded to the Transport, which looks up the device list and
session list, and sends messages accordingly. Messages published via the Trans-

port are forwarded to JMS server. Fig. 6 shows the control flow of the Transport

interface.

 SubscriberL ist

JMS Server

 Transport
 reg ister
 pub lish
 onMessage
 topic?
 send(devices….)

DeviceL is t

 Publish

Subscribe
onMessage

 Gateway

 publish(message,top ic)

Fig. 6. Non-Programmable Devices and RemoteGateway

6 SmartCaching

Caching is an essential function in Pronto, leading to performance improvements
by reducing network traffic and improved latency. The cached data can be raw
or processed and stored for reuse without the need for revisiting the server
and passing the data through the chain of reformatting and representation. An

13

extensive cache function supports multi-tiered applications across platforms and
devices. In Pronto, SmartCaching is designed as a separate package to make it
generic and independently usable. In Pronto, only basic functions are currently
implemented, while persistent caching, cache validation, synchronization, and
coherency management are beyond the scope of this study. Key functions are:

– Pull cache: Pull the whole stored cache.
– Subscribe Cache: Receive event notification when the cache is updated.
– Snapshot: Keeps the last image of the cache

SmartCaching is read-only and decoupled from the data source, and the cache
can be active or up-to-date. Thus the application does not need to request to
pull the data that have already been requested from the data source again. Ap-
plications now become event-driven and active. This simple change has a major
impact on performance and scalability on the design of the applications. Snap-
shot provides a specified period that can be used by the mobile application
to obtain the last cache image after disconnection. CacheManager is the main
component in SmartCaching that creates Cache objects and manages requests
and responses to the requesters. Cache is an object that contains a key and
actual caching objects that are kept as a linked list. The Cache object contains
the expiration date, and expired objects will be removed by the CacheManager.
Alternatively the Cache object can be removed once it is delivered to the sub-
scriber. The three main functions above operate in response to requests from
CacheManager. In Pronto, Gateway embeds SmartCaching to store JMS mes-
sages.

Pull Cache: An application requests a cache in synchronous mode (Fig. 7).

Client

 Cache
Manager

 Cache

Network

 Database

 Data Source

Application Data Handler

Fig. 7. SmartCaching: Pull Cache

Subscribe Cache: An application requests a cache update notification to a
cache handler, who notifies the application after the cache is updated(Fig. 8).
Snapshot: When data are delivered to applications in a time series, clients
should be able to reconstruct the latest view of the information of interest. This
can be achieved by requesting a re-broadcast from the data source or by retaining
the last image in a shared cache. The second option corresponds to Snapshot
service. If the data source sends messages via minimal delta information, caching
updates existing data, applying only the delta information. Snapshot needs to
know when the baseline starts. Each time a new message is received, Snapshot
rule is applied and persists in a cache. The rule for the Snapshot can be provided
by an application. If a client requests Snapshot, it will receive the latest data
only. It is the responsibility of the client application that made the Snapshot
request to retain all data, and, after Snapshot arrival, to apply the data to

14

 Cache Manager

 Cache

 Data
 Source

Network

Subscriber 1

 2

 3 4

 1. Register CacheMessageListener on Key
 2. Delivery of new data on Key
 3. Store it in Cache
 4. Notify onMessage

 Client

Data Handler Application Cache Handler

Fig. 8. SmartCaching: Subscribe Cache

bring that Snapshot up-to-date. Gateway uses Snapshot continuously to receive
messages, even while the client is out of contact, and it passes them on when
the client reconnects upon the Snapshot request. Meanwhile the client is able to
continue to operate using its own local cache to satisfy information requests as
far as possible. After restoring communication, only the last image of the cache
needs to be updated. This can reduce the need for reconnection by skipping all
intermediate messages. The event notification mechanism allows the notification
to applications of later changes in the underlying cached data. When Snapshot
is on, cache update notification is done only when the last image changes. The
data flow of Snapshot is shown in Fig. 9.

1
Cache Manager

Recent
 Cache

 Data
 Source

Subscriber

Snapshot

 Updated
 Cache

New Data
Snapshot
Request

Data Handler
Application Cache

 Handler

Network

 1. Start Snapshot
 2. Delivery of new data on Key
 3. Snapshot and store Cache
 4. Return Snapshot Request

 Start
Snapshot

2

3

4

Client

Fig. 9. SmartCaching: Snapshot Data Flow

Fig. 10 shows examples of Snapshot rules. In the first example, a message con-
tains a delta value from the Snapshot base, and the rule is simply to carry out
an arithmetic operation (in this case, the base is 0). In the second example, a
message is added to the tail of the previous one.

Snapshot Rul e: CALCULATI ON

Message 1 Text : - 10
Message 2 Text : * 20
Message 3 Text : +30
Message 4 Text : / 5
Message 5 Text : %7

Snapshot Cache = - 6

Snapshot Rul e: CONCATENATE

Message 1 Text : The i mpor t ance of di f f er ent i al gene expr essi on i s evi
Message 2 Text : dent f r om t he var i ous cel l t ypes i n out bodi es t hat al l
Message 3 Text : cont ai n t he same genome but can be st r i ki ngl y di f f er ent f r om

Snapshot Cache = The i mpor t ance of di f f er ent i al gene expr essi on i s evi dent f r om

t he var i ous cel l t ypes i n out bodi es t hat al l cont ai n t he same genome but
can be st r i ki ngl y di f f er ent f r om…

Fig. 10. Examples of Snapshot Rules

7 Serverless JMS

Serverless JMS is a serverless version of MobileJMS Client. It delivers mes-
sages over IP multicast with high performance and reliable message delivery.

15

The aim is to put the JMS scheme in a decentralized model, using IP multicast
as transport mechanism. Considering JMS, IP multicast allows you to trans-
mit messages from one publisher to many subscribers efficiently and without a
redundant network traffic. The number of subscribers can increase without an
impact on network traffic. Some JMS features (e.g., the point-to-point paradigm
and durable subscription) were omitted given the nature of the network model
and IP multicast protocol.

Multicast Group: Groups of machines representing a multicast group are iden-
tified by an IP multicast address. Each address can be considered as a ’channel’
to identify groups of hosts interested in receiving the same content. Two channels
are used in Serverless JMS. The ManagementChannel is used for administration
purposes, while the MessageChannel is used for message transmission. As an
option, MessageChannel can be defined on each topic.
Reliable Protocol: The basic service provided by IP multicast is an unreliable
datagram multicast service, and there is no guarantee that a given packet has
reached all intended recipients of a multicast group. Serverless JMS implements
both reliable and unreliable multicast transports. The reliable version uses a neg-
ative acknowledgement-based reliable protocol. The transparent fragmentation
and re-assembly of messages that exceed a UDP datagram size is implemented.
This provides the highest possible delivery guarantee in a multicast environment
[39, 27, 29].
Flow Control: The speed of the modern LAN transmission is high, and the
packet loss will be rare with a good network quality. However, due to the high
speed, the buffer is overwritten and messages will be discarded if the network
buffer is not large enough and the subscriber cannot keep up with the speed of
incoming data. This corresponds to packets being lost during the transmission.
The window based flow control between publishers and subscribers is imple-
mented.
Subscription Registration: Two subscription modes are defined: the adminis-
trated and non-administrated modes. In the non-administrated mode, publishers
publish messages independently of the existence of subscribers.
Auto Discovery: An auto discovery function is designed. A publisher runs
an independent thread for auto discovery, which sends management data that
require an echo from subscribers via ManagementChannel and maintains the
subscription list. Auto discovery repeats this at defined intervals.

8 Experiments and Results

MobileJMS Client allows for seamless use of the same API with J2SE, J2ME/CDC,
J2ME/CLDC, and Serverless JMS packages. Examples below demonstrate the
capability of Pronto. Considering that Pronto provides a middleware, a full eval-
uation would require a large-scale integration test, including 3G networks with
hundreds of mobile devices connecting to an application server with the database,
which is out of the scope of this paper.

8.1 Demo Applications

Time Series of Video Data Publishing over 802.11B Network: A video
camera takes 15 seconds of video every 30 seconds, and data are published under

16

the topic ’Demo’. All subscribers receive the published video data. An iPAQ user
is moving, leading to occasional disconnections. LocalGateway running in iPAQ
is set to durable subscription, and all published data are processed by the appli-
cation. LocalGateway’s caching provides the entire process without significant
delay (Fig. 11).

 Local
 Gateway

Application

Cache

Publisher

JMSServer

 Subscriber

Mobile
 JMS
 Client

Laptop/iPAQ

Video Camera

Applet Subscriber

 802.11B

Fig. 11. Demo: Time Series of Video Data Publishing over 802.11B Network

Voice/Text/SMS/Applet/Palm Chat: Chat among an applet, an applica-
tion on a laptop, Palm pilot, iPAQ, and SMS phone. All the clients subscribe
to the topic ’Chat’. A Palm can connect via IR/Modem into LAN. A Gateway
processes two plug-in components ’Voice Synthesizer’ and ’SMS’ (Fig. 12).

 L o c a l
 G at ew ay

 8 02.11B

Cac h e

J M S S er v e r

M o b i le
 J M S
 C l ie n t

A p p le t Ch a t

M o b i le L ap to p

P a lm V x

L e t ’ s g o
S w im m in g …
O K . No w ?
I am b u s y ..

IR
�

M o d em

 S M S
SM S M es s ag e

V o ic e c o n v er te d f r o m T ex t

iP A Q

 R em o te
G atew ay

L A N

A p p l i c a t io n

 V o ic e
Sy n th es is e r

Fig. 12. Demo: Chat among Voice/Text/SMS/Applet/iPAQ/Palm

17

8.2 Benchmark Test over 802.11B Network

A few samples from the benchmark test are given below. The PCs used for test-
ing had X86 (Pentium III) 256MB-392MB RAM 600MHz-800MHz with Win-
dows2000 Professional or Linux 6.2Redhat, and Sun Java2 SDK1.3.0.

Caching: This test focuses the performance of SmartCaching in RemoteGate-
way. A publisher publishes 50 KB x 20 BytesMessages. RemoteGateway sub-
scribes to these messages and caches them. A subscriber listens to the cache
update notification from RemoteGateway. The cache update notification gives
better performance with more than one subscriber, and an increase in the num-
ber of subscribers does not have significant impact on performance (Fig. 13).

0.0

1.0

2.0

3.0

Number of Subscribers

Me
ss

ag
es

 p
er

 S
ec

on
d

Gateway Caching 1.10 1.00 0.94 0.91 0.89

Direct JMS 3.14 0.90 0.48 0.25 0.19

1 sub 5 subs 10subs 20subs 30subs

Fig. 13. Performance improvement by RemoteGateway Caching

Image Semantic Transcoding: Transcoding colour image to greyscale image
shows a significant performance improvement. In the test shown in Fig. 14(a),
the conversion from colour to greyscale decreases an about 35% in data size.

Text/Audio Semantic Transcoding: This test focuses on a performance im-
provement by the semantic transcoding. 1KB of text data (about 150 words) is
information equivalent to 1.2 MB of audio data. In this test, a freeware voice
synthesis is used as a plug-in component in Gateway. The subscriber converted
audio data to an artificial voice and the measured time includes text-voice con-
version time. The size of the text message is negligible compared to the voice
message.(Fig. 14(b)).

0.0

1.0

2.0

3.0

Message Size

M
e
s
s
a
g

e
s
 p

e
r

S
e
c
o

n
d

Greyscale 0.36 0.61 1.36 2.7

Colour 0.12 0.21 0.52 1.3

2MB x 10 1MB x 10 0.5MB x 10 0.2MB x 10

(a)Image Semantic Transcoding

0.0
0.1

1.0
10.0

100.0
1000.0

Number of Messages

M
es

sa
g

es
 p

er
 S

ec
o

n
d

Text(1KB/msg) 1000 500 333 285

Audio(1.2MB/msg) 0.23 0.21 0.17 0.08

1 msg 5 msgs 10 msgs 20 msgs

 0

(b)Audio-Text Semantic Transcoding

Fig. 14. Performance improvement by Gateway Plug-in Components

18

Serverless JMS: This test measures the capability of Serverless JMS. 250KB
x 20 BytesMessages are to be published using Reliable option. No message re-
transmission occurred in this test.

0.0

1.0

2.0

3.0

Number of Subscribers

M
es

sa
g

es
 p

er
 S

ec
o

n
d

Serverless JMS 1.10 1.00 0.94 0.91

JMS 3.14 0.90 0.48 0.25

1- sub 5-subs 10-subs 20-subs

(a)Throughput

0

5000

10000

15000

Number of Subscribers

N
u

m
b

er
 o

f
P

ac
ke

ts
 o

ve
r

N
et

w
o

rk

Serverless JMS 850 850 850 850

JMS 1000 4500 8600 14800

1- sub 5-subs 10-subs 20-subs

(b)Network Traffic

Fig. 15. Performance comparizon between JMS and Serverless JMS

The results show that (Fig. 15):

– The number of subscribers does not have an impact on the performance in
Serverless JMS, whereas regular JMS delivery shows an impact proportional
to the number of subscribers.

– The number of packets over the network stays the same with increasing
numbers of subscribers.

8.3 Scalability

JMS itself does not define ’load balancing’, but the use of a clustering server is
common. Clustering in the same geographical location is acceptable, but connec-
tivity between different locations would need additional functionality. A Server-
less JMS using a high-speed bus to transfer data between two different locations
will be useful. Serverless JMS can function within the internet by establishing
TCP bridges. Gateway Cascade (see Fig. 10) demonstrates the capability of
Pronto to distribute from enterprise applications to a mobile environment. JMS
defines attributes to improve performance, including concurrent message process-
ing, different message types, and two types of message flow models. Deploying
these options to integrate the system should in theory give good scalability.
RPC versus MOM: An N-tier system is a set of connected applications. Each
tier has a dedicated thread that handles the requests from the previous tier
and a process to forward the requests to the next tier. In MOM-based appli-
cations, several simultaneous requests can be sent to the target tiers using the
same thread. An RPC-based application only submits a single request at a time
to the next tier for each thread. A MOM-based application does not have to
wait for responses, because requests are in the form of asynchronous messages.
Since the maximum number of threads per application is constant, MOM-based
applications are more scalable and faster.

9 Related Work

Since the initial JMS specification was released in 1998 [33], the existing MOM
software have been rapidly integrated under the JMS API. Examples are IBM’s

19

MQSeries [15], Microsoft Message Queue (MSMQ), TIBCO’s TIB/Rendezvous
[38], HP’s Message Service [14], Softwired’s iBus [32], and BEA’s WebLogic [2].
However, Softwired’s iBus/Mobile [20] is almost the only one to extend JMS to
mobile-tier. iBus/Mobile is designed as an extension of J2EE application servers
such as BEA WebLogic Server and JMS messaging products. It includes a mes-
saging middleware client library compatible with the JMS standard as well as
a middleware gateway used to connect mobile applications to J2EE application
servers or other systems using JMS. It supports mobile communication specific
protocols such as GPRS, UMTS, and CDPD. In Pronto, a gateway is a message
hub that can reside in the device or anywhere in between. Pronto provides a flex-
ible N-tier layout, deploying gateways instead of a tight linkage with a server.
A gateway in Pronto offers more than a transport protocol as described in the
above chapters. IBM’s MQSeries Everyplace belongs to the MQSeries family
of business quality messaging products. It is designed to satisfy the messaging
needs of lightweight devices. There is no standard messaging API for the mobile
environment [16].

The original iBus before the time of JMS used heavily multicast. Currently
several JMS products support multicast transport such as TIB/Rendezvous.
However, JMS has not been tried on mobile ad-hoc networks. Much research
currently focuses on general datagram routing in both unicast and multicast
routing [4, 25, 31, 18, 24], but no definite solution to provide JMS semantics using
these protocols has been provided. Pronto uses multicast for JMS on ad-hoc net-
works. An example of a drawback of using multicast is the drastic performance
reduction with redundant rebroadcasts [23]. For reliable protocol over IP mul-
ticast, various protocols such as SRM [11], RMTP [19], TRAM [9], and RMDP
[30] are proposed and implemented. Pragmatic General Multicast (PGM) [28,

12] is a reliable multicast support protocol for applications that require ordered
or unordered duplicate-free multicast data delivery from multicast sources to
multiple receivers. For publish-subscribe messaging systems, PGM provides a
building block for the messaging system itself, allowing higher performance and
scalability for messages that need to go to many destinations. This is the most
promising approach [37]. However, the PGM header is not yet supported by any
Java package. For now a reliable protocol based on negative acknowledgement
(NACK) is designed and implemented in Java in Pronto.

Optimizing data over a wireless environment has been successful. Most tech-
nologies are tightly coupled with the applications or the servers, based on client-
server model. Techniques for optimization include caching, protocol reduction,
header reduction, and adding an asynchronous model [7, 16]. For example, IBM’s
WebExpress [13, 8] provides a web browser proxy between mobile clients and a
web server to optimize HTTP data. IBM’s WebSphere Transcoding Publisher [3,

17] is a server-based software that dynamically translates web content and appli-
cations into multiple markup languages and optimizes it for delivery to mobile
devices. Caching is also tied to applications in most cases. ’Java Temporary
Cache’ (JCache) [35] has been proposed by Oracle and provides a standard set
of APIs and semantics that are the basis for most caching behavior [5] includ-
ing N-tier support. Pronto provides an approach to integrate technologies to a
compact semantics-based middleware in support of mobile/wireless environment
specific issues.

20

10 Conclusion and Future Work

This paper points out various design issues of a messaging system for a mobile
environment. Pronto is an effort to extend the messaging over a wireless network
and solve the problems arising. Pronto provides broad functionality as described
below.

MobileJMS Client is functional in resource constrained mobile devices that
can cooperate with different wireless networks. The messaging paradigm fits well
and the applications in mobile devices can publish-subscribe different types of
messages and handle disconnected operation using durable subscriptions. Gate-
way can deploy different plug-in functions such as semantic transcoding, caching,
and compression for message optimization. The message update notification and
the snapshot service of SmartCaching give better flexibility for the design of mo-
bile applications and allow to deal with mobile-specific constraints. Some inter-
esting plug-in components give significant performance improvements. Serverless
JMS can give additional functionality and power to JMS, the number of sub-
scribers does not affect performance, and it seems an attractive model for an
ad-hoc network environment. The benchmark test produced the expected re-
sults at this level. Note that JMS is more complex than discussed here. JMS
would need support for administration, security, error handling and recovery,
optimization, distributed transactions, and message ordering. Pronto could be
extended in several directions described below, and none of them is defined in
the JMS standard:

Network Lookup: It is important to have a standard API for registering and
accessing distributed functionality. Application-specific objects were instantiated
by an application, registered publicity and then used by other applications as
distributed objects that have to be accessed remotely. Topics to publish and
subscribe are good candidates to use this scheme. Java Naming and Directory
Service (JNDI) is a Java technology API for publishing, managing, and accessing
public references to distribute functionality. Currently JNDI is not supported in
J2ME and a standard API for this function over a mobile environment will be
critical.
Persistent storage: A JMS server will need persistent storage for the message
queue, and the JMS client needs persistent storage for transaction processing. A
generic persistent storage over a distributed system specific for mobile/wireless
environments would therefore be beneficial.
Security: JMS API lacks security and encryption. There would be several as-
pects to consider, including message encryption, authentication, access control on
distributed objects (ConnectionFactory, Destination etc.), and tunnelling mes-
sages across HTTP. Gateway can play an important role in security aspects.
Cache synchronization: The current SmartCaching is read-only, and a syn-
chronization mechanism will be needed to propagate the changes that it receives.

In conclusion, Pronto shows how to extend the publish-subscribe paradigm over
the mobile/wireless network in both centralized and decentralized forms. It pro-
vides an intelligent mobile gateway for reliable and efficient transmission by
integrating MobileJMS Client, Serverless JMS, and various plug-in components.
Pronto is therefore a powerful semantic-based middleware for messaging in mo-

21

bile/wireless environment.

Acknowledgments. I would like to thank Jon Crowcroft (University of Cam-
bridge) for critical reading and constructive comments.

References

1. Y. Aridor and M. Oshima. Infrastructure for Mobile Agents: Requirements and
Design. In Proceedings of the Second International Workshop on Mobile Agents,
pages 38–49, September 1998.

2. BEA. WebLogic 6.0 JMS. http://e-docs.bea.com/wls/docs60/jms/.
3. K. H. Britton, R. Case, A. Citron, R. Floyd, Y. Li, C. Seekamp, B. Topol, and

K. Tracey. Transcoding: Extending e-business to new environments. IBM System
Journal, Vol.40(No.1), 2001.

4. J. Broch, D. Johnson, and D. Maltz. The Dynamic source Royting Protocol for Mo-
bile Ad-Hoc Networks, June 1998. draft-ietf-manet-dsr-02.txt (work in progress).

5. M. Butrico, H. Chang, A. Cocchi, N. Cohen, D. Shea, and S. Smith. Gold Rush:
Mobile Transaction Middleware with Java-Object Replication. In 3rd Conference
on Object-Oriented Technologies and Systems (COOTS), 1997.

6. L. Chalamtac. Wireless and Mobile Network Architecture. Wiley, 2001.
7. S. Chandra, C. Ellis, and A. Vahdat. Differentiated Multimedia Web Services Using

Quality Aware Transcoding. INFOCOM - Nineteenth Annual Joint Conference Of
The IEEE Computer And Communications Societies, 2000.

8. H. Chang, C. Tait, N. Cohen, M. Shapiro, S. Mastrianni, R. Floyd, B. Housel,
and D. Lindquist. Web Browsing in a Wireless Environment: Disconnected and
Asynchronous Operation in ARTour Web Express. MOBICOM: Proceedings of
the Third Annual ACM/IEEE International Conference on Mobile Computing and
Networking, pages 260–269, 1997.

9. D. Chiu, S.Hurst, M. Kadansky, and J. Wesley. TRAM: Tree-based Reliable Mul-
ticast Protocol. Sun Microsystems Technical Report TR-98-66, 1998.

10. P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. Technical Report TR-DSC-2001-04, Swiss Federal Institute of
Technology, January 2001.

11. S. Floyd, V. Jacobson, and CG Liu. A Reliable Multicast Framework for Light-
weight Session and Application Framing. ACM SIGGOMM Computer Communi-
cations Review, 1995.

12. J. Gemmell, T. Montgomery, T. Speakman, N. Bhaskar, and J. Crowcroft.
The PGM Reliable Multicast Protocol. IEEE Network special issue on Multi-
cast:AnEnabllingTechnology, 2003.

13. B. Housel and D. Lindquist. WebExpress: A System for Optimizing Web Browsing
in a Wireless Environment. MOBICOM: Proceedings of the 2nd Annual Interna-
tional Conference on Mobile Computing and Networking, pages 108–116, 1996.

14. HP. Message Service. http://www.hpmiddleware.com/.
15. IBM. MQ Series. http://www.ibm.com/software/ts/mqseries/.
16. J. Jing, A. Helal, and A. Elmagarmid. Client-Server Computing in Mobile Envi-

ronments. ACM Computing Surveys, Vol.31(No.2), 1999.
17. C. Lau and A. Ryman. Developing XML Web services with WebSphere. IBM

System Journal, Vol.41(No.2), 2002.
18. S. Lee, M. Gerla, and C. Chiang. On-Demand Multicast Routing Protocol. In

Proceedings of IEEE WCNC ’99, pages 1298–1302, September 1999.
19. J.C. Lin and S. Paul. Reliable Multicast Transport Protocol (RMTP). Proceeding

of IEEE INFOCOM ’96, pages 1414–1424., March 1996.

22

20. S. Maffeis. Middleware Support for Application-to-Application Wireless Messag-
ing. White Paper by Softwired, 2000.

21. R. Monson-Haefel. Java Message Service. O’Reilly, 2001.
22. K. Nagao. Semantic Transcoding: Making the World Wide Web More Under-

standable and Usable with External Annotations. In Proceedings of International
Conference on Advanced in Infrastructure for Electronic Business, Science, and
Education on the Internet, 2000.

23. S. Ni, Y. Tseung, Y. Chen, and J. Sheu. The broasdcast problem in a mobile
ad-hoc network. In Proceedings of ACM/IEEE MobiCom, August 1999.

24. S. Paul. Multicasting on the Internet and Its Applications. Kluwer, June 1998.
25. C. Perkins, E. Royer, and S. Das. Ad-Hoc On-Demand Distance Vector(AODV)

Routing, June 1998. draft-ietf-manet-aodv-03.txt (work in progress).
26. RFC1112. Host Extensions for IP Multicasting. http://www.rfc-

editor.org/rfc/rfc1112.txt.
27. RFC2581. TCP Congestion Control. http://www.rfc-editor.org/rfc/rfc2581.txt.
28. RFC3208. PGM Reliable Transport Protocol Specification. http://www.rfc-

editor.org/rfc/rfc3208.txt.
29. RFC793. Transmission Control Protocol. http://www.rfc-editor.org/rfc/rfc793.txt.
30. L. Rizzo and L. Vicisano. RMDP: An FEC-based reliable multicast protocol for

wireless environments. ACM Mobile Computer and Communication Review, 1998.
31. E. Royer and C. Perkins. Multicast Ad-Hoc On-Demand Distance Vector

(MAODV) Routing, 2000. draft-ietf-manet-maodv-00.txt (work in progress).
32. Softwired. iBus Messaging. http://www.softwired-inc.com/.
33. Sun Microsystems. Java Message Service (JMS) API Specification.

http://java.sun.com/products/jms/.
34. Sun Microsystems. Java2 Platform Micro Edition (J2ME) specification.

http://sun.java.com/j2me/.
35. Sun Microsystems. JCache: Java Temporary Caching API.

http://www.jcl.org/jsr/detail/107.prt.
36. Sun Microsystems. RMI Profile Specification on Connected Device Configuration

(CDC). http://java.sun.com/aboutjava/communityprocess/jsr/.
37. Talarian. Smart PGM. http://www.talarian.com/.
38. TIBCO. TIB/Rendezvous Concepts. http://www.rv.tibco.com.
39. G. Write and W. Stevens. TCP/IP Illustrated, volume 2. Addison-Wesley, 1994.

