Technical Report AN

Number 55

Computer Laboratory

Executing temporal logic programs

Ben Moszkowski

August 1984

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1984 Ben Moszkowski

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Executing Temporal Logic Programs’

(preliminary version)

Ben Moszkowsks

Computes Laboratory, Unsversity of Cambridge,
Corn Ezchange Street, Cambridge CB2 3QG, England

20 August 1984

Abstract

Over the last few years, temporal logic has been investigated as a tool for
reasoning about computer programs, digital circuits and message-passing systems.
In the case of programs, the general feeling has been that temporal logic is an
adjunct to existing languages. For example, one might use temporal logic to
specify and prove properties about a program written in, say, CSP. This leads to

the annoyance of having to simultaneously use two separate notations.

In earlier work we proposed that temporal logic itself directly serve as the basis
for a programming language. Since then we have implemented an interpreter
for such a language called Tempura. We are devéloping Tempura as a tool for
directly executing suitable temporal logic specifications of digital circuits and other
discrete-time systems. Since every Tempura statement is also a temporal formula,
we can use the entire temporal logic formalism for our assertion language and
semantics. Tempura has the two seemingly contradictory properties of being a
logic programming language and having imperative constructs such as assignment

statements.

The presentation given here first describes the syntax and semantics of a first-
order temporal logic having the operators O (nezt) and O (always). This serves
as the basis for the Tempura programming language. The lesser known temporal
operator chop is subsequently introduced, resulting in Inferval Temporal Logic.

We then show how to incorporate chop and related constructs into Tempura.

1To appear in the Proceedings of the NSF/SERC Workshop on the Semantics of
Concurrency, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, July
0-11, 1984.

1. Introduction

Temporal logic [12,20] has been recently put forward as a useful tool for rea-
goning about concurrent programs and hardware. Within temporal logic, one can
express logical operators for reasoning about time-dependent concepts such as

“always” and “sometimes.” Consider, for example, the English sentence
“If the proposstions P and Q are always true, then P is always true.”

This can be represented in temporal logic by the formula
o(PA@)DOP.

Here the operator O corresponds to the notion “always.” Thus, the subformula

O(P A Q) can be understood as “P and Q are always true.”

Typically, temporal logic has been thought of as a tool for specifying and
proving properties of programs written in, say, CSP [11] or variants of Pascal with
concurrency [10]. This distinction between temporal logic and programming lan-
guages has troubled us since it has meant that we must simultaneously use two
separate notations. Programming formalisms such as Hoare logic [9], dynamic
logic [6,19], and process logic [4,7] also reflect this dichotomy. One way to bridge
the gap is to find ways of using temporal logic itself as a tool for programming
and simulation. With this in mind, we have developed Tempura, an imperative
programming language based on subsets of temporal logic. Every Tempura state-
ment is a temporal logic formula. This lets us specify and reason about Tempura

programs without the need for two notations.

Another aspect of the current usage of temporal logic is the restriction of
temporal constructs to such propositional operators as O (always), O (nest), ¢
(sometimes) and U (until). In fact, there are quite a few other useful proposi-
tional and first-order temporal operators for treating such programming concepts
as iteration, assignment and scoping. We explore these constructs within Inter-
val Temporal Logic, a formalism having the operators O, O and the lesser known
temporal operator chop. This also serves as the underlying notation for Tempura

programs and their specifications and properties.

1.1. Organization of Paper

We start off by reviewing the syntax and semantics of a temporal logic having
the operators O (always) and O (neszt). A number of temporal constructs are then

2

presented and later used to build legal Tempura statements and expressions. This
is followed by a description of an interpreter for executing such statements and
a discussion of some of the trade-offs made in impiementing the system. Sub-
sequently, we extend the logic to include the tempéraﬁ operator chop. Within
the resulting Interval Temporal Logic we derive some Algol-like constructs which
are subsequently incorporated into Tempura and the interpreter. We conclude
with a look at some related work. The Tempura examples given here have been
intentionally kept simple. However, in the full version of this paper we plan to
discuss Tempura programs that have been implemented for such tasks as parallel
quicksorting and simulation of a hardware multiplier.

2. Basic Features of the Temporal Logic

Before describing Tempura, it is necessary to have an understanding of the
underlying temporal logic. Some of the constructs described here will be later
used in Tempura programs. Others will facilitate reasoning about program behav-
jor. Rather than presenting the entire logic at once, we will first introduce some
basic operators and derive others from them. In a later section, some additional

operators will be considered.

2.1. Syntax of the Logic

The initial set of constructs includes conventional logical operators such as =
(equality) and A (logical-and). In addition, there are the two temporal operators
O (nezt) and O (elways).

2.1.1. Syntax of Expressions

Expressions are built inductively as follows:
e Individual variables: 4,B,C,...

e Functions: f(ey,...,ex), where k > 0 and ey,...,e: are expressions. In
practice, we use functions such as + and mod. Constants such as 0 and 1

are treated as gero-place functions.

e Next: Oe, where e is an expression.

Here are two examples of syntactically legal expressions:

I+ (oJ)+1, (o +J—-o00o(I+0J).

2.1.2. Syntax of Formulas

Formulas are built inductively as follows:

o Predicates: p(ey,...,er), where k > 0 and ey,...,e; are expressions. Pred-

icates include < and other basic relations.
e Equality: e;=e;, where e; and e, are expressions.
e Logical connectives: —w and wyAw,, where w, w; and w, are formulas.
e Next: Ow, where w is an formula.

e Always: Dw, where w is an formula.

Here are some syntactically legal ITL formulas:
(J=2)Ao(I=3), (oO[I=3])Aa~(0J]=4), o(Tll=3A00J=4]).

Note that the operator O can be used both for expressions (e.g., OJ) and for
formulas (e.g., O(I = 3)).

2.2. Models

A model is a triple (P, %, M) containing a data domain D, a set of states &
and a interpretation M giving meaning to every function and predicate symbol.
For the time being, we take the data domain D to be the integers. A state is
. a function mapping variables to values in D. We let & be the set of all such
functions. For a state s € & and a variable A, we let s[{A] denote A’s value in s.
Each k-place function symbol f has an interpretation M[f] which is a function

mapping k elements in D to a single value:
M[f] € (D* — D).
Interpretations of predicate symbols are similar but map to truth values:
M[p] € (D* — {true, false}).

We assume that M gives standard interpretations to operators such as + and <.

The semantics given here keep the interpretations of function and predicate
symbols independent of intervals. The semantics can however be extended to
allow for functions and predicates that take into account the dynamic behavior of

parameters.

Using the states in X, we construct sniervals of time from the set L+. An
interval is thus any nonempty, finite sequence of states. If s, £ and u are states

€ X, then the following are possible intervals:

(s), (sttsus), (tttt).

Note that an interval always contains at least one state.

We now introduce some basic notation for manipulating intervals. Given an
interval o, we let |o| be the length of 0. Our convention is that an interval’s length
is the number of states minus one. Thus the intervals above have respective lengths
0, 5 and 3. The individual states of an interval o are denoted by oy, 7y, ..., 0|
For instance, the following equality is true iff the variable A has the value 5 in o’s

final state:
UMIAE =85,

The model described here views time as being discrete and is not intended to
be a realistic representation of the world around us. Nonetheless, it provides a
sound basis for reasoning about many interesting dynamic phenomena involving
timing-dependent and functional behavior. Furthermore, a discrete-time view of
the world often corresponds to our mental model of digital systems and computer
programs. In any case, we can always make the granularity of time arbitra:rily

fine.
2.3. Interpretation of Expressions and Formulas

We now extend the interpretation M to give meaning to expressions and for-
mulas on intervals. The construct M,[e] will be defined to equal the value in D of
the expression e on the interval o. Similarly, M,[w] will equal the truth value of

the formula w on o.

At first glance, the following definitions may seem somewhat arbitrary. We
therefore suggest that an initial reading be rather cursory since the subsequent dis-
cussion and examples provide motivation. The definitions can then be referenced
as needed.

o M,[v] = oo[v], where v is a variable.
Thus, a variable’s value on an interval equals the variable’s value in the

interval’s initial state.

o Mo[f(es,y-.. er)] = MIfI(Molea], ..., Molex]).

The interpretation of the function symbol f is applied to the interpretations
of ey,...,ep.

o M,[O¢] = M(g,._,alal)ﬂeﬂ, if Jo| > 1.
We leave the value of O e unspecified on intervals having length 0.

o My[ples,-.-)] = Mlp)(Molesd, - ., Mofex]).

o M Jes=e;] = true if M,ei] = Msfe.].

o My[~w] = true iff M,[w] = false.

o M JwiAw,] = true iff My[w,] = true and M,[w,] = true.

o MJow] =true iff |o] > 1 and M, ,,)[w] = true. ‘

o M,[Ow] =true iff foralli<|o], M., plwl = true.

Examples

We will now illustrate the use of M by considering the semantics of the sample
temporal formulas given earlier. Let s, ¢ and © be states in which the variables I

and J have the following values:

rJ
s 1 2
t 3 4
v 3 1

The formula
(J=2)A0o(I =3)
is true on an interval o iff o has length > 1, the value of J in the state 0, is 2 and

the value of I in the state oy is 3. Thus, the formula is true on the interval (stu).
On the other hand, the formula is false on the interval (ttu) because J’s initial

value on this interval is 4 instead of 2.

The formula
(ouir = 31) A=(joJ] = 4)

is true on any interval ¢ having length > 1 and in which I equals 3 in the states
01y ..+, Olg) and J does not equal 4 in 4. Thus the formula is true on the interval

(sutut) but is false on (t) and (stutu).

The formula
ool = 3] Aoo[J = 4])

6

is true on an interval ¢ having length > 3 and in which the variable I equals 3
in the states oy, ..., o) and the variable J equals 4 in the state 3. Thus this

formula is true of the interval (suutu) but is false on (s) and (sutuu).

2.4. Satisfiability and Validity
A formula w is sefssfied by an interval o iff the meaning of w on o equals true:
M,[w] = true.

This is denoted as follows:
ol w.
If all intervals satisfy w then w is valid, written |= w.

Ezample (Validity):

The following formula is true on an interval ¢ iff |o| > 1, the variable I always
equals 1 and in the state oy, I equals 2:

O(I =1)AO(I =2).

No interval can have all of these characteristics. Therefore the formula is false on

all intervals and its negation is always true and hence valid:

E =[0(=1) Aol = 2)].

3. Deriving Other Operators

The kinds of interval behavior one can describe with the constructs so far
introduced may seem rather limited. In fact, this is not at all the case since we
can develop quite a variety of derived operators. We will now present some derived

operators that have proved useful in reasoning about simple computations.

3.1. Boolean Operators

The conventional boolean constructs w; V w, (logical-or) , w; D w, (implica-
tion) and w, = w, (equivalence) can be expressed in terms of — and A. We can

define logical-or as shown below:

W Vw, Zas (0w A-wy).

We then express implication and equivalence as follows:
Wy D Wy Sgg Wy VW wy =W, Zag (Wi D w) A(we D wy).

The boolean constructs frue and false can also be derived.

Ezample (Implication):

If in an interval o, the variable I always equals 1 and in the state oy the
variable J equals 2 then it follows that the expression I + J equals 2 in oy. This

fact can be expressed by the following valid formula:

E [pI=1)A0(=2)] D o(I+J =3).

Ezample (Equivalence):

The formula
o(f=1A[J =2

is true on an interval o iff o has length > 1 and in the state o, the variable I has
the value 1 and the variable J has the value 2. It turns out that the conjunction

O(I=1)A0(J =2)

has the same meaning. The equivalence of these two formulas is expressible as

follows:
o(I=1]A[J=2]) = [o(I=1)A0(J =2)|.

This formula is true on all intervals and is therefore valid. In general, if two
formulas w; and w, have the same meaning on all intervals, then the equivalence

wy = wy is valid.
3.2. The Operator emply
The formula empty is true on an interval iff the interval has length 0:
o= empty iff |o|=0.
We can define emply as follows:

emply =q4 —Oltrue.

Ezample (Testing the length of an intervel):

We can use the constructs O and empty to test the length of an interval. For

example, the formula
O OO empty

is true on an interval ¢ iff ¢ has length 3.

8.8. The Operators gets and stable

It is useful to say that over time one expression e; equals another expression
e; but with a one-unit delay. We use the construct e, gets e, to represent this and

define it as follows:
ey gels ey =gef D(—uempty D [(0e) = ez]).. '

The test —empty ensures that we do not “run off” the edge of the interval by

erroneously attempting to examine e;’s value in the nonexistent state ojs)1.

For instance, the formula K gets 2K is true on an interval o iff the variable K

is repeatedly doubled from each state to its successor:
o Kgets2K iff foralls < |o|, ¢ [K] = 2 o;[K].
The construct steblee is true iff the value of the expression e remains un-
changed. We can readily define stable in terms of gefs:

stablee =44 egetse.

Ezample (Ezpressing an invariant condstion):

The following formula is true on an interval ¢ in which T and J are both
initially O and I repeatedly increases by 1 and J repeatedly increases by 2:

(I=0)A(J =0)A(Igets I+ 1) A(J geis J +2).

In any interval for which this is true, J always equals 2I. Below is a valid property

that formalizes this:
E [I=0)A(J=0)A(IgetsI+1)A(Jgets J+2)] D O(J = 2I).

This shows how the operator 00 can express an invariant condition.

9

Ezample (Stability):

‘The formula
(I =1) A stable I

is true iff I initially equals 1 and its value remains unchanged. This is the same
as saying that I always equals 1. The following valid property expresses this

equivalence:

E [(I=1)Astable]] = O(I = 1).

3.4. The Operator halt

We can specify that a formula w becomes true only at the end of an interval

o by using the formula half w:
haltw =4 O(w = empty).

Thus w must be false until the last state at which time w is true. For example,

the formula
healt(I > 100)

is true on o iff the value of the variable I exceeds 100 in exactly the last state of

0’5

Ezample (Repeatedly doubling a number):
From what we have so far presented, it can be seen that the formula
(I = 1) A kalt(I > 100) A (1 gets 21)

is true on an interval where the variable I is initially 1 and repeatedly doubles
until it exceeds 100. The following valid implication states that intervals on which

this formula is true will terminate upon I equalling the value 128:

= [(I=1)Ahalt(I > 100) A (I gets 21)] D halt(I = 128).

4. A Temporal Programming Language

Consider now the formula
(M = 4) A (N = 1) A halt(M = 0) A (M gets M — 1) A (N gets 2N).
10

This holds true of intervals of length 4 in which M successively runs through the
values 4, 3, 2, 1 and 0 and N simultaneously runs through the values 1, 2, 4, 8,
and 16. Let us now explore how to automate the process of taking such a temporal
formula and finding an interval satisfying it. One wé,y to do this is to develop 2
procedure that analyzes the formula and either terminates with the length of some

acceptable interval and values of the relevant variables in all the interval’s states

or else fails.

We will use another technique which we call énterval generation. This approach
takes the original formula and scans it once for each state of the interval being
generated. We introduce the predicates snput and oufput. In any state where the
predicate snput(v) is true, the user can input a value for the variable v. Whenever
the predicate output(e) is encountered, the expression e is evaluated and its value
is displayed to the user. The net effect is that the temporal formula is “executed”
with the predicates input and output providing communication to the user. For
example, the formula given below includes a subformula that always outputs the
value of N to the user:

(M = 4) A (N = 1) A halt(M = 0)
A (M gets M — 1) A (N gets 2N) AD output(N). (1)

As the overall formula is processed, the successive values of N are displayed.

Figure 1 shows a sample session in which this is executed.

When the following formula is executed, the user is continually asked for the

values of I
O input(I) A halt(I = 0) A (J = 0) AQ output(J) A (J gets J + I). (2)

These values are summed into J and J itself is displayed. The interval {erminates
upon I equalling 0. An execution of this is given in figure 2. Numbers in boxes

(e.g.,[6]) are input by the user.

The general problem of finding an interval that satisfies a temporal formula
is unsolvable. However, there are subsets of temporal logic for which the task is
managable. We now present Tempura, a programming language based on one such

subset.

4.1. Syntax of Tempura

The main syntactic categories in Tempura are locations, expressions and state-

ments. Let us look at each of these separately:

11

Output = 1
State #0 ready.

Output = 2
State #1 ready.

Output = 4
State #2 ready.

Qutput = 8
State #3 ready.

Qutput = 16
State #4 ready.

Done! Computation length = 4.

Figure 1: Execution of Formula (1)

Input = [j
Output = 0
State #0 ready.

Input =
OQutput = 6
State #1 ready.

Input = []
Output = 8
State #2 ready.

Input = []
OQutput = 13
State #3 ready.

Done! Computation length = 3.

Figure 2: Execution of Formula (2)

12

4.1.1. Locations

A locatson is a place into which values can be stored and later retrieved. Vari-
ables such as I, J and K are permissible locations. In addition, if I is a location,

so is the temporal construct O/.

4.1.2. Expressions

Expressions can be either arithmetic or boolean. All numeric constanis and
variables are legal arithmetic expressions. In addition, if ¢, and e, are arithmetic

expressions, so are operations such as the following:
‘e3+ €y € —ey ;'€ € €y € mod €.

In addition, if e is an arithmetic expression then so is the temporal construct Oe.

Relations such as e; = e, and e; > e, are boolean expressions. If b, b; and b,

are boolean expressions, then so are the following:
“lb, bl A bz, bl \% bz, bl D bg, bl_ = bz.

The constants true and false and the construct empty are boolean expressions as

well.

4.1.3. Statements

Certain temporal formulas are legal statements in Tempura. A statement is
either simple or compound. Simple statements are built from the constructs given

below. Here [is a location, e an arithmetic expression and b a boolean expression:

I=e (equality)

emply (terminate)

—empty (do not terminate)
input({) (input into a location)
output(e) (output an expression).

The statement { = e stores the value of the arithmetic expression e into the loca-

tion /.
Compound statements are built from the constructs given below. Here w, w;

13

and w, are themselves statements and b is a boolean expression:

wy Awy (parallel composition)

bow (conditional execution)
Ow (next)
Ow (always)

Note that certain temporal formulas can be used as both boolean expressions

and statements. Here are three examples:
I=3, (J=2)A(K=J+3), (I=0)D empty.

_On the other hand, the following legal boolean expressions are not Tempura state-
ments even though they are semantically equivalent o the respective formulas

given above:

3=1, (2=J)A(J+3=K), -(I=0)V empty.

4.2. Some Other Statements

Other constructs such as gets, stable and kelt can be readily added to Tempura.
One way to do this is to expand these to statements already described. Here are

some possible equivalences:

lgetse = DO(-empty D [(Ol) = e),
stablel = lgetsl,
halth = D([b D empty] A [-b D ﬂerr‘zpty]).

Once we include these statements, programs such as the following can be readily

processed:
input(I) A (J = 1) AQoutput(J) A halt(I = 0) A (I gets I — 1) A (J gets 2J).

This statement initially requests the input of a value for I and then repeatedly

outputs the first few powers of 2 until I is decreased to 0.

4.3. An Interpreter for Tempura

We now briefly outline an interpreter for executing Tempura statements. The
interpreter takes a statement and generatés an acceptable interval by repeatedly

14

scanning and modifying the statement until the final state of the interval is reached.
A flag named done is used to indicate termination. Each iteration of the interpreter
corresponds to one state of the interval being generated. In addition to the flag
done, an environment called env maintains each variable’s current and next values.
Over time, as the statement is executed, the entries in the environment are updated
to reflect changes to the variables. The full version of this paper will discuss the

implementation of the interpreter in more detail.

As we mentioned earlier, Tempura statements are limited to a subset of tempo-
ral formulas. So far we have only mentioned syntactic restrictions. Let us consider
some limitations that the interpreter itself imposes on Tempura programs. This

will give some idea of the design trade-offs we have made.
4.3.1. Determinism

The interpreter expects the user to completely specify the behavior of variables

and to indicate when termination should occur. For example, the statement
I gets I+1

lacks information on I’s initial value and does not specify when to stop. Thus other
details must be included for the interpreter to properly operate. Of course, we
could be more lenient by using backtracking and related techniques to resolve such
omissions. However, for the sake of the simplicity and efficiency of the interpreter,
it seems reasonable at the moment to require explicit, unambiguous information

on all aspects of variable behavior.
4.3.2. Left-to-right processing
The interpreter scans statements from left to right. Therefore the statement
(J=T+3)A(I=0)

is not properly handled since the value of I is not yet known during the evaluation

of the expression I + 3. This can be remedied by reordering the two equalities as

follows:
(I=0)A(J=1T+3).

156

4.3.3. Restrictions on emply

The construct empty as implemented by the interpreter is also subject to re-
strictions. Consider the following statement for running I through the values 10,
9 ...,0

(I =10) A (I gets I — 1) A halt(I = 0).

This does not execute properly since the definition of the gets construct involves
a test of the value of empty, but this in not determined until the helt construct
is encountered and processed. The solution here is to simply exchange the two

operations, thus yielding the following:

(I =10) A halt(I = O) A (I gets I —1).

4.3.4, Restrictions on the operator O

The environment only maintains the current and next values of variables.
Therefore, an attempt to store in a location such as OO O I does not work properly

because this looks too far into the future.

4.3.6. Why these restrictions?

The limitations outlined here could to some extent be avoided by automated
static analysis, by repeated scanning of statements during each state and by mod-
ifying the environment to store more values for each variable. Nevertheless, the
current interpreter seems to be a reasonable compromise. More experience is
needed before a firm conclusion is reached on these matters.

5. Further Temporal Constructs

In addition to the constructs already presented, temporal logic contains various
~useful operators such as existential quantification (3) and the temporal operator
chop. Some of these constructs are rather similar to certain kinds of statements
found in Algol and related programming languages. We first extend the synta,x and
semantics of the temporal logic to include 3 and chop. The resulting formalism is
called Interval Temporal Logic. Within it we define a number of interval-dependent

~operators. Tempura is subsequently expanded to include some of these.

16

5.1. Syntax of chop and 3

In addition to the constructs previously introduced, we now permit formulas
of the following two forms: ‘
e Chop: wy;w,, where w; and w, are formulas.

o Existential quantification: Jv. w, where v is a variable and w is 2 formula.
The following are two simple formulas:

(stable I); (stable J), . O(J = 21).

5.2. Semantics of chop and 3

The semantics of these operators are as follows:

o MyJwi;w,] = true iff
for some § < |0], M(gq...0;) [w1] = true and My,,..0,) [w2] = true.

o M,[Tv. w] = true iff
for some interval ¢' € ¥, ¢ ~, o' and M, [w] = true. Here the

relation ¢ ~, o' is defined to be true iff the intervals ¢ and o' have the

same length and agree on the behavior of all variables except possibly the

variable v.

Examples

Consider the following states and their assignments to the variables I and J:

I J
s 2 4
t 0 4
v 2 3

We assume that s, £ and u agree on assignments to all other variables.

The following formula is true any interval on which [is stable for a while and

then J is stable for the remainder of the interval:
(stable I); (stable J).

The interval (sustst) satisfies the formula since I is always 2 on the subinterval
(sus) and J is always 4 on (stst). The formula is also true on the intervals (s)

and {uuu) but it is false on the interval (stuu).

17

The formula
1. O(J = 2I)
is intuitively true on any interval on which we can construct an I such that J
always equals 21. This is the same as saying that J is always even. For example,
the interval (¢¢t) satisfies the formula. From the semantics of 3 given previously it
follows that to show this we need to construct an interval ¢' for which the relation
(ttt) ~; o' is true and which satisfies the subformula O(J = 2I). The interval (sss)
achieves both of these constraints. Therefore (ttt) satisfies the original formula.
Other intervals satisfying the formula include (sss) itself and (sst) but not (u)
or (stut). Existential quantification is a tricky concept and the reader should not

necessarily expect to grasp it immediately.

5.3. Discussion of the Operator chop

The construct chop is rather different from the conventional temporal oper-
ators O and O. The later examine an interval’s suffix subintervals whereas chop
splits the interval and tests both parts. This facilitates looking at arbitrary subin-

tervals of time.

Harel, Kozen and Parikh [7] appear to be are the first to mention chop as a
temporal construct. It is considered in more detail by Chandra, Halpern, Meyer
and Parikh [4] In [5] and [16] we use chop to facilitate reasoning about timing-
dependent digital hardware. Our subsequent work in [18] and [17] uses chop to give
specifications and properties of simple algorithms and message-passing systems.
In the rest of this section we examine chop and other ITL constructs and then

extend Tempura to include them.

5.4. The Operator fin

The formula finw is true on an interval ¢ iff w is itself true on the final

subinterval (o},]). We express fin w as follows:
finw =44 O(empty D w).

The formula fin w is weaker than halt w since fin w only looks at the last state but

halt w tests behavior throughout.

An Ezample

The following formula is true on an interval o iff |o| = 3 and [is initially 1

i8

and repeatedly doubles:
(00O empty) A (I = 1) A (T gets 21).

One effect is that I ends up equal to 8. This is expressed by the valid implication

given below:

E [(0ooempty) A (I =1)A (T gets 2I)] > fin(I = 8).

5.5. Assignment

The formula e; — e, is true for an interval if the expression e,’s initial value

equals the expression e,’s final value. We define this as follows:
ey — e =g JA. [(stable AYN(A=e) A fin(ex = A)],

where the variable A does not occur free in either e; or e;. The stability of A is
used to compare the values of e; and e, at different times. We call this construct
temporal assignment. For example, the formula I+ 1 — I is true on an interval o
iff the value of I + 1 in the initial state oy equals the value of I in the final state

0jo|- If desired, we can reverse the direction of the arrow:

I —T+1,

The formula :
(I—IT+10)AJ~J+1)

is then true in an interval iff I increases by 1 and in parallel J increases by 1.
Similarly, the following specifies that the values of the variables A and B are

exchanged:

(A — B)‘/\ (B — A).

Unlike assignment in conventional programming languages, temporal assign-
ment only affects variables explicitly mentioned; the values of other variables do

not necessarily remain fixed. For example, the formulas

IT—T+1
and
(I«—I%-I)A(J«——J)

are not equivalent since the first formula does not require J’s initial and final

values to be equal.

19

Ezample (Sequential composition of assignments):

The formula
(K+1— K);(K+2— K)

is true on an interval o iff there is some § < |o| such that the subformula K+1 — K
is true on the subinterval {oy...0;) and the subformula K + 2 — K is true on
remaining subinterval (g;...0)). The net effect is that K increases by 3. This is

expressed by the following property:

E [(K+2- K);(K+1- K)] > (K+3— K).

5.6. Conditional Formula

We let the boolean construct sf w; then w, else ws be true on an interval if
either w; and w, are true or ~w, and w; are true. This can be formalized by the

following definition:

if wy then w, else ws =qu (wi D wy) A (Pwy D ws).

Ezample (In-place computation of the mazimum of two numbers):
The temporal formula
if 1> Jthen (I «— I)else(I — J)

" is true in any interval where I’s value in the final state equals the maximum of
the values of I and J in the initial state. This can be seen by case analysis on the
test I > J.

Let the function max(t, j) equal the maximum of the two values ¢ and j. The
following temporal formula also places the maximum of I and J into I:

I «— max(1,J)
The equivalence of the two approaches is expressed by the following property:

E |1~ max(l,J)] = [if I > J then (I « I) else (I « J)].

20

5.7. While-Loops

Within temporal logic, various kinds of iterative constructs can be introduced
as formulas. One of the most important is the temporal while-loop. The basic form

is similar to that for a while-loop in Algol:
while wy do w,,
where w; and w, are themselves formulas,
The while-loop obeys the following general expansion property:
whsle w; d& wy; = if wthen (wg; [while w; do wz]) else emply.

Thus, if w; is true, the body of the loop, ws, is examined after which the loop
is repeated. If w; is false, the interval must have length 0. It is possible to
express while-loops using operators presented earlier. For-loops and other iterative

constructs can also be handled.

Ezample (Computing the greatest common dsvisor):
Consider the following assignment which specifies that N’s final value equals
the initial value of the greatest common divisor of M and N:
N « gcd(M, N).
The formula below implies this:

while (M # 0) do (|[M « N mod M] A [N « M]).

5.8. The Construct skip

The construct skip is true on an interval ¢ iff o has length 1. We can express

| skip as follows:
skip =gq O emply.

Ezample (Measuring the length of an snterval):

An interval’s length can be tested using skip and chop. For example, the

formula
sksp; skip; sksp
is true on intervals having length 3. Since chop is associative, we can omit paren-

theses without being ambiguous.

21

Ezample (Unit-length sterations):

The following while-loop repeatedly decrements I and sums I into J over each

unit of time until I equals 0:
while (I = 0) do (skip A [T «— I~ 1| A[J « J + I}).

The body of the loop contains the skip operator in order that the length of each
iterative step be 1. The behavior can also be expressed using halt and gets. Here

is a semantically equivalent way of doing this:

halt(I = O) A (I gets I — 1) A (J gets J + I).

5.9. Incorporating ITL Constructs into Tempura

We now extend Tempura to include statements based on the ITL constructs
just introduce. The set of simple statements is now expanded to include the

following:
l—e (assignment)

skip (unit interval)

Compound statements are extended to include the following:

Wyj Wo (sequential composition)

if bthen w, elsew, (conditional statement)
while b do w (while-loop)

Jv. w (existential quantification).

Ezample (Hiding a variable):
The following toy program has two distinct variables both called I:
(I =0) A(I gets I+ 1) A halt(I = 5) AL [(I = 1) A (I gets 3I) AD output(I)].

The first I runs from O to 5 and in parallel the second I is repeatedly tripled from
1 to 243. The use of existential quantification (3) keeps the two I’s separate and
in effect hides the second one. As this example illustrates, we can use 3 to create

locally scoped variables.

22

Input =
Output = 0
State #0 ready.

Output = 4
State #1 ready.

Output = 7
State #2 ready.

OQutput = 9
State #3 ready.

Output = 10
State #4 ready.

Done! Computation length = 4.

Figure 3: Execution of Formula (3)
Ezample (Compuling sums):

The following Tempura program uses a while-loop to compute a sum:
snput(I) A (J = 0) AD output(J)
A [while I # 0 do (skip AT — I = 1) A|J « J + 1)) (3)
The user inputs a value and the program then determines the sum of the numbers
up to that value. Figure 3 shows a sample session in which the user requests the

sum of the values up to 4.

Ezample (Computing powers):
Consider the problem of finding the value of the expression I’ and placing this
in another variable K. We can specify this using the temporal assignment
K« I,
The following Tempura program achieves this by looking at J’s binary structure:
(K = 1) A [while (J > 0) do (skip A w)],

where the statement w has the form
if (J mod 2 = 0)
then (I — T1-T)A(J — J +2) A (K « K)]
else (I — I)A(J — J — 1) A (K « K- T)].

23

6. Experience and Further Work

Based on the ideas discussed here, we have implemented a Tempura inter-
preter in Lisp. Tempura programs for such tasks as parallel quicksorting, fast
fourier transforms, and simulation of a hardware multiplier have been written and
successfully run. We intend to discuss some of this work in the full version of
this paper. Together with Roger Hale, a PhD student, we are experimenting with
the system and are trying out further programming examples. Another Tempura
interpreter has been developed as a programming project by Nigel Beckwith.

Tempura contains various other features including for-loops, arrays and pro-
cedures. All of these can be fitted into the framework of temporal logic (see [5]
and [16] for more details). The main change to the interpreter is the addition of
a memory for maintaining the values of variables and array elements. The en-
vironment entries no longer store values themselves but instead point to cells in
the memory. This approach is very similar to that used in executing conventional

block-structured languages.

7. Some Related Work

The functional programming language Lucid [2,3] developed by Ashcroft and
Wadge is similar to parts of Tempura. For example, the Lucid program

I=0 fby(I+1); J=0 fby (J+ 1)
roughly corresponds to the temporal formula
(I=0AJ =0)A(Igets I+1) A(J gets J + I).

This illustrates how the operator gets can be handled in Lucid. On the other
hand, Algol-like temporal constructs such as «, chop and whsle do not have direct

analogs in Lucid. Thus, a Tempura construct such as

while (M # 0) do (skip A [M — M — 1] A [N « 2N])
cannot be readily translated. In [1], a calculus is developed for reasoning about
Lucid programs.

Hehner [8] views programs as logical predicates over input-output behavior of
variables. Various Algol-based constructs such as assignment (*:="), sequencing

24

(“”) and while-loops are treated in this manner. Time is introduced by means of
an explicit clock variable. Hehner then goes on to introduce concurrency through
CSP-like channels. It seems too early to compare this approach with temporal

logic.

Manna and Wolper [14] investigate techniques for synthesizing CSP synchro-
nization code from temporal logic specifications. Examples include a reader-writer
system and the dining philosphers’ problem. Mishra and Clarke [15] use temporal
logic to describe asynchronous digital circuits and then generate corresponding
finite-state automata. Tang [21] and Manna and Pneuli [13] discuss ways of trans-
lating conventional programming constructs into transition systems described in
temporal logic. The resulting temporal descriptions can then be used to reasoning
about the original programs. In contrast to these approaches, we have worked
on developing a set of temporal operators that facilitate programming directly in
temporal logic. This bypasses the need for two notations and omits any synthesis

from specifications.

8. Conclusions

The present work has investigated Tempura, a program language based on
Interval Temporal Logic. The ITL formalism provides a way fo treat such pro-
gramming concepts as assignment and loops as formulas about intervals of time.
Therefore, Tempura programs, their specifications and their properties can all be
expressed in the same formalism. In the future, we hope to use Tempura for simu-
lating various hardware devices and message-passing systems. In addition, we plan
to explore the feasibility of using it as a general-purpose programming language.

Acknowledgements

We wish to thank Mike Gordon, Roger Hale and Edmund Ronald for stimu-
lating conversations and suggestions. Funding from the British Science and Engi-

neering Research Council is gratefully acknowledged.

25

9. References

[1]

[2]

[3]

[4]

(5]

l6]

[7]

(8]

[9]

[10]

(11]

[12]

E. A. Ashcroft and W. W. Wadge. Lucid: A formal system for writing and
proving programs. SIAM Journal of Computing 5, 3 (September 1976),
336-354.

E. A.. Ashcroft and W. W. Wadge. “Lucid, a nonprocedural language with
iteration.” Communications of the ACM 20, 7 (July 1977), 5619-526.

E. A. Ashcroft and W. W. Wadge. Lucid, the Data Flow Programming
Language, to be published.

A. Chandra, J. Halpern, A. Meyer, and R. Parikh. Equations between
regular terms and an application to process logic. Proceedings of the 13-th
Annual ACM Symposium on Theory of Computing, Milwaukee, Wisconsin,
May, 1981, pages 384-390.

J. Halpern, Z. Manna and B. Moszkowski. A hardware semantics based on

temporal intervals. Proceedings of the 10-th International Colloguium on
Automata, Languages and Programming, Barcelona, Spain, July, 1983.

D. Harel. . First-Order Dynamic Logic. Number 68 in the series Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1979.

D. Harel, D. Kozen, and R. Parikh. “Process logic: Expressiveness, de-
cidability, completeness.” Journal of Computer and System Sciences 25, 2

(October 1982), pages 144-170.

E. C. R. Hehner. “Predicative programming (parts I and II).” Communi-
cations of the ACM 27, 2 (February 1984), pages 134-151.

C. A. R. Hoare. “An axiomatic basis for computer programming.” Com-
munications of the ACM 12, 10 (October 1969), pages 576-580, 583.

C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R.
Hoare and R. H. Perrott, editors, Operating Systems Techniques, pages 61—
71. Academic Press, London, 1972.

C. A. R. Hoare. “Communicating sequential processes.” Communications
of the ACM 21, 8 (August 1978), pages 666-677.

Z. Manna and A. Pnueli. Verification of concurrent programs: The tem-
poral framework. In R. S. Boyer and J. S. Moore, editors, The Correctness
Problem in Computer Science, pages 215-273, Academic Press, New York,
1981.

26

[13] Z. Manna and A. Pnueli. How to cook your favorite programming language
in temporal logic. Proceedings of the Tenth Annual ACM Symposium
on Principles of Programming Languages, Austin, Texas, January, 1983,
pages 141-154.

[14] Z. Manna and P. L. Wolper. “Synthesis of computing processes from tem-
poral logic specifications.” ACM Transactions on Programming Languages
and Systems 6, 1 (January 1984), pages 68-93.

[15] B. Mishra and E. M. Clarke, Automatic and hierarchical verification of
asynchronous circuits using temporal logic. Technical report CMU-CS-83-
155, Department of Computer Science, Carnegie-Mellon University, Septem-
ber, 1983.

[16] B. Moszkowski. Reasoning about Digital Circuits. PhD Thesis, Depart-
ment of Computer Science, Stanford University, 1983.

[17] B. Moszkowski. A temporal analysis of some concurrent systems. To ap-
pear in the proceedings of the STL Workshop on Concurrency, Cambridge,
England, September, 1983.

(18] B. Moszkowski and Z. Manna. Reasoning in interval temporal logic. Tech-
nical report STAN-CS-83-969, Department of Computer Science, Stanford
University, July, 1983.

[19] V. R. Pratt, Semantical considerations on Floyd-Hoare logic. Proceed-

ings of the 17-th Annual IEEE Symposium on Foundations of Computer
Science, Houston, Texas, October, 1976, pages 109-121.

[20] N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, New York,
1971.

[21] C. Tang. Toward a unified logic basis for programming languages. Pro-
ceedings of IFIP Congress 83, Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1983, pages 425-429.

27

