
Technical Report
Number 535

Computer Laboratory

UCAM-CL-TR-535
ISSN 1476-2986

Designs, disputes and strategies

Claudia Faggian, Martin Hyland

May 2002

JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2002 Claudia Faggian, Martin Hyland

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Abstract

Important progresses in logic are leading to interactive and dynamical models. Geom-
etry of Interaction and Games Semantics are two major examples. Ludics, initiated
by Girard, is a further step in this direction.

The objects of Ludics which correspond to proofs are designs. A design can be
described as the skeleton of a sequent calculus derivation, where we do not manipulate
formulas, but their location (the address where the formula is stored). To study
the traces of the interactions between designs as primitive leads to an alternative
presentation, which is to describe a design as the set of its possible interactions, called
disputes. This presentation has the advantage to make precise the correspondence
between the basic notions of Ludics (designs, disputes and chronicles) and the basic
notions of Games semantics (strategies, plays and views).

1 Introduction

Interaction has become an important notion both in theoretical computer science and in
proof theory. From the computational point of view, when running an application the
result of computation (if there is any) is not necessarely the more interesting aspect. The
dynamics, the process itself of computation plays a central role. Moreover, composition
of programs is in general a rich two-directions process, which entails communication and
exchanges between the components. A paradigm of computation as interaction underlies
several models of computations. This paradigm is particularly significant today, since
interaction often appears to be more visible and even more important than computation.

Important progresses in logic are also leading to interactive and dynamical models.
Two major examples are Geometry of Interaction and Games Semantics. The Geometry
of Interaction [5], which arose from Linear Logic, interprets normalization (computation)
as a flow of information circulating around a net. Games Semantics interprets computation
as a dialog between two parties, the program (player) and the environment (opponent),
each one following its own “strategy”. Games Semantics (see [2] for a survey) has been
an important development in logic, but also a successful approach to the semantics of
programming language. The strength of these models is to capture the dynamical aspects
of computation, so as to take into account both qualitative (correctness) and quantitative
(efficiency) aspects of programming languages. Ludics, recently introduced by Girard in
[6], is a further step in this development, the fundamental notion in the theory being that
of interaction.

The basic objects of Ludics are designs, which are both (i) an abstraction of formal
proofs and (ii) a concretion of their semantical interpretation. A design can be described
as the skeleton of a sequent calculus derivation, where we do not manipulate formulas, but
their locations (the addresses where the formulas are stored).

A design can also be presented in a very natural way as the collection of its possible
interactions. Our paper focuses on this presentation . An advantage of the approach we
follow is to establish a bridge with the notions of Game Semantics, in particular with HO
Games [8]. In fact, we are going to make precise the following correspondences:

actions – moves

disputes – plays

3

chronicles – views

designs – innocent strategies

The crucial correspondence is

“view - chronicle - sequent calculus branch”

This correspondence is the key to move between Ludics and Games Semantics. To keep
all notions concrete, one should always remember that a chronicle is a branch in a sequent
calculus derivation, a design being the “skeleton” of a sequent calculus derivation. Condi-
tions on views, as conditions on chronicles, can easily be understood as conditions on the
branches of a sequent calculus derivation.

We expect to be able to transfer experiences and techniques between the two settings.

2 Ludics in a nutshell

2.1 The universe of proofs

The program of Ludics is to overcome the distinction between syntax (the formal system)
on one side and semantics (its interpretation) on the other side. Rather then having two
separate worlds, all properties of proofs should be determined and tested internally to the
system, where internally means interactively: proofs are tested with proofs. To do so, it
is necessary to generalize the notion of proofs.

In Ludics, a proof must be thought of in the sense of “proof search” or “proof con-
struction”: we start from the conclusion, and guess a last rule, then the rule above. To
stop (for example, because no rule can be applied) a new rule is introduced, the daimon:

` Γ
†

When using such a rule, we assume the conclusion, without providing a justification. Such
an aborted proof is still a well defined formal object The gain is that now the universe of
proofs has enough inhabitants for any proof of A be tested by proofs of A⊥.

2.2 Designs

We begin by giving an intuition of what is a design. This is enough to follow the rest of
the paper. We recall the precise definitions (to which the proofs refer) in the appendix.
Instead, we do not really enter in the details of the logical calculus associated to designs,
which is a focalized version of second order multiplicative-additive Linear Logic (MALL2).

Designs capture the geometrical structure of sequent calculus derivations. The simplest
way to introduce designs is to start from sequent calculus. Let us consider the following
derivation, where the rules are labelled by the active formula and the subformulas which

4

appear in the premises1: for example, ⊕L would be labelled as (a ⊕ b, {a}).

` a0, c0
⊥

` a0, c
(c, {c0

⊥})

` a⊥, c
(a, {a0})

` b0, d0
⊥

` b0, d
(d, {d0

⊥})

` b⊥, d
(b⊥, {b0})

` c, d, a⊥ ⊗ b⊥
(a⊥ ⊗ b⊥, { a⊥, b⊥})

` c

&

d, a⊥ ⊗ b⊥
(c

&

d, {c, d})

a⊥, b⊥, c, d are formulas that respectively decompose into a0, b0, c0
⊥, d0

⊥.
Let us forget everything in the sequent derivation, but the labels. The derivation above

becomes the following tree of labels, which is in fact a (typed) design:

 b⊥ {b0}

c d

c

&

d

a⊥ ⊗ b⊥

a⊥{a0}

{c0
⊥} {d0

⊥}

{a⊥, b⊥}

{c, d}

` c

&

d, a⊥ ⊗ b⊥

This formalism is more concise than the original sequent proof, but still carries all
relevant information to retrieve its sequent calculus counter-part.

Remark 2.1 (Focalization) What makes this formalism possible is focalization. Multi-
plicative and additive connectives of Linear Logic (MALL) split into two families: positives
(⊗,⊕, 1, 0) and negatives (

&

, &,⊥,>). A cluster of operations of the same polarity can be
decomposed in a single step. Such a cluster can be written as a single connective, which is
called a synthetic connective. For example the formula (P⊥⊕Q⊥)⊗R⊥ has as immediate
subformulas P⊥, Q⊥, R⊥, to which we applied the connective (−⊕−) ⊗−

As a consequence, in a derivation positive and negative alternate at each step.

To complete the process, let us now abstract from the type annotation (the formulas),
writing only the addresses. In the example above, we locate a⊥ ⊗ b⊥ at the address ξ;
for its subformulas a and b we choose the sub-addresses ξ1 and ξ2. Finally we locate a0

in ξ10 and b0 in ξ20. In the same way, we locate c

&

d at the address σ and so on for its
subformulas. Our design becomes:

1In first approximation, we slightly simplify the labels; this is possible when working with slices, which

essentially are multiplicative derivations

5

ξ

σ

σ2σ1

{1, 2}

{1, 2}

{0}

ξ2 {0}ξ1 {0}

{0}

σ ` ξ

Definition 2.2 (Actions) The pair (ξ, I) is called an action. As we have seen, ξ is an
address (a list of natural numbers, which is the address of the formula) and I ∈ Pf (N) is
a finite set of natural numbers, the relative addresses of the immediate subformulas we are
considering. ξ is called focus of the action, while I is called ramification.

† is also an action, but an improper action.

A design is given by:
a base, which is a sequent giving the conclusion of the proof (the specification of the

process) and
a tree of actions with some properties that we recall in the Appendix. A branch in the

tree is called a chronicle. If κ1 is before κ2 we write κ1 < κ2.

Slices and additives. The notion of slice was introduced as part of the theory of proof-
nets in Linear Logic, to speak of the two components of a &-rule. Informally speaking, an
&-rule is seen as the super-imposition of two unary rules: (a&b, a and (a&b, b). Given a
derivation, we obtain a slice if for any &-rule we select one of the premises. The derivation

. . .
` a, c

a . . .
` b, c

b

` a&b, c
(a&b, {a}), (a&b, {b})

` (a&b) ⊕ d, c
((a&b) ⊕ d, {a&b})

can be decomposed as the super-imposition of two slices (in each slice the &-rule is unary)

. . .
` a, c

a

` a&b, c
(a&b, {a})

` (a&b) ⊕ d, c
((a&b) ⊕ d, {a&b})

and

. . .
` b, c

b

` a&b, c
(a&b, {b})

` (a&b) ⊕ d, c
((a&b) ⊕ d, {a&b})

In the same way, a design is a superimposition of slices.
We locate c in the address τ , ↓ (a&b) in the address ξ, (a&b) in ξ0, a in ξ01, and b in

ξ02. The derivation of our previous example corresponds to the following design

ξ {1}

ξ1 {1}

τ

ξ1 {2}

τ

whose two slices are ξ {1}

ξ1 {1}

τ

and ξ {1}

ξ1 {2}

τ

The actions (ξ1{1})/(a&b, a) and (ξ1{2})/(a&b, b) should be be thought of as unary
&. The usual binary rule is a set of two actions.

6

Notation 2.3 In a slice, each address only appears once, therefore each action is uniquely
determined by its focus. For this reason, when working with slices we often identify an
action κ = (σ, I) with its focus σ.

Normalization. A set of designs to be cut together is called a cut-net. A cut between
two designs is a coincidence of addresses of opposite polarity in the base of the two designs.
The uncut addresses form a base. By far, the most important case in Ludics is the closed
case: all addresses are cut and the base is empty

Given a base, its opposite is the base (or family of bases) which allow us to close the net.
The opposite of ` ξ is ξ `; the opposite of ξ ` λ1, . . . , λn is the family ` ξ, λ1 `, λn `.

Given two design D, E the result of normalization is indicated as [[D, E]]. If D, E
have opposite base, since all addresses are cut, there are only two possible results for
normalization: either it converges ([[D, E]] = †) or it fails ([[D, E]] = Ω). In the first case
the two designs are said orthogonal.

While the normal form presents no surprise, what we are interested in is the interaction
itself. An easy way to present normalization of designs is by a token traveling along a
cut-net (see Appendix). As the token travels on the net, it draws a path: the sequence of
visited actions, which is the trace of the interaction among the designs, is called a dispute,
and indicated as [D
 E]. The part of the cut-net visited during the normalization is
called the pull-back of that dispute.

In a design, the same action may appear several times, because of additive duplications.
What allows us to identify a specific occurrence of an action κ is the chronicle that leads
us from the base to that action. In the dispute we have enough information to retrieve
the chronicle that identifies any of its actions (see Proposition 3.6).

The interaction of designs and counter-designs produces a dispute. Conversely, given
a dispute, we can reconstruct the design which produced it (the pull-back).

Plan Our aim is to present a design as the collection of its possible interactions. The
first step will be to characterize the sequences of actions that correspond to a dispute. We
will then need to characterize the set of disputes which correspond to interactions of the
same design, and verify that we have all of them. We therefore need:

(i) a “coherence condition” to guarantee that a set of disputes is compatible, meaning
that all the disputes are paths on the same design, and

(ii) a “saturation condition” to guarantee we have all the possible paths.

3 Arenas, players and legal positions

In this section we only consider designs (more precisely cut-nets) on the empty base <>.
The associated “dependency tree” is the universal Arena. The generalization to the base
Ξ ` Λ is straightforward.

Players: The universe of addresses splits into two players: one owning the even-length
addresses (Even), the other owning the odd-length addresses (Odd). As soon as we fix
a point of view, one will be called Proponent (P), the other Opponent (O). There is a
complete symmetry between the two players: they are of the same nature, and therefore
they obey to the same rules.

7

Arena: An arena is given by a set of moves, a labelling function from the moves to
{P, O}, and an enabling relation. The Universal Arena is the forest of actions induced by
the sub-address relation.

Definition 3.1 (Universal Arena) The universal arena is given by a set of moves, a
labelling function and an enabling relation, as follows:

Moves: The moves are all the actions (ξ, J), where ξ is an address and J ∈ ℘fin(N).

Both labelling and enabling are already coded in the action:
Labels: The labelling is implicit in the address: all even-length addresses are attributed

to one Player, all odd-length addresses are attributed to the other.
Enabling relation:
We say that (ξ, I) justifies (ξi, J), if i ∈ I. We call initial move an action which is not

justified (the actions whose focus is <>).
The universal arena A can be delocated to any initial address ξ. As usual, the moves

of ξ(A) are those of A with the renaming ξ(σ, I) = (ξσ, I).
We call such a structure an atomic arena. An atomic arena is identified by an atomic

base. The universal arena has base `<>.

Polarity The polarity is relative to the Player: a move is positive for a player if it
belongs to that player, negative if it belongs to the other. Positive means same parity
(“mine”), negative means opposite parity (“yours”).

P-move (“move belonging to P”) = P-positive (“move positive for P”) = O-negative
(“move negative for O”). O-move = O-positive = P-negative.

Notation 3.2 When we need to specify a player but do not wish to take a point of view,
we will use the variables X where X ∈ {P, O} and X for its dual.

To make explicit if a move κ is P , O, positive or negative we use the notation:
κP , κO, κ+, κ−.

Since it is convenient to fix a point of view, let us fix Proponent to be the one who
starts (the player owning the initial move) and Opponent the other.

3.1 Plays

Definition 3.3 (Linear positions) A sequence of actions s is a linear position, if it
satisfies the following conditions:

Parity Parity alternates

Justification Each move is either initial or is justified by an earlier move.

Linearity Any address appears at most once.

Each position belongs to one of the players, according to the last move (the following
definition takes care of the case where no move has been played yet).

8

Definition 3.4 (X-position) We call P-Position a position that expects an action by
Opponent. Typically, a position whose last move is P. An O-Position is a position that
expects an action by Proponent. Observe that if we choose to call Proponent the player
who starts, ε is an O-position.

A P-position is a positive position for P , and a negative position for O. We use the
notation pP , pO, p+, p−.

The key notion is that of view.

Definition 3.5 (Views) Let q be a linear position and X ∈ {O, P} a player. Its view
pqqX of q is inductively defined as follows. When there is no ambiguity on the player, we
simply write pqq for pqqX . Below, positive and negative is relative to X.

• pεq = ε;

• psκ+
q = ps−qκ+;

• psκ−
q = κ− if κ is initial;

• psκ′tκ−
q = ps−qκ′κ, if κ = (ξi, J) and κ′ = (ξ, I)+.

We denote Opponent view by pqqO and Proponent view by pqqP . Moreover, by pqκ+
q

we mean the view of the player for which κ is positive. If κ belongs to X, then pqκ+
q =

pqκq
X and pqκ−

q = pqκq
X .

In a design, the same action may appear several times, because of the use of n-ary
negative rules. What allows us to identify a specific occurrence of an action κ is the
chronicle that leads us from the base to that action. The operation of view allows one to
extract from the dispute the chronicle that identifies any of its actions (see [4]):

Proposition 3.6 (Chronicles extraction) p = [D
 E] and qκ v p. Assume κ has
parity X. The chronicle that identifies κ+ is pqκ+

q (that is pqκq
X). The chronicle that

identifies κ− is pqκ−
q (that is pqκq

X).

The following (standard) definition of play allows us to characterize the sequence of
actions that correspond to a dispute.

Definition 3.7 (Legal positions/Plays) We say that a linear position p is legal, or a
play, if it satisfies the following condition:

Visibility If tκ v p where κ is non initial, then the justifier of κ occurs in ptκ+
q.

According to our convention, this means that if κ is a P-move, its justifier occurs in ptκq
P ,

and therefore in ptqP , if κ is an O-move, its justifier occurs in ptqO.

Proposition 3.8 (Disputes as plays) Any dispute p on a closed net of base `<> is a
legal position on the universal arena.

9

Proof. Parity and justification are obvious.
Visibility. Let tκ ⊆ and κ, say, a P-move. ptκq

P = cκ is a chronicle. Hence, by definition
of chronicle, the justifier belong to c. �

Conversely, we shall show that, given a legal position p, we can extract a design S and
a counter-design T s.t. [S
 T] = p.

S

T

p

{S, T} is exactly the pull-back associated to p.

To move from disputes to design we need to deal with the daimon. Our choice is to
deal with it implicitly, as we shall explain, and retrieve it when we need. However, we also
add † to the arena as a special move. We use this as an intermediate step which allows us
more compact definitions.

Definition 3.9 (Daimon) We extend the universal arena with a formal action †. † is
fixed positive for any player; it does not justify and is not justified by any other action.

Given a collection of legal positions, we define an operation of (positive) closure w.r.t.
either of the player: we complete all maximal negative plays with a daimon.

Definition 3.10 (dai-closure) Let S be a collection of plays on the universal arena. We
define its positive closure w.r.t. the player X as follows:

p†X = p ∗ † if p is X-negative, p†X = p otherwise.
S†X = {p†X , p ∈ S}

Definition 3.11 Let p be a legal position.
ChP (p) = {pqqP : q v p, q 6= ε}.
ChO(p) = {pqqO : q v p, q 6= ε}.

Proposition 3.12 (Pull-back) Let p be a play.

ChP (p†P) is a P-slice, ChO(p†O) is an O-slice.

Proof. Let us fix a point of view, either O or P and check that ChX (p) is a slice.
(i) s ∈ Ch(p) is a chronicle.

Alternation. obvious. Daimon. obvious. Negative focus. Immediate by the definition

10

of view on a negative action. Positive focus. This exactly corresponds to the visibility
condition. Destruction of foci: imposed by linearity.

(ii) Ch(p) is a design, in fact a slice.
Closure under prefix. Let ck′k = pqkq, qκ v p. If κ is positive: ck′ = pqq and q ⊆ p.

If κ is negative then cκ′κ = psκ′tκq = psqκ′κ. We have cκ′ = psκ′
q, sκ′ v q v p.

Coherence. c1, c2 ∈ Ch(p) are coherent. If c1, c2 are incomparable, let us consider
c1

∧
c2 = cκ. If c1 w cκκ1 and c2 w cκκ2, with κ1 6= κ2. then κ is positive. Otherwise

κ1, κ2 would be positive. Then cκκ1 = ps1κκ1q
P , cκκ2 = ps2κκ2q

P , and since linearity
forces s1 = s2, thus κ1 = κ2.

Ch(p) is a Slice; propagation. Both propagation and the fact that Ch(p) is a Slice
are forced by linearity. If c(ξ, I) = pq(ξ, I)q, c′(ξ, I ′) = pq′(ξ, I ′)q, then by linearity
q(ξ, I) = q′(ξ, I ′) and c(ξ, I) = c′(ξ, I).

�

Example 3.13 On the empty base:

ChP (ε†P) = {†}, which corresponds to the derivation `<>
†
.

ChO(ε†P) = ∅, which corresponds to the derivation <>`
(<>, ∅)

It is immediate that

Remark 3.14 If qX v p then ChX (q) ⊆ ChX (p).

Proposition 3.15 (Plays as disputes) To each play p on the universal arena we can
associate a pair of slices S, T of respective bases `<> <>` s.t. [S
 T] = p; {S, T}
is the pull-back associated to p.

Proof. Let S = ChP (p) and T = ChO(p). We need to check that [S
 T] = p.
This is immediate by the procedure of normalization on designs. If [S
 T] = t we show
that for any prefix tn of length n, tn v p.

If p = ε the result is immediate. Step 1. The first action in the cut-net is the same as
the first move of p.

Let t′κn = tn = pn. To perform the n+1-ary step of normalization on S, T, we look in
the slice where κn is negative, that is the chronicle cκ−

n . Let κ = Succ(κ−
n); such an action

exists, either proper or improper, because κn is negative. We know that the chronicle cκnκ
is the view of a prefix of p: pp′κnκq

X , p′κnκ v p. Linearity implies that p′κn = pn. Hence
either p = pn = tn and κn+1 = † or pnκn+1 v p and κ = κn+1. This also guarantees the
existence of a chronicle dκ−

n+1
, thus tnκn = pnκn.

�

4 Strategies

Now we want to describe designs as collections of the possible interactions, forgetting the
notion of design.

Definition 4.1 (Disp (D)) Let D be a design. Disp D = {[D
 E] : E⊥D}.

11

What we need is a “coherence” condition on disputes (characterizing disputes on the same
design) and a “saturation” condition that guarantees we have all such possible interactions.
To do so let us first define a coherent collection of disputes, a strategy.

Definition 4.2 (X-Strategy) A P-strategy (O-strategy) S on the universal arena `<>
is a collection of plays (on that arena) which is closed under positive prefix and such that:

Coherence. If p 6= q ∈ S then p
∧

q is a positive position (a P-position for a P-
Strategy, an O-position for an O-strategy).

Remark 4.3 Maximal position (and only maximal position) can be negative. This means
that the last action is followed by † in the design we are describing.

Fact 4.4 It is immediate that the above definition is equivalent to the following one, in
line with the most standard Games Semantics definition:

S† is a collection of plays such that

s0. S† is closed under positive prefix;

s1. p ∈ S† then p is positive;

s2. determinism:
sbX , scX ∈ S† then b = c.

Definition 4.5 (Ch(D)) To an X- strategy S we associate a collection of chronicles
ChX (S) =

⋃
p∈S†X

ChX (p).

Remark 4.6 Ch(S) can be seen as the super-imposition of the slices associated to the
plays in S.

It is easy to see that Disp D is a strategy. However, a strategy does not necessarily
correspond to any construct in Ludics.

Example 4.7 Let us consider the strategy S on `<> given by the closure under prefix of
{p1 = 〈(<>, {0, 1, 2}), (0, I0), (01, I01), (1, J)〉 and
p2 = 〈(<>, {0, 1, 2}), ((0, I0), (02, I02), (020, I020), (01, I01), (2, K))}〉

S is an O-strategy. ChO(p1) and ChO(p2) respectively produce the slices:

<>

0

01

1

<>

0

01

2

02

020

The two slices cannot co-exist in the same design because they differ in the way they
complete the chronicle 〈<>, 0, 01−〉. The two resulting chronicles are not coherent.

12

If two different disputes cover the same design, when they reach to the same negative
action they continue in the same way. To arrive at the same action means they are on the
same chronicle, that is the two path have the same view

The notion we need to express this condition is exactly that of innocent strategy.

Definition 4.8 (Innocent strategy) An X-strategy S is innocent if S† satisfies:

sab+ ∈ S†, p+ ∈ S†, pa is a legal position, ppaq
X = psaq

X ⇒ pab ∈ S† (∗)

Innocence plays two roles:
1. It assures the uniqueness of the move that follows a negative action (cf. Fact 4.15);
2. It is a condition of “saturation.” It guarantees that all the possible disputes on a

design are taken into account.

Remark 4.9 As we show in Appendix C one can read “innocence” in a very concrete,
procedural way, as an algorithm to calculate all possible dispute on a given design (or all
designs orthogonal to a given design.)

It is well known in Games Semantics that:
1. The collection of views of an innocent strategy generates, by innocence, the complete

strategy.
2. The collections of views of an innocent strategy S is contained in S.
A design can be seen as the collection of views of an innocent strategy. From the views

we can recover the strategy, from the strategy we can extract the views.
Section 4.1 reviews this ideas. Section 4.2 comes back to designs.

4.1 Innocent strategies: Views and Plays

The fact that an innocent strategy can be presented either as a set of plays or as a set
of views is well known. The constructions V iews(−) and Plays(−) correspond to similar
operations Fun(−) and Traces(−) defined in [9] and [7].

The facts in this section apply to any innocent strategy. All along this section we
consider w.l.o.g. strategies whose plays are all positive. W.r.t our previous definitions,
this means that we always work with the closure of our strategies

S = S†.

Definition 4.10 (Views(S)) Let S be an X-strategy. We define

V iews(S) = {ppq
X , p ∈ S}

We say that a set of position V is stable under view if ppq = p for all p ∈ V.

Definition 4.11 (Plays(V)) Let V be an X-strategy such that V iews(V) = V. We define:

P0(V) = {p ∈ V : p is minimal for v}

Pn+1(V) = {pab s.t. p ∈ Pn(V), ∃ cab ∈ V, ppaq = ca and pa is a legal position}

13

Plays(V) =
⋃

n Pn(V)

Fact 4.12 Plays(V) satisfies the property:
If p ∈ Plays(V) and ∃ cab ∈ V s.t. ppaq = ca and pa is a legal position , then pab ∈

Plays(V).

Fact 4.13 (Innocence by views) If S is an X-strategy and V iews(S) ⊆ S, then the
property (1) in Definition 4.8 is equivalent to the following one:

cab+ ∈ V iews(S), p ∈ S, pa is a legal position , ppaq = ca then pab ∈ S (∗∗)

Remark 4.14 We indicate ppq as c on purpose, to remember we can think of it as a
chronicle.

4.1.1 Some properties

Observe that determinism together with innocence implies in particular that

Fact 4.15 (Determinism under view) Let S be an innocent X-strategy. If pab ∈ S, qac ∈
S, ppaq = pqaq then b = c.

This in particular solves the problem with example 4.7. It also means that V iews(S)
satisfies itself determinism (cf. Definition 4.2) and thus it is a strategy.

Proposition 4.16 (Closure under view) If S is an innocent X-strategy then V iews(S) ⊆
S.

Proposition 4.17 (Saturation) Let T be any strategy and S an innocent strategy. If
V iews(T) ⊆ S then T ⊆ S.

4.1.2 Plays vs. Views

Proposition 4.18 Let S be an innocent X-strategy.

V iews(S) is an X-strategy, stable under view.

Proposition 4.19 Let V be an X-strategy stable under view.

V iews(Plays(V)) = V

Proposition 4.20 Let V be an X-strategy stable under view.

Plays(V) is the smallest innocent strategy which contains V.

Proof. Plays(V) is a strategy. It is deterministic because V is. Indeed, if sa, sb ∈
Plays(V) then psaq = psqa and psbq = psqb are in V, hence a = b. Moreover Plays(V) is
innocent because by construction it satisfies the condition (∗∗) of 4.13.

If S is an innocent strategy and V ⊆ S then Plays(V) ⊆ S, because V iews(Plays(V)) =
V and Proposition 4.17. �

14

Proposition 4.21 Let S be an innocent X-strategy.

Plays(V iews(S)) = S

Proof. Let V iews(S) = V. V iews(S) ⊆ S implies Plays(V) ⊆ S.
We show S ⊆ Plays(V iews(S)) by induction on the length of p ∈ S. Assume tab ∈ S.

Observe that ptabq = ptaqb = cab ∈ V. By induction, t ∈ Plays(V), ptaq = ca, hence
tab ∈ Plays(V).

�

4.2 Designs and innocent strategies

Definition 4.22 Let us indicate by V iews∗(S) the set V iews(S) r {ε}. Let us indicate
by S the closure under non empty negative prefix of S.

Fact 4.23 Ch(S)+ = V iews∗(S†).

D = D+ and Ch(S) = V iews∗(S†)

Proposition 4.24 Let D be a design of base X. Then

D+ is an X-strategy stable under view.

Unfortunately, a strategy stable under view is not a design, in that it does not satisfies
the condition of linearity (“propagation”). To guarantee that all slices in a design are
linear, it is not enough that each single play is linear. This phenomenon is of the same
nature as similar phenomenons one observes when studying interactive observability (see
[4]). Since this deserves a separate analysis, it will be discussed in Section 5.

Here we simply translate the condition of propagation from chronicles to views.

Definition 4.25 (Propagation) A strategy S satisfies the propagation condition if:
If tκ, t′κ ∈ V iews(S) and t = c ∗ (ξ, I) ∗ d, t′ = c ∗ (ξ′, I ′) ∗ d′ then ξ = ξ′.

Proposition 4.26 Let V be an X-strategy which is stable under view and which also
satisfies propagation, then

V is the positive part of a design D: V = D+

Using the previous proposition and the fact (cf. C) that Disp (D) = Plays(D) =
Plays(D+) we have that:

Proposition 4.27 (i) Let D be a design. Then:

Disp (D) is an innocent strategy,

the smallest innocent strategy which contains D+.

(ii) Let S be an innocent strategy which satisfies propagation. Then:

Ch(S) is a design.

15

As for V iews and Plays,

Proposition 4.28

Disp (Ch(S)) = S and Ch(Disp D) = D

Proof. Disp (Ch(S)) = Plays(Ch(S)+) = Plays(V iews(S)) = S.

Ch(Disp D) = V iews(Plays(D+)) = D+ = D �

5 Some issues on Linearity

Extracting strategies from a play. We have shown that to a play p we can associate
both a design and a counter-design. Notice that the issue of lifting a play to a strategy
(not a counter-strategy) is addressed by Danos Herbelin and Regnier in [3]. To extract
both a strategy and a counter-strategy it is essential that p is linear. For example, to the
play 〈α, α0, α〉 we can associate a design, but not a counter-design. In other words, this
play belongs to an innocent strategy, but not to an innocent counter-strategy.
Propagation and Linear Plays. As we have seen, there is only one delicate point to
establish a correspondence between designs and innocent strategies, namely that it is not
enough to consider linear plays. We need to explicitly ask the condition of propagation.

If we consider linear plays, without imposing propagation on strategies, what do we
have in ludics? This is not the same as abolishing the condition of propagation in ludics.
It rather corresponds to making linearity local. W.r.t. computation, a design that satisfies
linearity locally will behave as a design that satisfies linearity globally.

We may compare the situation to that in lambda calculus, where non-linearity of a
term may be serious or not (think for example of the expression “if then else”).

Propagation. The condition of propagation is a way to explicitly demand the separation
of the contexts on a Tensor rule. It is immediate that we can reformulate propagation as:

“In each slice, any address only appears once”.

If we abolish this condition, we need to radically change the theory. In particular, we loose
linearity of the chronicles, and we do not know how to deal with separation (the analogous
of Böhm theorem in Ludics).

Linear plays. Let us consider an innocent strategy of linear plays. We can associate to
it a collection of chronicles. For example, to the innocent strategy {〈ξ+, ξ1, α〉, 〈ξ+, ξ2, α〉}
we would associate

ξ+

ξ1−

α+

ξ2−

α+

The objects described by innocent linear strategies are linear for all computational purpose.

16

However in this way we do not reach a full completeness result for MALL. Typically,
we would find a proof such as the following one. This is exactly the proof associated to
the design above, inside the behaviour which interprets the conclusion of the derivation.

0 ` A
`↓ >, A

↓ A⊥ `↓ >

0 ` B
`↓ >, B

↓ B⊥ `↓ >

` (↓↑ A) ⊗ (↓↑ B), ↓ >

No play satisfying justification can detect that α (↓ >) is used twice, visiting both branches
of the design. This is a typical phenomenon with designs, which also makes impossible to
detect interactively the use of weakening. The plays approach suggests a possible solution
in the use of a more liberal notion of play, as in [1].

If we do not have constants, and therefore all winning designs terminate by a fax, the
notion of linear play entails propagation, because we can always perform some η-expansions
to have enough space to allow all players to reach all addresses.

6 Further work

This work opens the way to several directions to be explored. A natural continuation is
to develop a presentation of Ludics based on disputes.

Moreover, since this work establishes a bridge between Ludics and Games Semantics,
we expect to be able to transfer experiences and techniques between the two settings.
The use of plays rather than views (chronicles) could allow for a finer analysis. We have
seen that deseigns correspond to innocent strategies. It is a natural question to ask what
would be the analogous of general strategies in Ludics. Conversely, to what would lead
the notion of location in Games?

Several developments arising in different contexts appear to study structures and con-
structions which are closely related: designs and a number of variations on the theme of
innocent strategies, behaviours, orthogonality and double gluing. Our work establishes
the bases for a deeper investigation in this direction.

Behaviours and Games Let us sketch the way one would follow to develop a pre-
sentation of Ludics based on disputes.

It is immediate that two strategies belonging to opposite players are orthogonal if they
intersect in a play.

Definition 6.1 (Orthogonality) S ⊥ T if S ∩ T = p.

One can then proceed as in [6]. In particular, one can define a type (a game, a
behaviour) in an internal way, that is without setting special rules for each type:

Definition 6.2 (Behaviours / Games) A game G on the arena `<> is a set of inno-
cent strategies on the same arena equal to its biorthogonal.

One can retrieve a more standard definition of game when looking at the incarnation.

17

Definition 6.3 (Incarnation) The incarnation |S| of S is the set of disputes which occur
both in S and a strategy of G⊥.

A strategy is incarnated or material when S = |S|. We define the incarnation |G| of
G as the set of its material designs

It is immediate that we have again pleasant phenomenons such as that A&B = A ∩ B
and |A&B| = |A| × |B|.

The “standard” definition of games would correspond to a direct definition of the
incarnation.

A Designs as set of chronicles

Designs are described as set of chronicles. The definition in [6] is in two steps:
definition of chronicle, that is a formal branch in a focalized sequent calculus derivation,
definition of a coherence condition making a set of chronicles all belong to the same

proof.

Definition A.1 (Chronicle) A chronicle c of base Ξ ` Λ is a non empty sequence of
actions 〈κ0, κ1,κn〉 such that:

Alternation. The polarity of κj is equal to that of the base for j even, opposite for j
odd.

Daimon. For j < n, κj is proper.
Positive focuses. The focus of a positive action κp either belongs to the basis or is an

address ξi generated by a previous action: κq = (ξ, I), i ∈ I and κq < κp.
Negative focuses. The focus of a negative action κp either belongs to the basis or is an

address ξi generated by the previous action: κp−1 = (ξ, I), i ∈ I
Destruction of Focuses. Focuses are pairwise distinct.

Definition A.2 (Coherence) The chronicles c, c′ are coherent when
Comparability. Either one extends the other, or they first differ on negative actions,

i.e. if c = c ∧ c′ ∗ k ∗ e,
c = c ∧ c′ ∗ k′ ∗ e′ then κ, κ′ are negative.

Propagation. If c, c′ first differ on κ, κ′ with distinct focuses, then all ulterior focuses
are distinct.

Definition A.3 (Design) A design D of base Ξ ` Λ is a set of chronicles of base Ξ ` Λ
such that:

Arborescence. D is closed under restriction.
Coherence. The chronicles of D are pairwise coherent.
Positivity. If c ∈ D has no extension in D, then its last action is positive.
Totality. If the base is positive, then D is non empty.

B Normalization

Normalization of a closed net, that is of a cut-net where all addresses are cut, is especially
simple. We start on the first action of the main design (the only design starting with a
positive action).

18

Transitions: When entering a positive action, we exit at the corresponding negative
action (then changing of design), and move to the unique action that follows.

Initialization:

Main

Di

... ...

σ−

Dj

+

Transitions:

+ σ+

Observe that if we do not work with slices, in a design the same action may appear several
times, because of additive duplications. However, the sequence of visited actions carries
all information needed to retrieve the position of any its action (Proposition 3.6). In
particular, when we enter a positive action κ+ we are able to retrieve the chronicle that
identifies the negative action κ− to which we have to move. Assume p is the sequence of
actions we have visited so far, and we enter the positive action κ+. We then move to the
action κ− identified by the chronicle d = ppκ−

q.

C Generating Disp D

If we want to calculate all possible disputes on a given design D we would not generate
all possible designs of opposite base and execute the normalization... What we can do
is to trace all possible paths, and verify that they correspond to a counter-slice. As we
have just seen, this amounts to verify that the path is a dispute/play. This guarantees
that the tree of actions of opposite polarity satisfies the the sub-address condition, which
is the sense of the visibility condition for plays. Actually, calculating the paths which are
disputes is also the easiest way to calculate the orthogonal of a design. Let us write a
procedure to do this.

Definition C.1 A chronicle c is positive (negative) if its last action is positive (negative).
Let us indicate by D+ the subset of positive chronicles of D. We call it the positive part
of D.

Observe that:
1. From D’s point of view, a disputes always terminates on a positive action: either †

is in D (therefore normalization terminates on the chronicle ppq
X†) or † is in E, therefore

the last action of p is negative in E and positive in D.
2. Moreover:

D
+ ⊆ Disp D

because for any c+ ∈ D, [D
 Oppc] = c.

19

A completed dispute will always stop on a positive action (possibly †). To do an
exhaustive search, we trace all possible positive paths of a given length, starting from the
minimal ones.

Definition C.2 (Plays(D)) Let D be a design of base X. We define:

P0(D) = {c ∈ D+ : c is minimal for v}

Pn+1(D) = {pab s.t. p ∈ Pn(D) and ∃ cab ∈ D+ : pa is a legal play and ppaq
X =

ca}

Plays(D) =
⋃

n Pn(D), augmented of {ε} if D has negative base.

This procedure describes all disputes on D. It is easy to understand the step Pn+1

if one has in mind normalization. Let Ep be a counterdesigns that with D realizes the

dispute p: p = [D
 Ep]. If ppq
X ∈ D is not followed by † then ppq

X = d− ∈ E, which
continues with †.

Let us look for a design Epab, such that [D
 Ep] = pab. To do so, we substitute †
with an action a such that that (i) the new design will converge against D and (ii) d−a+

is actually chronicle (it must satisfy the sub-address condition). Therefore we need an
action a s.t. (i) ppaq = ca is in D and (ii) pa is a play. Since ppa+q = da+, visibility
implies that a+ is justified by an action in d.

Normalization will proceed as with Ep until the token is on the last action of d−. From
here it moves on to a, and then to a in ppaq

X = ca− ∈ D. There is a unique action b
which completes this chronicle. Either b is †, and we are done, or we add b+ to E (we
have seen several times that this is always possible) and complete the new chronicle with
†. We have built the design Epab we wanted.

Proposition C.3 Disp D = Plays(D).

Proof. Let pab+ ∈ Disp D. Being a dispute, pa v pab is a legal position. For
the induction, assume p ∈ Plays(D). There is an i such that p ∈ Pi(D). Moreover,
pqpabq = cab ∈ D+ and ppaq = ca. Hence, pab ∈ Pi+1.

Let p ∈ PlaysD. If p ∈ D+, then p ∈ Disp D. Since p is a play, we already know that
Pull(p) is a cut-net and that [PullX(p)
 PullX(p)] = p. We check that PullX(p) ⊆ D,
by induction on the length of p. Assume p = qab+ and PullX(q) ⊆ D. There is an i for
which qab ∈ Pi, pqaq = ca, and cab ∈ D+. Therefore pqaq = ca and pqabq = cab are both
chronicles of D, hence PullX(qab) ⊆ D.

�

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general
references. In Proceedings LICS’98. IEEE Computer Society Press, 1998.

[2] S. Abramsky and G. McCusker. Computational Logic, chapter Game semantics. Springer-
Verlag, 1999.

20

[3] V. Danos, H. Herbelin, and L. Regnier. Games semantics and abstract machines. In Proceedings
LICS’96. IEEE Computer Society Press, 1996.

[4] C. Faggian. On the Dynamics of Ludics. A Study of Interaction. PhD thesis, Université
Aix-Marseille II, 2002.

[5] J.-Y. Girard. Geometry of interaction i: Interpretation of system f. In Z. A. Ferro R.m
Bonotto C., Valentini S., editor, Logic Colloquium 88, pages 221–260. North Holland, 1989.

[6] J.-Y. Girard. Locus solum. Mathematical Structures in Computer Science, 2001.

[7] R. Harmer. Games Semantics and Full Abstraction for Nondeterministic Languages. PhD
thesis, Imperial College, 1999.

[8] M. Hyland and L. Ong. On full abstraction for PCF. Information and Computation, 2000.

[9] G. McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive Types.
PhD thesis, Imperial College, University of London, 1996.

21

