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Abstract

This thesis addresses the problem of verifying distributed infrastructure for mobile computa-
tion. In particular, we study language primitives for communication between mobile agents.
They can be classified into two groups. At a low level there are location dependent primitives
that require a programmer to know the current site of a mobile agent in order to communicate
with it. At a high level there are location independent primitives that allow communication
with a mobile agent irrespective of any migrations. Implementation of the high level requires
delicate distributed infrastructure algorithms. In earlier work of Sewell, Wojciechowski and
Pierce, the two levels were made precise as process calculi, allowing such algorithms to be ex-
pressed as encodings of the high level into the low level; a distributed programming language
Nomadic Pict has been built for experimenting with such encodings.

This thesis turns to semantics, giving a definition of the core language (with a type system)
and proving correctness of an example infrastructure. This involves extending the standard
semantics and proof techniques of process calculi to deal with the new notions of sites and
agents. The techniques adopted include labelled transition semantics, operational equiv-
alences and preorders (eg. expansion and coupled simulation), “up to” equivalences, and
uniform receptiveness. We also develop two novel proof techniques for capturing the design
intuitions regarding mobile agents: we consider translocating versions of operational equiv-
alences that take migration into account, allowing compositional reasoning; and temporary
immobility, which captures the intuition that while an agent is waiting for a lock somewhere
in the system, it will not migrate.

The correctness proof of an example infrastructure is non-trivial. It involves analysing the
possible reachable states of the encoding applied to an arbitrary high-level source program.
We introduce an intermediate language for factoring out as many ‘house-keeping’ reduction
steps as possible, and focusing on the partially-committed steps.
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Chapter 1

Introduction

The explosive increase of the Internet’s popularity has quickly been exploited by users, pro-
grammers and business alike, as evident from the rapid growth of Internet applications and
electronic commerce. The development of network applications are often hindered, however,
by many problems particular to large area networks: those of efficiency, reliability, and secu-
rity. Mobile computations, in which agents may move between machines, are considered by
many to be a promising paradigm for thinking about and structuring network applications.
Chess et al. in their assessment [CHK97] argued that, while mobile agents retain no par-
ticularly strong advantages over other alternatives in implementing certain functions, they
provide a generalised framework for solving many existing problems. Furthermore, mobile
agents also enable new, derivative network services and hence businesses.

An essential feature of mobile computation is the ability of agents to interact. This is how they
access resources (on physical machines as well as on other agents) and exchange information.
Existing technologies offer a variety of ways in which agents may interact — they can be
classified as location dependent (LD) or location independent (LI) interactions. The former
requires an agent to know the exact location of the target agent it wishes to interact with;
the programmers must also ensure that the target agent does not migrate away while the
message is routed to the destination. For ease of writing application using mobile agents,
we need the latter form of communication which allows agents to interact without explicitly
tracking each other’s movement.

Location-independent communication is not supported by the standard network technology.
Several programming languages which provide location independence (eg. Facile [TLK96] and
the Join language [FGL+96]) have some distributed infrastructure algorithms hard-coded into
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2 CHAPTER 1. INTRODUCTION

their implementations. It is problematic to apply this technology to wide-area networks for at
least two reasons. First, it should be possible to provide different infrastructure algorithms
for different applications, so that one may choose an algorithm with satisfactory range of
performance matching the requirement of each application. Secondly, distributed algorithms
are delicate and error-prone; the correctness of their behaviour is crucial, but difficult to
verify without clear semantics or levels of abstraction. A wide-area programming language
should therefore allow more flexibility by providing a low-level abstraction for distribution
and network communication; location-independence (or other higher-level abstraction) can
then be expressed in terms of the low-level abstraction, using the modularisation facilities of
the language.

In [SWP99], the two levels of abstraction were made precise by giving them corresponding
high- and low-level Nomadic π-calculi. The calculi are extensions of the asynchronous π-
calculus [MPW92] with the notions of sites and agents. Programming using these notions
requires new primitives: the low-level calculus adds those for agent creation, migration of
agents between sites, and location-dependent communication between agents. To these,
the high-level calculus adds a primitive for location-independent communication, suitable
for writing applications. A distributed infrastructure algorithm for supporting location-
independent communication can then be expressed as an encoding from the high-level calculus
to the low-level calculus. The earlier work of Sewell et al. [SWP99] gave the syntax, a
reduction semantics of Nomadic π-calculi, as well as two such encodings, based on central-
forwarding-server and forwarding-pointer algorithms. A programming language based on the
calculi, Nomadic Pict, has been implemented by Wojciechowski [WS99, Woj00a], building on
the Pict implementation of Pierce and Turner [PT00].

The focus of this thesis is on developing the semantics and proof techniques for verifying
distributed infrastructure algorithms. This involves extending the existing techniques of
process calculi to deal with the new notions of sites and mobile agents. Mobile agents, in
particular, require novel semantic techniques for capturing design intuitions, such as “while
an agent is waiting for an acknowledgement from the daemon, it may not migrate.” Being
able to verify distributed infrastructures gives one an assurance that agents may always
communicate in the location-independent mode, even in the most complex programs involving
frequently-migrating agents. It is also a step towards a semantic foundation of richer wide-
area distributed computing, which one may use for verifying correctness and robustness
properties of programs in the presence of failure and malicious attack.

This chapter introduces some of the concepts and keywords relating to mobile computations.
In Section 1.1, we give a broad overview of mobility in wide-area networks. We briefly discuss
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various means, advantages and areas of mobility (including process migration, mobile-device
computing and mobile agents). Section 1.2 discusses the distributed infrastructure needed
for supporting mobility and gives various existing examples. We give a few reasons why they
are seen as problematic and a major challenge in employing mobility in wide-area networks.
Section 1.3 discusses verification of such infrastructures: why it is necessary, why it is hard,
and what support is required. We describe the Nomadic π-calculi in Section 1.4 and give
reasons why they are suitable for such a task. In all these sections, we refrain from discussing
in detail the related implementation issues. Readers may refer to various overviews and
surveys [FPV98, MDW99, Woj00a] for further details and background. In Section 1.5, we
outline the contribution this thesis made to research on the semantics and verification of
programming languages with mobility. We conclude this chapter by giving the outline of the
content of this thesis.

1.1 An Overview of Mobile Computation

The term “mobile computation” is used in several contexts, and can sometimes cause confu-
sion. Milojic̆ić et al. in [MDW99] discussed mobility in three major areas: process migration,
mobile computation and mobile agents.

• Process migration is the act of transferring a process between two computers. A
process here is an operating system abstraction that comprises the code, data and
operating system state associated with an instance of a running application. Tradition-
ally, process migration is used for enabling load distribution (by moving processes to
lightly-loaded machines) and fault resilience (by moving processes from machines that
are likely to fail). An aim of systems supporting this type of mobility is to provide
transparency to the users, making processes appear as though they were running on
the same machine.

Systems supporting process migration can be classified as those which are integrated
with the operating system and those which are running at the user level. The former
includes the operating systems MOSIX [BL85, BS85], Sprite [OCD+87, DO91], and
Charlotte [AF89]. The latter are typically less efficient, but simple to maintain and to
port to new systems. These include Condor [LS92] and Emerald [JLHB88].

• Mobile computation involves the physical movement of hardware, such as laptop
and palmtop computers. These devices are becoming increasingly popular; many of
today’s mobile phones, for example, provide Internet access and electronic mail. Phys-
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ical mobility shares similarities with “logical” process mobility, but there are specific
issues as well — for example, disconnected operation (an ability of devices to perform
computation while disconnected to the network), and the problem of limited resources
(eg. battery). Readers may refer to [FZ94] for an overview of challenges in this area.
This type of mobility is beyond the scope of this thesis. We shall use the terms device
mobility when we need to refer this type of mobility. We also use the term mobile-device
network for referring to network which supports device mobility.

• Mobile agents are units of executing computation that can move between machines
in the network, autonomously executing tasks on behalf of users. Here Milojic̆ić et al.
distinguished mobile agents from mobile code (such as Java applets) by the fact that
mobile agents also carry data and possibly threads of control, allowing the execution of
an agent to be suspended and resumed once it moves to another site. They are generally
supported at the user level by programming languages such as Telescript [Whi95], Agent
Tcl [Gra96], Aglets [LO98], Voyager [Gla98], Concordia [WPW98], Sumatra [ARS97],
and JoCaml [Fes98, CF99].

Contrary to mobile agents, in the mobile code paradigm only code — and not data
or threads of control — may move from one site to another. In Java [GJS97, LY97],
an application can dynamically download applets from the network and execute them
locally. Other languages employing this paradigm include Facile [TLP+93], TACOMA
[JRS94], and M0 [Tsc94].

All these types of mobility offer many benefits, including ability to move towards a distributed
resource (and hence reduce network overhead), ease of reconfiguration, increases in reliabil-
ity, and (for mobile-device networks) support for disconnected operations. Mobile agents,
in particular, are intended to be used for programming wide-range of applications, includ-
ing electronic commerce, software distribution and updates, information retrieval, system
administration, and network management.

1.2 Infrastructures and Location-Independence

In order to employ mobility in global networks and make use of their services, some underlying
mechanism (which we shall refer to as distributed infrastructure) is required for supporting
the following.

• Mobility This includes support for movement of processes, agents and devices, dis-
connected operation, and binding to local resources. Moving an agent, for example,
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involves suspending its execution, encoding the agent for transmission, transmitting to
the new host, decoding and resuming the execution at the new host.

• Interaction In performing its tasks, an agent should be able to interact with its host,
with other agents, and with the users. This is how an agent will access resources (where
such resources can be on its hosts or on other agents), and exchange information. In a
mobile-device network, an infrastructure should ensure that packets sent to a moving
host do not get lost and hence eventually reach their target.

• Heterogeneity Users of the global network are likely to access services from different
machine environments. The distributed infrastructure must therefore allows agents to
be executed on machines of any type of architecture.

• Security This is one of the major concerns of mobile computation: how to protect
agents from hostile execution environments, and how to protect execution environments
from hostile agents such as viruses and worms. An infrastructure should provide some
degree of protection (cf. [Nec97]).

There are numerous examples of distributed infrastructures. Mobile IP [IJ93] is a set of IP-
based protocols which enables mobile machines to keep their network connections while they
move in a network environment. Running an application written in a mobility-supporting
programming language (eg. Telescript) requires a wide-spread runtime system (the Telescript
Protocol) which enables agent transport and execution on heterogeneous machine environ-
ment. Other examples are object-based RPC systems, such as CORBA [OMG96] and DCOM
[EE98]; these provide transparent access to a distributed collection of objects, hiding the true
locations of objects and details of how messages are routed to their destinations.

Here we shall concentrate on support for interaction between agents. As discussed, these
can be classified as location dependent and location independent. In the first, an agent a

may interact with another agent b only if a knows the exact location of b. There are many
examples of this: Telescript agents must be at the same place in order to interact (using
an explicit meet operation); Agent Tcl uses an RPC-like mechanism, allowing client agents
to access services of (static) server agents, whose locations can be looked up from a name-
server agent. In the second, an agent can interact with another agent without knowing its
location. This allows agents to communicate without explicitly tracking movements of one
another. This is supported by many languages, such as Facile [TLP+93], Voyager [Gla98],
the Join language [FG96, FM97], MOA [MCR+96], and Mobile Object Workbench (MOW)
[BHDH98].
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Location independence, however, is not supported by standard network technologies. It
requires an infrastructure for tracking the movements of agents. Facile uses node servers to
forward messages on a channel to the site where such a channel is created. In Voyager, an
object may send a message to another object via its ‘virtual reference’ to object; these forward
messages to the actual target remote object. MOA and MOW use an explicit name server for
tracking locations of agents — agents are therefore required to register with the name server
and inform it whenever they move. The Join Language also uses similar mechanism, although
the interaction between agents and the name server is hidden in the implementation.

Sewell, Wojciechowski and Pierce [SWP99] argued that application of distributed infras-
tructures in wide-area networks is problematic for many reasons. First of all, distributed
infrastructure are somewhat application-specific — different applications require different
degrees of mobility, interactions and fault tolerance. This argument recalls that of Waldo et
al. [WWWK94], who argue against a unified view of objects which reside in the same ma-
chines and objects which reside in different machines. Programmers, they argued, should be
aware of latency, have a model of memory access, and take into account issues of concurrency
and partial failure. The lack of such an awareness can lead to systems that are unreliable
and incapable of scaling beyond small groups of machines. Similar polemic, although against
network transparency for supporting fault tolerance, is given by Vogels et al. [VvRB98]. The
second problem of distributed infrastructures, which is central to this thesis, is that they are
delicate and error-prone, which can make them difficult to reason about. We discuss this in
more detail in the next section.

1.3 Verifying Infrastructures

People hope to use mobile agents in a wide range of applications, including electronic com-
merce. Distributed infrastructures are necessary for mobile agents, and are therefore crucial
to such applications. Subtle errors of infrastructure algorithms could be disastrous — finan-
cially or otherwise. It is therefore natural to demand some sort of assurance that programs
will behave as they are expected. The formal proof of correctness is known as verification.

Verifying distributed infrastructures is difficult without clear level of abstraction or semantic
definition. The descriptions of algorithms employed in Mobile IP, and of the agent tracking
mechanisms mentioned above, are given informally in natural language. This can be am-
biguous since natural language text cannot sufficiently describes algorithms which are highly
concurrent and require delicate mechanisms for ensuring absence of race conditions, deadlock
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and other errors. Besides, no formal properties can be derived from such description, given
the lack of formal semantics.

There are many existing methods capable of verifying distributed algorithms — most promi-
nent are perhaps the I/O automata model [LT87, LT88] and mobile UNITY [RMP97] (an
overview of these and other methods is given in Chapter 8). The problem with the exist-
ing methods, as Garland and Lynch [GL98] argue, is the lack of formal connection between
verified designs and the corresponding final code. It is often feasible to prove a distributed
algorithm correct, whether by hand or by using some mechanised tools, such as theorem
provers. The verified algorithm, however, must be translated by hand from the pseudo-code
or other mathematical constructs in which it was expressed into a real distributed program-
ming language (eg. C++ or Java) before it can be used in a real distributed systems. This
process can be difficult, time-consuming and error-prone. A programming language for dis-
tributed systems should therefore be suitable for both verification and code generation. This
can be problematic, for the features which make a language suitable for verification (ax-
iomatic style, simplicity and nondeterminism) are different from those that make it suitable
for code generation (operational style, expressive power and determinism).

1.4 Nomadic π-Calculi

The Nomadic π-calculi [SWP99] have been formulated out of the need for expressing dis-
tributed infrastructures in a precise manner, for experimenting with different underlying al-
gorithms, and for reasoning about them. The calculi offer a two-level framework: the low-level
consists of a set of well-understood, location-dependent primitives for programming mobile
computations — agent creation, agent migration, and communication of asynchronous mes-
sages between agents; the high-level adds a location-independent primitive, allowing agents
to interact irrespective of where they are, convenient for writing applications. Distributed
infrastructures can be expressed precisely as translations from the high-level calculus to the
low-level calculus. The operational semantics of the calculi provide a precise understanding
of the algorithms’ behaviour. This supports proofs of their correctness and, ultimately, of
their robustness.

The calculi are suitable for verification of distributed and mobile computations for two rea-
sons. Firstly, their theoretical basis is supported by the fact that it is based on an asyn-
chronous π-calculus [MPW92], which offers a clear treatment of concurrency and process
communication. The theoretical basis of the π-calculus has become solid over the years,
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providing a variety of techniques for reasoning about process behaviour. It has been criti-
cised for the lack of notions of locality and distribution — arguably the two most essential
features in distributed systems. Nomadic π addresses this by adding the notions of sites
and agents, allowing distribution and locality to be precisely described. Secondly, programs
expressed in Nomadic π-calculi can be used for generating executable code, since Nomadic
Pict, a programming language based on the calculi, has been implemented by Wojciechowski
[WS99, Woj00a, Woj00b]. It builds on the Pict language of Pierce and Turner [PT00], a
concurrent, though not distributed, language based on the asynchronous π-calculus. Pict
supports fine-grain concurrency and the communication of asynchronous messages. To these,
low- and high-level Nomadic Pict add location-dependent and location-independent primi-
tives, corresponding to the two calculi.

In contrast to other languages which provide location-independent primitives, Nomadic Pict
allows programmers to provide their own infrastructure for an application at compile time.
An arbitrary infrastructure for implementing location-independent primitives can be ex-
pressed as a user-defined translation into the low-level language, which can then be deployed
dynamically at runtime. The ease of expressing infrastructure algorithms encourages pro-
grammers to experiment with wide-range of infrastructures for applications with different
migration and communication patterns. The language has been used for prototyping a wide
range of infrastructures, from the simplest centralised-server solution to federated algorithms
supporting disconnection, suited for different applications [Woj00a, WS99].

1.5 Thesis Contribution

The main contribution of this thesis is to develop semantic theories and proof techniques of
Nomadic π-calculi. Despite the strong theoretical foundation and semantic techniques of its
underlying formalism, verifying distributed infrastructures in Nomadic π involves a number
of difficulties. Firstly, the new notions of sites and agents, together with their primitives,
require some adaptation of the existing work — type systems, operational semantics and
proof techniques. The adapted foundation must then be validated by proving some crucial
properties (such as subject reduction and congruence results) as well as properties which are
useful in proofs. The proofs of such properties are often similar to those of existing pro-
cess calculi, although the new notions and constructs generally introduce some unforeseen
difficulties and complication. Secondly, new proof techniques are required to capture the
design intuitions regarding mobile agents. In this thesis we develop two novel techniques.
Translocating equivalences allows behaviour of subsystems to be tested separately, provided
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that the testing takes into account the possibility of agents being moved by other subsys-
tems. Temporary immobility captures the intuition that while an agent is waiting for a lock
somewhere in the system, it may not migrate.

The techniques are illustrated by a proof that an example algorithm is correct w.r.t. coupled
simulation.

1.6 Outline

This thesis consists of four parts, with the first three organised in a linear structure. The
first part defines Nomadic π in three chapters:

• Chapter 2 gives the syntax, an informal description of the primitives and an example
infrastructure using a central-forwarding-server algorithm;

• Chapter 3 gives the type system, whose features includes base types, tuples, polymor-
phism, and input/output and static/mobile subtyping for channels and agents; and

• Chapter 4 gives two operational semantics for the calculi: the reduction semantics,
which captures the informal understanding of the calculi, and the labelled transition
semantics, which is required for compositional reasoning. This involves extending the
standard π-calculus reduction and labelled transition semantics to deal with agent
mobility, location-dependent communication, and a type system. We show some basic
results such as subject reduction and the correspondence between the semantics.

Some of the material in Chapter 2 has previously been published by other authors. The
description of the calculi, the example infrastructure and the reduction semantics (in Chapter
4) are drawn from the works of Sewell, Wojciechowski and Pierce [SWP99, WS99]. The
precise definition of the type system is new, although an informal description of the type
system for Nomadic Pict was given in [WS99, Woj00a].

The second part (Chapters 5 and 6) investigates semantic and proof techniques that are used
for verification of the example algorithm. These include:

• considering translocating versions of operational equivalences and preorders (bisimula-
tion [MPW92] and expansion [SM92] relations) that are preserved by certain sponta-
neous migrations;

• proving congruence properties of some of these, to allow compositional reasoning;
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• dealing with partially-committed choices, allowing a statement of the main correctness
result in terms of coupled simulation [PS92]; and,

• identifying properties of agents that are temporarily immobile, waiting on a lock some-
where in the system.

The third part of the thesis, Chapter 7, gives the proof of correctness of the example infras-
tructure given in Chapter 2. The structure of the proof is similar to Nestmann’s correctness
proof of choice encodings [NP96]. This proof involves analysing the possible reachable states
of the encoding applied to an arbitrary high-level source program. We introduce an inter-
mediate language for factoring out as many ‘house-keeping’ reduction steps as possible, and
focusing on the partially-committed steps. An overview of the main techniques and results
has been published as [US01].

The last two chapters form the conclusion of this thesis. Chapter 8 discusses related work
on verification of distributed algorithms and mobility. We compare the expressiveness, the
design choices and the proof techniques of many existing prominent models of distributed and
mobile computation. Chapter 9 summarises and discusses the achievements of this thesis and
points to future work, with emphasis on the semantics of mobile computation with failures
and security.

The details of the proofs of many results used in this thesis are given in the appendices.



Chapter 2

Background

The Nomadic π-calculi [SWP99] are concurrent process calculi with communication prim-
itives. They are based on an asynchronous π-calculus [HT91, Bou92] with various ideas
originated from the join calculus [FGL+96] and dpi [Sew98]. The calculi inherit many prop-
erties from the asynchronous π-calculus which are inherent in real-world distributed systems,
most notably concurrency and asynchronous message passing. Nomadic π-calculi add notions
of sites and agents, allowing distributed and mobile computation to be precisely described.

The calculi consist of two levels. The low-level calculus only supports location-dependent
primitives, which requires an agent to know the current site of the target agent it wished to
communicate with. The high-level calculus supports both location-dependent and location-
independent primitives, which allows agents to communicate regardless of where they are.
This two-level framework allows distributed infrastructures for supporting the high-level
primitive to be treated rigorously as translations between calculi.

The design of the calculi involves a delicate trade-off — many standard distributed infrastruc-
ture algorithms require non-trivial local computation within agents, yet for the theory to be
tractable the calculi must be kept as simple as possible. At the level of computation, we add
primitives for agent creation, agent migration and inter-agent communication to those of an
asynchronous π-calculus. Other computational constructs that will be needed, eg. for finite
maps, can then be regarded as lightweight syntactic sugar, as in the programming language
Pict.

This chapter introduces the calculus, giving its syntax and an informal description. Section
2.1 — intended for readers who are not familiar with the π-calculus — gives background
on an asynchronous π-calculus: its primitives together with their informal description, and

11
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an operational semantics. Section 2.2 then turns to Nomadic π. We begin by informally
describing the calculi with an example, illustrating basic entities: channels, agents and sites.
We give the definition of types, (located) type contexts and values (Section 2.2.1, Section
2.2.2 and Section 2.2.3), before giving the syntax of the two-level calculi in Section 2.2.4, and
describe each of the constructs informally. Section 2.3 gives an example distributed infras-
tructure for supporting LI communication, based on a central-forwarding-server algorithm.
This infrastructure is to be proved correct in Chapter 7, and many of the proof techniques
developed in Chapter 6 are designed with this infrastructure in mind.

2.1 Asynchronous π-Calculus

The π-calculus of Milner, Parrow and Walker [MPW92, Mil93b] is a model of concurrent
computation. It emerged as an elaboration and refinement of the Calculus for Communicat-
ing Systems (CCS) [Mil89] by allowing fresh channel names to be dynamically created and
exchanged in communication. This makes it expressive enough to describe dynamically re-
configuring networks. The calculus has a clear treatment of concurrency and communication,
which are two of the most important features of distributed systems. For this reason, it has
been used as the basis for developing many techniques for programming, specification and
for reasoning about distributed systems.

The π-calculus has two kinds of entities: channels and processes. A channel can be thought of
as an abstraction of a physical communication network. It allows processes to communicate
by exchanging data. A process here is a running program capable of multiple simultaneous
activities. It may perform an internal computation or interact with its environment by
inputs or outputs. The notion of π-processes is similar to that in the field of operating
systems, where a process consists of an execution environment together with one or more
threads. Communication occurs when one process sends a message to a channel and another
(concurrent) process acquires the message by receiving from the same channel.

There are many variants of the π-calculus. Their differences range from essentially minor
choices of notation and style, to important choices that are driven by the application or theory
desired. In this section we describe an asynchronous, choice-free variant of the π-calculus,
similar to that of Boudol [Bou92] and of Honda and Tokoro [HT91]. This description builds
on that given in [Sew00].
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2.1.1 Syntax

We take an infinite set X of names, ranged over by a, b, c, x, y, . . ., and τ 6∈ X . The process
terms, ranged over by P,Q,R, are those defined by the following grammar.

P ::= 000 null
| P |Q parallel composition
| x!!!z output z on channel x

| x???y→P input from channel x

| ***x???y→P replicated input from channel x

| newnewnew y ininin P new channel name creation

The term 000 represents an inactive process, which cannot perform any action. The term P |Q
means that P and Q are concurrently active, and can also communicate. Intuitively, an
asynchronous output x!!!z sends the name z on channel x. An input process x???y→P waits
to receive a name on x, substitutes y in P by this name after reception, and continues with
P . A replicated input ***x???y→P behaves similarly, except that it remains after the reception
and so may receive another value. Placing the restriction operator newnewnew y ininin before a process
P ensures that y is a fresh channel in P — ie. messages sent and received on y will never
be mixed with messages sent on any other channel created elsewhere, even if such a channel
happens to be named y. In x???y→ P , ***x???y→ P and newnewnew y ininin P , the name y is bound in
P . We work up to alpha conversion of bound names so as to avoid clashes of names (or
capturing). We write {z/y}P for the process term obtained from P by replacing all free
occurrences of y by z, renaming as necessary to avoid capture.

Here we exclude the constructs for synchronous output and a choice operator + from the
original definition of the π-calculus. A synchronous output x!!!z → P sends the name z on
channel x, and continues with P after z has been received by an input process. The expression
P + Q denotes an external choice between P and Q: either P is allowed to proceed and Q

is discarded, or vice versa. The full choice is discarded here as it is not very useful for
programming in our calculi. Input-only choice, which appears more useful, can be encoded
in choice-free calculi (see [NP96] for details). Asynchronous calculi share many similarities
with asynchronous message delivery of packet-switched networks, and so are often used as
starting points for distributed calculi. We omit discussion of other choices of primitives,
such as recursion, higher-order processes, join patterns and variations of concrete syntax.
Overviews and discussion can be found in [Sew00, Par00].
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2.1.2 Operational Semantics

The simplest form of operational semantics of primitives of the π-calculus is a reduction
relation between process terms. We say that P reduces to Q, written P −→ Q, if P may
perform a single step of computation to become Q. We shall first give some examples of
reductions before giving its formal definition.

The calculus allows communication between concurrent input and output on the same chan-
nel. For example, the concurrent components of the expression x!!!z | x???y → P can com-
municate. The name z is being sent along channel x, so the whole expression reduces to
000 | {z/y}P . The inactive processes 000 can be discarded. To illustrate the substitution {z/y},
let P be y!!!w. This process reduction can therefore be written as:

x!!!z | x???y→y!!!w −→ z!!!w

Observe that names are first-class values in the π-calculus: they can be used for output, for
input, and also be transmitted as data. In the above example, the name z, although used as
datum in x!!!z, after the reduction, is used for sending the name w.

A replicated input ***x???y→P behaves like an arbitrary number of parallel copies of x???y→P .
The replicated input can therefore be used for constructing a server which is always ready
to receive further input. Below, we show a print server which prints everything it receives to
the standard output.

print!!!foo | ***print???y→stdout!!!y −→ stdout!!!foo | ***print???y→stdout!!!y

Replicated inputs also allow infinite computations. As an example, the process ***loop???[]→
loop!!![] responds to a signal on loop by repeating the signal, thus leading to an infinite
computation.

loop!!![] | ***loop???[]→ loop!!![] −→ loop!!![] | ***loop???[]→ loop!!![]

−→ · · ·

Nondeterminism occurs when there are many outputs on the same channel competing for the
same input, or vice versa.

x!!!a | x!!!b | x???y→000

x!!!a x!!!b
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We may use newnewnew-binders to generate fresh names which are different from all other names
outside its scope. Such binders can be used for preventing unintended nondeterminism. For
example, we may modify the above example by binding x to x!!!b | x???y→000 — the name x in
x!!!a is now different from x under the binder. In this case, the race condition does not occur.

x!!!a | newnewnew x ininin (x!!!b | x???y→000) −→ x!!!a | newnewnew x ininin 000

Note that the term on the left above can be alpha-converted to

x!!!a | newnewnew x′ ininin (x′!!!b | x′???y→000).

A private name can be transmitted by output outside its original scope. The example below
shows a private name z being sent along channel x outside the scope of newnewnew z ininin binder,
which must therefore be extended. Alpha conversion may be used to avoid capturing of other
instances of z in R. This is known as scope extrusion.

newnewnew z ininin (x!!!z | P | Q) | x???y→R −→ newnewnew z ininin (P | Q | {z/y}R)

If we assume further that P has no free instances of y, the the process on the right can be
written as P | newnewnew z ininin (Q | {z/y}R). This demonstrates the ability of the π-calculus for
modelling dynamic reconfiguration (earlier referred to as mobility). The channel z initially
serves as a data path between processes P and Q; after the reduction, however, it serves as
that between Q and {z/y}R. The combination of sending channel names and scope extrusion
is the essential difference between the π-calculus and earlier process calculi such as ACP, CCS
and CSP.

P | 000 ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

newnewnew x ininin newnewnew y ininin P ≡ newnewnew y ininin newnewnew x ininin P

P | newnewnew x ininin Q ≡ newnewnew x ininin (P | Q) if x 6∈ fv(P )
newnewnew x ininin P ≡ P if x 6∈ fv(P )

Figure 2.1: Structural congruence for a simple π-calculus

The reduction semantics for our simple π-calculus can be defined in two steps. First we define
a structural congruence (written ≡). This is an equivalence relation, which formalises the
intuition that we can always rearrange a reducible process so as to enable reduction. These
structural rearrangement includes changing the order of parallel composition, enlarging the
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scope of bindings, garbage-collecting null processes and names which will no longer be used. It
is the smallest equivalence relation that is a congruence and satisfies the axioms in Figure 2.1.

The second step is to define the reduction rules, capturing intuitions explained by the above
examples. The reduction relation −→ is the smallest binary relation over process terms
satisfying the axioms in Figure 2.2.

(Pi-Comm)
x!!!z | x???y→P −→ {z/y}P

(Pi-Replic)
x!!!z | ***x???y→P −→ {z/y}P | ***x???y→P

(Pi-Prl)
P −→ Q

P | R −→ Q | R

(Pi-New)
P −→ Q

newnewnew x ininin P −→ newnewnew x ininin Q

(Pi-Equiv)
P ′ ≡ P −→ Q ≡ Q′

P ′ −→ Q′

Figure 2.2: Reduction rules for a simple π-calculus

The reduction semantics described only defines the internal reduction of processes. An al-
ternative style of semantics is to give a labelled transition relation, specifying the potential
inputs and outputs of processes. This describes the interactions of processes with their envi-
ronment, and therefore is more suitable for compositional reasoning. We omit a discussion
of labelled transition semantics here as it is to be treated in detail in Chapter 4.

The π-calculus is sufficiently expressive to be used as the basis for a programming lan-
guage. To demonstrate this, Pierce and Turner have developed the concurrent (though not
distributed) language Pict [PT00] for experimenting with programming in the π-calculus.
The Pict project explored the practical applicability of their theoretical work on type sys-
tems for the π-calculus [PS96, Tur96] and on the λ-calculus type systems with subtyping
[PT94, HP95, PS94b]. The type system of Pict incorporates subtyping, polymorphism and
a powerful type inference mechanism.

A major drawback of using the π-calculus for reasoning about realistic distributed applica-
tions is its lack of inherent notions of distribution, locality, mobility, and security. Processes
in the π-calculus seem to exist in a single contiguous location, since there exists no built-in no-
tion of distinct locations and of how locations affect execution of processes. Consequently, we
cannot precisely describe distributed or mobile computations. A growing body of literature
concentrates on the idea of adding discrete locations to a process calculus and considering
failures of these locations. We look at this in more detail in Section 8.1.
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2.2 Nomadic π-Calculi

In this section we describe the Nomadic π-calculi informally. We begin by recapitulating
from [SWP99] an example program in the low-level calculus showing how an applet server
can be expressed.

***getApplet???[a s]→
createcreatecreate b =
migrate tomigrate tomigrate to s→

(〈a@s′〉ack!!!b | B)
ininin 000

It can receive requests for an applet on the channel named getApplet ; the requests contain a
pair (bound to a and s) consisting of the name of the requesting agent and the name of the
site for the applet to go to. When a request is received the server creates an applet agent
with a new name bound to b. This agent immediately migrates to site s. It then sends an
acknowledgement to the requesting agent a (which is assumed to be on site s′) containing its
name. In parallel, the body B of the applet commences execution.

The example illustrates the main entities of the calculi: sites, agents and channels. Sites
should be thought of as physical machines or, more accurately, as instantiations of the No-
madic Pict runtime system on machines; each site has a unique name. Sites are ranged
over by s. Nomadic π-calculi do not explicitly address questions of network failure and re-
configuration, or of security. Sites are therefore unstructured; neither network topology nor
administrative domains are represented in the calculi. Agents are units of executing code; an
agent has a unique name and a body consisting of some process; at any moment it is located
at a particular site. We let a and b range over agent names. Channels support communication
within agents, and also provide targets for inter-agent communication — an inter-agent mes-
sage will be sent to a particular channel within the destination agent. Channels are ranged
over by c. New agents and channels can be created dynamically. The low-level Nomadic
Pict language is built above asynchronous messaging, both within and between sites. In the
current implementation inter-site messages are sent on TCP connections, created on demand,
but its algorithms do not depend on the message ordering that could be provided by TCP.

The inter-agent message 〈a@s′〉ack!!!b is characteristic of the low-level calculus. It is location-
dependent — if agent a is in fact on site s′ then the message b will be delivered, to channel ack
in a; otherwise the message will be discarded. In the implementation at most one inter-site
message is sent.
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2.2.1 Types

We require a type system for Nomadic π-calculi for two reasons, the first being its usual
purpose: to prevent the occurrence of execution errors during the runtime of a program.
Typing infrastructure algorithms requires an expressive type system, including primitive
types employed in programming languages (eg. booleans, integers, strings and tuples), as
well as parametric polymorphism [PS97], since an infrastructure must be able to forward
messages of any type (see the message and deliver channels in Figure 2.3). The second
reason is more specific: we require a type system which provides proof techniques that
can be used for proving infrastructure correct. We include input/output and static/mobile
subtyping, used in deriving computation steps which are functional (see Section 6.2.2) and
in composing processes that are related by translocating operational relations.

For the calculi to be tractable, we aim at a type system which is small, yet sufficient for
the above requirements. We take the rich type system of the Pict language [PT00] as our
starting point, discarding many features which, though useful for programming (eg. recursive
types and record subtyping), are likely to cause complication. We also exclude complex
data structures, such as maps, which are required for expressing infrastructures, but can be
expressed as an encoding (see Section 6.5).

We take an finite set T V of type variables of type variables, ranged over by X and Y , and a
set T , ranged over by B, of base types provided by the standard libraries of Nomadic Pict.
These base types includes Int, and Bool. The types defined for Nomadic π, ranged over by
T , are generated by the following grammar.

T ::= B base type
| Site site
| AgentZ agent
| ^̂̂IT channel type
| [T1 . . . Tn] tuple
| X type variable
| {|X|}T existential

Channels and agent types are refined by annotating them with capabilities. As in [PS96],
channels can be used for input only r, output only w, or both rw; these capabilities induce a
subtyping order. In addition, agents are either static s, or mobile m, as in [CGG99]. Agent
and channel capabilities are ranged over by Z and I respectively. We define a relation ≤ on
types and stipulate that a name x of type S can be used in the context where a name of type
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T is required if and only if S ≤ T . The formal definition of this relation is given in Section
3.2.

Note that we do not provide bounded quantification, which mixes subtyping with polymor-
phism, as in the type system of Pict. Bounded quantification allows the abstract type X of
an existential type {|X ≤ S|}T to be specified as a subtype of S, without revealing the exact
type of X. This gives rise to great expressive power at the cost of meta-theoretic complexity.
We therefore discard this feature.

The type variable X in {|X|}T binds in T ; we work up to alpha conversion of bound type
variables. The set of free type variables of a type T , written fv(T ), is defined as follows:

fv(B) def= ∅ fv(X) def= X

fv(AgentZ) def= ∅ fv(Site) def= ∅
fv(^̂̂IT ) def= fv(T ) fv({|X|}T ) def= fv(T )/{X}
fv([T1 . . . Tn]) def= fv(T1) ∪ . . . ∪ fv(Tn)

2.2.2 Type contexts

We work with located type contexts, ranged over by Γ, ∆, . . ., which assign types to names,
but also specify the site where each declared agent is located. The syntax is given below:

Γ def= • | Γ, X | Γ, x : AgentZ@s | Γ, x : T T 6= AgentZ

An example of a located type context is given below.

s : Site, s′ : Site, c : ^̂̂rwInt, a : Agentm@s, b : Agents@s′

The located type context declares two sites, s and s′, and a channel c, which can be used
for sending or receiving integers. It also declares a mobile agent a, located at s, and a static
agent b, located at s′.

In Nomadic π-calculi, names of type AgentZ and ^̂̂IT can be dynamically created, we may
refer to such names and types as being extensible. Correspondingly, a located type context
is said to be extensible if it contains no type variables and all names are of extensible types.
Such type contexts can be used for binding names to located processes (see later) and can
be extruded by channel communication.

Located type contexts are not only useful in typechecking, but also contain site annotations,
for use in the operational semantics, and consequently in the operational relations. We refer
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to located type contexts as location contexts whenever we wish to emphasise the presence of
site annotations.

The domain, range and free variables of a located type context Γ, denoted dom(Γ), range(Γ),
and fv(Γ), are defined as follows.

dom(•) def= ∅
dom(Γ, X) def= dom(Γ) ∪ {X}
dom(Γ, x : AgentZ@s) def= dom(Γ) ∪ {x}
dom(Γ, x : T ) def= dom(Γ) ∪ {x}

range(•) def= ∅
range(Γ, X) def= range(Γ)

range(Γ, x : AgentZ@s) def= range(Γ) ∪ {s}
range(Γ, x : T ) def= range(Γ) ∪ fv(T )

fv(Γ) def= dom(Γ) ∪ range(Γ)

Although located type contexts are defined as lists, the order in which the binders appears
in a list is not always important. We define ≡ to be an equivalence relation between located
type contexts closed under the following rules:

Γ1, X, Y, Γ2 ≡ Γ1, Y, X, Γ2 X 6= Y

Γ1, X, x : AgentZ@s, Γ2 ≡ Γ1, x : AgentZ@s, X, Γ2

Γ1, X, x : T, Γ2 ≡ Γ1, x : T, X, Γ2 X 6∈ fv(T )
Γ1, x1 : T1, x2 : T2, Γ2 ≡ Γ1, x2 : T2, x1 : T1, Γ2 x1 6= x2

Γ1, x1 : AgentZ1@s1, x2 : AgentZ2@s2, Γ2 ≡ Γ1, x2 : AgentZ2@s2, x1 : AgentZ1@s1, Γ2

x1 6= x2, x1 6= s2, x2 6= s1

Γ1, x1 : AgentZ@s, x2 : T, Γ2 ≡ Γ1, x2 : T, x1 : AgentZ@s, Γ2

x1 6= x2, x2 6= s

A located type context Γ is said to extend Ξ (denoted Γ ≥ Ξ) if there exists Ξ′ such that
Γ ≡ Ξ, Ξ′; in this case, we denote Ξ′ by Γ/Ξ.

2.2.3 Values, Patterns and Expressions

We let t range over constants — that is the members of any base type B. We assume that
the sets |B|, X and T V are disjoint from each other and from all products. Channels allow
communication of first-class values v, which can be constants, names, tuples and existential
packages. Values can be decomposed by the receiver through the use of patterns p. Patterns
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are of similar shape as values, with an addition of a wildcard pattern , allowing matching of
any value.

v ::= t | x | [v1 . . . vn] | {|T |} v

p ::= | x | [p1 . . . pn] | {|X|} p

We assume that p contains no duplicated names or type variables and that X is binding in
{|X|} p.

An existential package reveals the type which is bound in the existential type. For ex-
ample, if c is a channel of type ^̂̂rwInt, an existential package {|Int|} [c 5] has the type
T = {|X|} [̂^̂rwX X]; the package reveals the type variable X as Int. If d is a channel of
type ^̂̂rwBool then, a package {|Bool|} [d truetruetrue] is also of type T . A polymorphic server may
use an existential pattern {|X|} [x y] for decomposing such existential packages, so that eg.
the value matching y can be sent along the channel matching x.

The value grammar is extended with some basic functions to give expressions, ranged over
by ev. Basic functions, ranged over by f , include arithmetic operations and equality tests.

ev ::= t | x | [ev1 . . . evn] | {|T |} ev | f(ev1, . . . , evn)

The set of all basic functions, denoted F , is intended to include most functions which are
provided by Nomadic Pict libraries. For the time being, however, we restrict the basic
functions to maps from tuples of base types to a single base type — except for equality where
names of any type can be compared. Expressions are computed locally (in letletlet processes)
and, as for values, can be matched using patterns.

The evaluation relation eval(ev) defined over expressions is given inductively as follows:

eval(t) def= t

eval(x) def= x

eval([ev1 . . . evn]) def= [eval(ev1) . . . eval(evn)]

eval({|T |} ev) def= {|T |} eval(ev)

eval(f(ev1, . . . , evn)) def= f(eval(ev1), . . . , eval(evn))

We stipulate that all functions f ∈ F must be total functions (ie. if f maps tuples of type
(B1, . . . , Bn) to base type B then, for any t1 ∈ B1, . . . , tn ∈ Bn, f(t1, . . . , tn) is defined, and
is of type B). This ensures that evaluation of an expression always yields a reduction (see
Section 4.4).
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2.2.4 Processes

We formulate two forms of processes: basic and located processes. Basic processes describe
the threads of execution within each agent, and located processes describe the overall state
of the computation in which many agents may be concurrently executing. In this section, we
give the syntax for basic and located processes. This section is substantially a recapitulation
of [SWP99].

Basic Processes The syntax of basic process for the low-level calculus is given below:

P ::= 000 | P |Q | newnewnew c : ^̂̂IT ininin P

| c!!!v | c???p→P | ***c???p→P

}
π-calculus primitives

| ififif v thenthenthen P elseelseelse Q conditional
| letletlet p = ev ininin P let declaration
| createcreatecreateZ a = P ininin Q creation of new agent
| migrate tomigrate tomigrate to s→P agent migration
| iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q inter-agent communication

| 〈a〉c!!!v | 〈a@s〉c!!!v sugared outputs

The execution of the construct createcreatecreateZ b = P ininin Q spawns a new agent on the current
site (with mobility capability Z and body P ). After the creation, Q commences execution
in parallel with the rest of of the body of the spawning agent. The new agent has a unique
name which may be referred to both in its body and in the spawning agent. The name b is
binding in P and Q. Agent can migrate to named sites — the execution of migrate tomigrate tomigrate to s→P

as part of an agent results in the whole agent migrating to site s. After the migration, P

continues in parallel with the rest of the body of the agent.

The body of an agent consists of several basic processes in parallel — essentially many threads.
It uses π-calculus style interaction primitives. Execution of newnewnew c : ^̂̂IT ininin P creates a new
unique channel name c (accessible in I mode) for carrying values of type T ; c is binding in
P . An output c!!!v (of value v on channel c) and an input c???p→P in the same agent may
synchronise, resulting in P with the appropriate parts of the value v bound to the formal
parameters in the pattern p. A replicated input ***c???p→P behaves similarly except that it
remains after the synchronisation, and so may receive another value. The conditional process
ififif v thenthenthen P elseelseelse Q allows the boolean value v to be tested for its truth value and selects a
continuation process accordingly. The execution of the construct letletlet p = ev ininin P evaluates
expression ev and triggers P with the appropriate parts of the evaluated value eval(ev)
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bound to the formal parameters in the pattern p. In c???p→P , ***c???p→P and letletlet p = ev ininin P

the names in p are binding in P .

Finally, the low-level calculus includes a single primitive for interaction between agents. The
execution of iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q in the body of agent b has two possible outcomes.
If the agent a is on the same site as agent b then the message c!!!v will be delivered to a (where
it may later interact with an input) and P will commence execution in parallel with the rest
of the body of b; otherwise the message will not be delivered and Q will execute as part of b.
The construct is analogous to test-and-set operations in shared memory systems—delivering
the message and starting P , or discarding it and starting Q, atomically. It can greatly
simplify algorithms that involve communication with agents that may migrate away at any
time, yet is still implementable locally, by the runtime systems on each site. We can express
two other useful constructs in the language introduced so far: 〈a〉c!!!v and 〈a@s〉c!!!v attempt
to deliver c!!!v to agent a, on the current site and on s, respectively. They fail silently if a is
not where it is expected to be and so are usually used only where a is predictable. They can
be translated into the core calculus as follows.

〈a〉c!!!v def= iflocaliflocaliflocal 〈a〉c!!!v thenthenthen 000 elseelseelse 000

〈a@s〉c!!!v def= createcreatecreatem b = (migrate tomigrate tomigrate to s→〈a〉c!!!v) ininin 000 b 6∈ fv(a, c, v, s)

We also introduce the following abbreviations.

iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P
def= iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse 000

letletlet x1 = v1, . . . , xn = vn ininin P
def= letletlet x1 = v1 ininin . . . letletlet xn = vn ininin P

newnewnew x1 : T1, . . . , xn : Tn ininin P
def= newnewnew x1 : T1 ininin . . . newnewnew xn : Tn ininin P

In the execution of iflocaliflocaliflocal a new channel name can escape the agent where it was created,
later to be used for output and/or input. Synchronisation of a local output c!!!v and an
input c???x→P only occurs within an agent, however. Consider for example the process below,
executing as the body of an agent a.

createcreatecreatem b =
c???x→(x!!!3|x???n→000)

ininin

newnewnew d : ^̂̂rwInt ininin

iflocaliflocaliflocal 〈b〉c!!!d thenthenthen 000
| d!!!7

It has a reduction for the creation of agent b, a reduction for the iflocaliflocaliflocal that delivers
the output c!!!d to b, and then a local synchronisation of this output with the input on c.
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Agent a then has body d!!!7 and agent b has body d!!!3|d???n→000. Only the latter output on d

can synchronise with b’s input d???n→000. For each channel name there is therefore effectively
a π-calculus-style channel in each agent. The channels are distinct, in that outputs and
inputs can only interact if they are in the same agent. At first sight this semantics may
seem counter-intuitive, but it reconciles the conflicting requirements of expressiveness and
simplicity of the calculus.

High-Level Calculus The high-level calculus adds a single location-independent commu-
nication primitive 〈a@?〉c!!!v to the low-level calculus.

P ::= 〈a@?〉c!!!v High level: LI output

The intended semantics of this is that its execution will reliably deliver the message c!!!v to
agent a, irrespective of the current site of a and of any migrations. The low-level commu-
nication primitives are also available for interaction with application agents whose locations
are predictable.

Located Processes The syntax of located processes, ranged over by LP , of low- and
high-level calculi is as follows.

LP ::= @aP | LP |LQ | newnewnew x : AgentZ @s ininin LP | newnewnew x : ^̂̂IT ininin LP

Here the body of an agent a may be split into many parts. It may, for example, be written
as @aP1| . . . |@aPn. Only channels and agents (and not sites) can be created dynamically;
the construct newnewnew x : AgentZ@s ininin LP declares a new agent x (binding in LP ), located at
site s. A new channel can be created similarly, although such a channel is not located. We
define nπLD,LI be the set of high-level located processes defined by the above grammar. The
set of low-level located processes, nπLD, can be obtained from nπLD,LI by excluding process
terms which contain LI primitives.

There are two extreme possibilities for annotating location information to process terms. In
one, a locator is applied to the largest possible unit, with all co-located subterms gathered into
a single subterm (as in [CG98, SV99]). The other extreme is where every elementary subterm
is explicitly located, eg. @ac???b→@bP . This latter approach is adopted by dpi [Sew98], whose
reduction semantics allows communication between inputs and outputs which are located at
different locations. The former approach is too restrictive for Nomadic π-calculi, and makes
labelled transitions and operational equivalences difficult to define. The latter approach is
flexible, but it contains redundant location information — some of which might not be easily
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implementable or desirable, for example @ac???p→@bP . In our case, structural congruence
rules (Str-Distr) and (Str-N-Extrude), defined in Section 4.1, are used for projecting
location information down to elementary subterms if needed.

Free and Bound Variables The free variables of P and LP denoted by fv(P ) and fv(LP )
are defined as those names and type variables which are not bound in letletlet patterns, input
patterns or newnewnew declaration. All bound names are subjected to alpha-conversion.

2.3 Centralised Server Translation

In this section, we present an infrastructure algorithm, expressed as translation from the
source language nπLD,LI to the target language nπLD. This algorithm, based on the sim-
plest algorithm from [SWP99], is a central-forwarding-server algorithm. It uses a centralised
daemon for keeping a record of all existing agents. Location-independent messages are sent
to the daemon, which forwards such messages to their destination. Before an agent migrate,
it informs the daemon and wait for an acknowledgement; this ensures that all messages for-
warded from the daemon are delivered before the agent migrates away. After the migration,
the agent tells the daemon it has finished moving and continues. When a new agent is cre-
ated, the new agent registers with the daemon, telling its site. The new agent, as well as its
parent, wait for an acknowledgement from the daemon before they continue. Locks are used
to ensure, for example, that an agent will not migrate away while a message forwarded by
the daemon is on its way.

The algorithm has been chosen to illustrate the model, the use of the calculi, and, most
importantly, the proof of correctness. Algorithms used in the actual mobile agent systems
would have to be more delicate, taking into account efficiency as well as robustness under
partial failure.

The original algorithm has been modified in the following ways to simplify the correctness
proof.

• Type annotations have been added and checked with the Nomadic Pict type checker
[Woj00a] (although this does not check the static/mobile subtyping).

• The algorithm is more serialised; eg. releasing deliver at last moment, so that the
newly-created agent is more deterministic.
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• Fresh channels are used for transmitting acknowledgements, making such channels lin-
ear [KPT96]. This simplifies the proof of correctness, since communication along a
linear channel yields an expansion.

• The translation is extended to arbitrary located processes (not just source programs
containing a single agent). Proving operational relations involves using co-inductive
proof techniques. This means that, instead of defining the translation for programs
containing a single agent, we need to strengthen it so that any program can be trans-
lated.

The daemon is itself implemented as a static agent. The translation CΦ [[LP ]] of a located
process LP = newnewnew ∆ ininin (@a1P1 | . . . | @anPn) (well-typed with respect to Φ) then consists
roughly of the daemon agent in parallel with a compositional translation [[Pi]]ai

of each source
agent; or more precisely:

CΦ [[LP ]] def= newnewnew ∆, Φaux, m : Map[Agents Site] ininin
@D(Daemon | lock!!!m | makeMap(m; Enlist(Φ, ∆)))
|

∏
i∈{1...n} @ai([[Pi]]ai

| currentloc!!!si | Deliverer)

(†)

where each agent ai is distinct and assumed to be located at si and Enlist(Φ, ∆) initialises a
site map: a finite map from agent names to site names, recording the current site of every
agent a1 . . . an in the system — both free and bound. It is defined recursively below.

Enlist(•) def= nilnilnil

Enlist(x : AgentZ@s, Θ) def= [x z]::::::Enlist(Θ)

Enlist(x : T, Θ) def= Enlist(Θ) T 6= AgentZ

The makeMap(m; ls) function, defined in Section 6.5, can then be used for generating a basic
process representing the site map, accessible via m.

The body of the daemon and the compositional translation are shown in Figures 2.3 and
2.4. They interact using channels of an interface context Φaux, also defined in Figure 2.3.
The interface context additionally declares lock channels and the daemon name D, located
at a fixed site SD. The daemon uses a map type constructor, which (together with the
map operators) can be translated into the core language (see Section 6.5). The process
definitions on the right in Figures 2.3 and 2.4 (such as mesgQ, regReq, and regBlockC) are
used extensively for defining various constructs used for the correctness proof in Chapter 7.
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Daemon
def=

***message??? {|X|} [a c v]→
lock???m→ (mesgReq({|X|} [a c v]))
lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin
〈a@s〉deliver!!! {|X|} [c v dack]
| dack???[]→lock!!!m

notfoundnotfoundnotfound→000

| ***register???[b s rack]→
lock???m→ (regReq(b s rack))
letletlet[Agents Site] m′ = (m withwithwith b 7→ s) ininin

(lock!!!m′ | 〈b@s〉rack!!![])

| ***migrating???[a mack]→
lock???m→ (migReq(a mack))
lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
〈a@s〉mack!!![migrated]
| migrated???[s′ ack]→ (migProc(a m migrated))
letletlet m′ = (m withwithwith a 7→ s′) ininin

(lock!!!m′ | 〈a@s′〉ack!!![])
notfoundnotfoundnotfound→000

Φaux
def= D : Agents@SD,

lock : ^̂̂rwMap[Agents Site],
register : ^̂̂rw[Agents Site ^̂̂w[]],
migrating : ^̂̂rw[Agents ^̂̂w [̂^̂w[Site ^̂̂w[]]]],
message : ^̂̂rw {|X|} [Agents ^̂̂wX X],
deliver : ^̂̂rw {|X|} [̂^̂wX X ^̂̂w[]],
currentloc : ^̂̂rwSite

Figure 2.3: The Central Server Daemon and the Interface Context



28 CHAPTER 2. BACKGROUND

[[〈b@?〉c!!!v]]a
def= 〈D@SD〉message!!! {|T |} [b c v]

[[
createcreatecreateZ b = P ininin Q

]]
a

def=
currentloc???s→newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
createcreatecreateZ b =
〈D@SD〉register!!![b s rack]
| rack???[]→iflocaliflocaliflocal 〈a〉pack!!![] thenthenthen (regBlockC(s pack rack P ))

(currentloc!!!s | [[P ]]b | Deliverer)
ininin

pack???[]→(currentloc!!!s | [[Q]]a) (regBlockP(s pack Q))

where Deliverer
def= ***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

[[migrate tomigrate tomigrate to s → P ]]a
def=

currentloc??? →newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
〈D@SD〉migrating!!![a mack]
| mack???[migrated]→ (migBlock(s mack P ))
migrate tomigrate tomigrate to s → newnewnew ack : ^̂̂rw[] ininin (migReady(s migrated P ))

(〈D@SD〉migrated!!![s ack]
| ack???[]→currentloc!!!s | [[P ]]a)

[[000]]a
def= 000

[[P |Q]]a
def= [[P ]]a | [[Q]]a

[[c???p→P ]]a
def= c???p → [[P ]]a

[[***c???p→P ]]a
def= ***c???p → [[P ]]a

[[c!!!v]]a
def= c!!!v

[[iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q]]a
def= iflocaliflocaliflocal 〈b〉c!!!v thenthenthen [[P ]]a thenthenthen [[Q]]a[[

newnewnew x : ^̂̂IT ininin P
]]

a

def= newnewnew x : ^̂̂IT ininin [[P ]]a
[[ififif v thenthenthen P elseelseelse Q]]a

def= ififif v thenthenthen [[P ]]a thenthenthen [[Q]]a
[[letletlet p = ev ininin P ]]a

def= letletlet p = ev ininin [[P ]]a

Figure 2.4: The Compositional Encoding
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The daemon consists of three replicated inputs, on the message, register, and migrating

channels, ready to receive messages from the encodings of agents. Reacting to such messages
Daemon produces one of the following request processes:

• a registration request, regReq(b s ack): an agent b requests to be registered with an
initial site s;

• a migrating request, migReq(a ack): an agent a requests permission to migrate; and

• a message forwarding request, mesgReq({|T |} [a c v]): an agent requests the daemon to
forward a message c!!!v to agent a.

In making registration and migrating requests, the requesting agent needs to supply a fresh
channel ack which the daemon can use for sending acknowledgement once the request has
been processed.

Part of the initialisation code places Daemon in parallel with an output on lock which carries
a reference to the site map of the daemon. This ensures that the daemon is essentially single-
threaded, since each of the above requests begins with an input on lock (thereby acquiring
both the lock and the site map), and does not relinquish the lock until the daemon finishes
with the request. The code preserves the invariant that at any time there is at most one
output on lock.

Each agent records its current site internally as an output on its currentloc. This channel
is also used as a lock, to enforce mutual exclusion between the encodings of all agent creation
and migration commands within the body of the agent. The local lock is not essential for
the correctness of the algorithm but it makes the proof of correctness simpler, since the
lock ensures that at anytime an agent can be involved with at most one request to the
daemon. This simplifies the intermediate language (see Section 7.2), as well as working with
partially committed agents. If an agents could involve with more than one daemon requests,
committing its partially committed actions (as in Section 7.4) can be problematic: at which
site would an agent involved with several migration requests be placed when committed, for
example.

Turning to the compositional translation [[.]], it is defined inductively on the syntax of basic
processes, allowing properties of [[.]] to be proved by induction. Only three clauses, shown
in Figure 2.4, are non-trivial: for the location-independent output, agent creation and agent
migration primitives. For the rest, [[.]] is homomorphic. We assume in the definition that
none of the names in typewriter font (which, by convention, are auxiliary names defined in
Φaux) occur in x (for the definition of

[[
newnewnew x : ^̂̂IT ininin P

]]
a
) and in p (for the definitions of
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processes containing pattern p).

Location-Independent Output An LI output in an agent a (of message c!!!v to agent b)
is implemented simply by using a location-dependent (LD) output to send the message to
channel message at the daemon, as an existential package with a triple [b c v].

Reacting to the message on message, the daemon produces a message forwarding request
mesgReq({|T |} [b c v]) (T being the type of v) which competes with other requests in acquiring
the output on lock. Once successful, it looks up the target agent’s site in the acquired site
map, creates a fresh channel dack and forwards the message in LD mode (together with dack)
to the deliver channel of b. In each agent, the deliver channel is handled by a Deliverer

process, as in Figure 2.4. This reacts to deliver messages by emitting a local c!!!v message
and acknowledging the daemon (again using LD communication) via dack. Meanwhile no
agent may migrate before the deliver message arrives, since the daemon is single-threaded
and waits for such an acknowledgement before releasing lock. Note that the notfoundnotfoundnotfound

branch of the lookup will never be taken as the algorithm ensures that all agents register
before messages can be sent to them. Following [SWP99], the inter-agent communications
involved in the delivery of a single location-independent output are illustrated below.

a D b

message!!!{|T |}[b c v]

deliver!!!{|T |}[c v dack]

dack!!![]

Creation In order for the daemon’s site map to be kept up-to-date, agents must register
with the daemon, telling it their site. They must do this both upon creation and after
migration. The encoding of createcreatecreateZ b = P ininin Q (in Figure 2.4) first acquires the local lock
and current site s and then creates the new agent b, as well as fresh channels pack and rack.
The body of b sends a register message to the daemon, supplying rack.

When Daemon at D receives a register message, it produces a registration request process
regReq(b s rack) which competes with other requests in acquiring the output on lock. Upon
success, the daemon updates the site map and then uses rack to acknowledge the registration
of b. Meanwhile b may not begin executing before the acknowledgement arrives; this prevents
b from sending a migration request to the daemon before it is registered.
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After the acknowledgement is received from the daemon, b sends an acknowledgement to a

using pack, initialises the local lock of b with s, installs a Deliverer, and allows the encoding
of the body P of b to proceed. Meanwhile, the local lock and the encoding of the continuation
process Q is kept until the acknowledgement via pack is received. This prevents the encoding
of Q from using the daemon to forward LI messages to b before b is registered. The inter-agent
communications involved in the creation of a single agent are illustrated below.

a
createcreatecreate

b D

register!!![b s rack]

rack!!![]
pack!!![]

Migration The encoding of a migrating process in a (also in Figure 2.4) first acquires
the output on currentloc at a (discarding the current site data). It then creates a fresh
channel mack and sends a migrating message to the daemon with a tuple [a mack]. The
encoding becomes migBlock(s mack P ), waiting for the daemon to send a message to mack

before proceeding with the migration. This ensures that if the daemon is sending a message
on deliver channel to a (ie. forwarding an LI output), then such a message will arrive before
a migrates away.

Reacting to the message on migrating message, Daemon produces a migrating request
process migReq(a mack) which tries to acquire the lock and the current site map. Once it
succeeds, it looks up the current site of a in the acquired map m, creating a fresh channel
migrated and sending it (using an LD primitive) to a along channel mack. The request
process at the daemon now becomes migProc(a m migrated), waiting for the requesting
agent to complete its migration.

The blocked agent migBlock(s mack P ), once it receives a message from mack, migrates agent
a to the new site s, then creates a fresh channel ack and sends a tuple [s ack] to the daemon
via channel migrated (using an LD primitive). Meanwhile, the local lock and the encoding
of the continuation process P is kept until the acknowledgement via ack is received from the
daemon.

Finally, the blocked daemon migProc(a m migrated) receives a message on migrated, up-
dates the site map, then relinquishes the lock and then sends an acknowledgement to a at
its new site. The inter-agent communications involved in the migration of a single agent are
illustrated below.
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a D

migrating!!![a mack]

mack!!![migrated]

migrate tomigrate tomigrate to

migrated!!![s ack]

ack!!![]

Located Processes The definition of top-level encoding given in Equation (†) is restricted
to certain forms of located processes. We may arrange an arbitrary located process into the
desired form using the following translation.

[[@aP ]] def= (•; a 7→ P )

[[LP1 | LP2]] def= (∆1, ∆2; (A1 � A2)) where [[LPi]] = (∆i; Ai)

[[newnewnew ∆ ininin LP ]] def= (∆, Θ; A) where [[LP ]] = (Θ; A)

(A1 � A2)(a) def=


A1(a) | A2(a) a ∈ dom(A1) ∩ dom(A2)

A1(a) a ∈ dom(A1) ∧ a 6∈ dom(A2)

A2(a) a ∈ dom(A2) ∧ a 6∈ dom(A1)

It is not difficult to prove that indeed LP ≡ newnewnew ∆ ininin
∏

a∈dom(A) A(a) where [[LP ]] = (∆; A).



Chapter 3

Type System

This chapter presents our type system for Nomadic π-calculi. We first give the typing judge-
ments for different syntactic constructs in Section 3.1. Sections 3.3-3.6 give the axioms and
inference rules for these typing judgements. We state some properties of the type system
in Section 3.7. In Section 3.8, we define type-preserving substitutions, and prove that they
preserve typability of processes. We also show that matching a value and a pattern of the
same type yields a type-preserving substitution.

3.1 Forms of Typing Judgement

The richness of our type system (subtyping and polymorphism, in particular) leads us away
from using the notion of sorting [Mil93b]. Taking into the consideration the rigorous pro-
gramming language-like syntax of Nomadic π-calculi, we take as our starting point the style
used in the definition of the programming language Pict [PT00]. We define typing judge-
ments for different syntactic categories. The type system of Nomadic π-calculi consists of
of axioms and inference rules defining sets of derivable typing judgements of the following
forms:

` Γ unlocated type context Γ is well-formed. (C-*)
`L Γ located type context Γ is well-formed. (L-C-*)
Γ ` S ≤ T S is a subtype of T under assumptions Γ. (SubT-*)
Γ ` T type T is well-formed under assumptions Γ. (Type-*)
Γ ` x@s the name x is located at s under assumptions Γ. (Var-Loc)
Γ ` p ∈ T . ∆ pattern p requires type T and yields bindings ∆. (Pat-*)

33
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Γ ` e ∈ T value or expression e has type T under assumptions Γ. (Expr-*)
Γ `a P basic process P as part of agent a is well-formed under assumptions Γ.
Γ ` LP located process LP is well-formed under assumptions Γ.

In this thesis, type contexts are always located. Apart from the judgements of the form `L Γ
and Γ ` x@s, however, we discard the site annotations in located type contexts, and work
with unlocated type contexts when dealing with the above typing judgements. This avoids
having to assign “dummy” annotations in typechecking pattern variables of type AgentZ (see
(Pat-Var)).

3.2 Subtyping Rules

The subtyping relation is built from the following order of capability tags:

r w

rw

s

m

The subtyping relation is defined by a rule for each type constructor or constant, as given in
Figure 3.1.

(SubT-Base)
Γ ` B

Γ ` B ≤ B

(SubT-Var)
Γ ` X

Γ ` X ≤ X

(SubT-Site)
` Γ

Γ ` Site ≤ Site

(SubT-Agent)
` Γ Z ≤ Z ′

Γ ` AgentZ ≤ AgentZ′

(SubT-Chan)
I = I ′ = rw ⇒ (Γ ` S ≤ T ∧ Γ ` T ≤ S)
I ≤ I ′ = r ⇒ Γ ` S ≤ T

I ≤ I ′ = w ⇒ Γ ` T ≤ S

Γ ` ^̂̂IS ≤ ^̂̂I′T

(SubT-Exist)
Γ, X ` S ≤ T

Γ ` {|X|}S ≤ {|X|}T

(SubT-Tuple)
Γ ` S1 ≤ T1 . . . Γ ` Sn ≤ Tn

Γ ` [S1 . . . Sn] ≤ [T1 . . . Tn]

Figure 3.1: Rules for subtyping

Base types, site type and type variables are simply subtypes of themselves (SubT-Base,
SubT-Var and SubT-Site). Agent subtyping is simple as Agent is simply a type not a
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constructor. Since mobile agents are more capable than static agents, we take Agentm ≤
Agents (SubT-Agent).

The rule (SubT-Chan) shows the channel constructor ^̂̂r covariant in its argument, whereas
^̂̂w contravariant, as in [PS96]. Operationally, this captures the observation that: if a given
channel c is used only to read elements of type T then it is safe to replace c by another
channel c′ carrying elements of type S, as long as any element that is read from c′ may safely
be regarded as an element of T — that is, as long as S is a subtype of T . The constructor
^̂̂rw is invariant in the subtype relation (i.e. ^̂̂rwS is a subtype of ^̂̂rwT only when S and T are
equivalent — ie. identical in our calculi). The type ^̂̂rwT is a subtype of both ^̂̂rT and ^̂̂wT .
That is, we are allowed to forget either the capability to write or the capability to read on
a channel: a channel that can be used for both input and output may be used in a context
where just one capability is needed.

Other type constructors are covariant. A tuple S is a subtype of another tuple T whenever
S and T contain exactly the same number of elements and the types of the corresponding
elements are also subtypes (SubT-Tuple). An existential type {|X|}S is a subtype of of
{|X|}T if S is a subtype of T , with X being a part of the assumption (SubT-Exist).

3.3 Type and Type Context Formation

The rules for unlocated type context formation are given in Figure 3.2. They ensure that none
of the declared type variables and names are duplicated, and that each type in the binding is
well-formed. To typecheck located type contexts, we also need to ensure the validity of site
annotations. The rules for located type context formation are similar to those for unlocated
type contexts, replacing the rule (C-Var) by (L-C-Var) and (L-C-Agent). Such rules are
given in Figure 3.3.

(C-Empty)
` •

(C-TVar)
` Γ X 6∈ dom(Γ)

` Γ, X

(C-Var)
` Γ Γ ` T x 6∈ dom(Γ)

` Γ, x : T

Figure 3.2: Rules for unlocated type context formation

The rules for type formation are given in Figure 3.4. They are standard; we omit their
explanation.
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(L-C-Empty)
`L •

(L-C-TVar)
`L Γ X 6∈ dom(Γ)

`L Γ, X

(L-C-Var)
`L Γ T 6= AgentZ Γ ` T x 6∈ dom(Γ)

`L Γ, x : T

(L-C-Agent)
`L Γ Γ ` s ∈ Site Γ ` AgentZ x 6∈ dom(Γ)

`L Γ, x : AgentZ@s

Figure 3.3: Rules for located type context formation

(Type-Base)
` Γ B ∈ T
Γ ` B

(Type-Site)
` Γ

Γ ` Site

(Type-Agent)
` Γ Z ∈ {m, s}
Γ ` AgentZ

(Type-Exist)
Γ, X ` T X 6∈ dom(Γ)

Γ ` {|X|}T

(Type-Var)
` Γ X ∈ dom(Γ)

Γ ` X

(Type-Chan)
Γ ` T I ∈ {r, w, rw}
Γ ` ^̂̂IT

(Type-Tuple)
Γ ` T1 . . . Γ ` Tn

Γ ` [T1 . . . Tn]

Figure 3.4: Rules for type formation
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3.4 Values and Expressions

Due to their shared structure, the same set of judgement rules are used for both values and
expressions. We let e range over values and expressions. The rules are given in Figure 3.5.

(Var-Id)
` Γ, x : T, Γ′

Γ, x : T, Γ′ ` x ∈ T

(Expr-BVal)
` Γ t ∈ B

Γ ` t ∈ B

(Expr-Sub)
Γ ` e ∈ S Γ ` S ≤ T

Γ ` e ∈ T

(Expr-Exist)
Γ ` e ∈ {S/X}T Γ ` S Γ, X ` T

Γ ` {|S|} e ∈ {|X|}T

(Expr-Tuple)
Γ ` e1 ∈ T1 . . . Γ ` en ∈ Tn

Γ ` [e1 . . . en] ∈ [T1 . . . Tn]

(Equality)
Γ ` e ∈ T Γ ` e′ ∈ T

Γ ` e = e′ ∈ Bool

(Eval)
f ∈ F f is not = f : B1 × . . .×Bn → B Γ ` e1 ∈ B1 . . . Γ ` en ∈ Bn

Γ ` f(e1, . . . , en) ∈ B

Figure 3.5: Rules for value and expression formation

If the type context contains the binding x : T then the type of x is T in this context (Var-Id)
(all binding names are unique — ensured by the precondition, so there is no ambiguity in
this rule). Constants of base types simply possess such types (Expr-BVal).

The subsumption rule (Expr-Sub) allows types of values to be promoted in the subtype
relation: if e is a value of type S and S is a subtype of T then e is also of type T .

A expression {|S|} e is an existential package of type {|X|}T if the “witness type” S is well-
formed, and the actual type of the expression e must match the type T after the substitution
of S for X. Readers familiar with typed λ-calculi will recognise the similarity of this rule to
the standard introduction rule for existential types (cf. [MP88]). We prevent the escape of
the hidden type variable rule by the second and third assumptions of (Expr-Exist), ensuring
that X is not in the domain of Γ and hence not free in S.

If the expressions e1 through en have the type T1 through Tn then the tuple expression
[e1 . . . en] has the tuple type [T1 . . . Tn] (Expr-Tuple). To typecheck a function application
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expression f(e1, . . . , en), we look up the type of the function f , typecheck each argument
expression according to the argument type obtained, and the type of the whole expression
is the type of the range of f (Eval, Equality). As discussed in Section 2.2.3 on page 21,
with an exception of equality test, where the arguments can be of any type, the type of each
argument as well as the result must be a base type.

(Var-Loc)
`L Γ, x : AgentZ@s, Γ′

Γ, x : AgentZ@s, Γ′ ` x@s

Figure 3.6: Rule for locating names

The location of an agent can be looked up using (Var-Loc) in Figure 3.6. This judgement
form Γ ` a@s is not employed in typechecking, but is essential in the operational semantics.

3.5 Patterns

Pattern typing statements have the form Γ ` p ∈ T . ∆, ie. each pattern has a type,
describing the values it can match, and moreover gives rise to a set of extra bindings ∆.
Their rules are given in Figure 3.7.

(Pat-Var)
` Γ Γ ` T

Γ ` x ∈ T . x : T

(Pat-Tuple)
Γ ` p1 ∈ T1 . ∆1 . . . Γ ` pn ∈ Tn . ∆n

Γ ` [p1 . . . pn] ∈ [T1 . . . Tn] . ∆1, . . . , ∆n

(Pat-Wild)
` Γ Γ ` T

Γ ` ∈ T . •

(Pat-Exist)
Γ, X ` p ∈ T . ∆ X 6∈ dom(Γ)

Γ ` {|X|} p ∈ {|X|}T . X, ∆

Figure 3.7: Rules for pattern formation

A variable pattern x and a wildcard pattern requiring type T match any value of type T

(provided that T is a well-formed type) and gives rise to, in the case of variable pattern,
a binding for the variable x (Pat-Var), and, in the case of wildcard pattern, no binding
(Pat-Wild).

A tuple pattern [p1 . . . pn] requiring type [T1 . . . Tn] is typable if each subpattern pi requiring
type Ti is typable; moreover, it gives rise to a set of bindings comprising all the bindings
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from its subpatterns (Pat-Tuple).

An existential pattern {|X|} p matches any value of type {|X|}T , where T is the type required
by the pattern p (under the assumed existence of X). Such a pattern yields not only the
bindings produced by p, but also the “existence of X” binding (Pat-Exist).

3.6 Basic and Located Process

The judgement rules for basic and located processes are relatively simple. Valid formation
of a basic process, in addition to ensuring correct deployment of names, must also consider
its ability to be located at agents — in particular, if such a process contains any possibility
of migration, it cannot be located in a static agent. We give the judgement rules for basic
process in Figures 3.8-3.11.

(Rep-In)
Γ ` x ∈ ^̂̂rT Γ ` p ∈ T . ∆ Γ, ∆ `a P

Γ `a x???p→P and Γ `a ***x???p→P

(Out)
Γ ` a ∈ Agents Γ ` c ∈ ^̂̂wT Γ ` v ∈ T

Γ `a c!!!v

(SendLI)
Γ ` a, b ∈ Agents Γ ` c ∈ ^̂̂wT Γ ` v ∈ T

Γ `a 〈b@?〉c!!!v

Figure 3.8: Rules for basic processes: input and output

A (replicated) input process c???p→P (respectively ***c???p→P ) is well-formed if c is a channel
which can be used for input, ie. its type can be promoted to ^̂̂rT for some T . The guarded
process P must be well-typed with respect to the context extended with the bindings ∆,
introduced by typing pattern p requiring type T (Rep-In). The typechecking rules for output
processes, including the sugared LD output and LI output, are similar to each other. The
message c!!!v is well-typed if c can be used for output, ie. its type can be promoted to ^̂̂wT for
some T matching the type of v (Out). In case of LI outputs, we must also ensure that the
agent target of the message is really an agent (SendLI). Note that, by using the subsumption
rule (Expr-Sub), a mobile agent may have type Agents. The assumption Γ ` a ∈ Agents is
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used whenever we need to ensure that a is an agent.

A conditional expression is well-formed if the guard expression has boolean type and both
branches of the conditional are well-formed (Cond). A let declaration letletlet p = ev ininin P is
well-formed if the expression is of a type T and the guarded process P is well-typed with
respect to the context extended with the bindings ∆, introduced by typing pattern p requiring
type T (Let).

(Cond)
Γ ` v ∈ Bool Γ `a P Γ `a Q

Γ `a ififif v thenthenthen P elseelseelse Q

(Let)
Γ ` ev ∈ T Γ ` p ∈ T . ∆ Γ, ∆ `a P

Γ `a letletlet p = ev ininin P

Figure 3.9: Rules for basic processes: internal computation

A createcreatecreateZ b = P ininin Q expression is well-formed as part of an agent a if b is fresh and,
assuming b of type AgentZ , P is well-typed as part of b and Q is well-typed as part of a

(Create). Typechecking migrate tomigrate tomigrate to s →P as part of agent a involves checking that agent
a is capable of migrating (ie. it has type Agentm), that s is a site and that P is well-formed
(Migrate). Similarly to the conditional, an iflocaliflocaliflocal expression is well-formed if the guard
expression (which can be regarded as an LD output) and both branches are well-formed
(IfLocal).

(Create)
a 6= b Γ, b : AgentZ `b P Γ, b : AgentZ `a Q

Γ `a createcreatecreateZ b = P ininin Q

(Migrate)
Γ ` a ∈ Agentm Γ ` s ∈ Site Γ `a P

Γ `a migrate tomigrate tomigrate to s → P

(IfLocal)
Γ ` b ∈ Agents Γ ` c ∈ ^̂̂wT Γ ` v ∈ T Γ `a P Γ `a Q

Γ `a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q

Figure 3.10: Rules for basic processes: agent constructs

A 000 process locating at a is always well-typed (Nil), provided that the type context is well-
formed and that a is indeed an agent. The parallel composition of two basic processes is
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well-formed with respect to a given context if each process is (Par). A newnewnew declaration is
well-typed if the process under such declaration is well-typed with respect to the assumption
extended with the new binding (LocalNew).

(Nil)
` Γ Γ ` a ∈ Agents

Γ `a 000

(Par)
Γ `a P Γ `a Q

Γ `a P | Q

(LocalNew)
Γ, x : ^̂̂IT `a P

Γ `a newnewnew x : ^̂̂IT ininin P

Figure 3.11: Rules for basic processes: composition

Located Process Due to the simplicity of the located process syntax, the typechecking
rules for located processes (given in Figure 3.12) are straightforward. A located basic process
@aP is well-formed if a is an agent and P is well-formed as part of a (At). The rules
for parallel composition and channel declaration are similar to those defined for their basic
process counterparts (LPar) and (NewChannel). Agent declaration is similar to channel
declaration, although we also need to make sure that the site annotation attached is indeed
a site (NewAgent).

(At)
Γ `a P Γ ` a ∈ Agents

Γ ` @aP

(LPar)
Γ ` LP Γ ` LQ

Γ ` LP | LQ

(NewChannel)
Γ, c : ^̂̂IT ` LP

Γ ` newnewnew c : ^̂̂IT ininin LP

(NewAgent)
Γ, a : AgentZ ` LP Γ ` s ∈ Site

Γ ` newnewnew a : AgentZ@s ininin LP

Figure 3.12: Rules for located process formation

3.7 Basic Properties

We have proved several properties of this type system, including the property that it is pre-
served by valid type context permutation (Lemma 3.7.1), and strengthening and weakening
of type contexts (Lemma 3.7.2). We also prove that, whenever evaluation function eval(·)
is defined, it preserves types. These properties are crucial for the subsequent lemmas, such
as the subject reduction (Theorem 4.5.1), as well as those concerning operational relations.
The proofs of these lemmas are routine inductions on type derivation; we omit their details.
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Lemma 3.7.1 (Context permutation preserves typing)

1. If `L Γ and ∆ ≡ Γ then `L ∆.

2. If Γ `a P and ∆ ≡ Γ then ∆ `a P .

3. If Γ ` LP and ∆ ≡ Γ then ∆ ` LP .

Lemma 3.7.2 (Typing: weakening and strengthening)

1. Γ ` e ∈ T and ` Γ, ∆ IFF Γ, ∆ ` e ∈ T and dom(∆) ∩ fv(e) = ∅.

2. Γ ` p ∈ T . Θ, ` Γ, ∆ and dom(∆) ∩ fv(p) = ∅ IFF Γ, ∆ ` p ∈ T . Θ and dom(∆) ∩
(fv(p) ∩ fv(T )) = ∅.

3. Γ `a P and ` Γ, ∆ IFF Γ, ∆ `a P and dom(∆) ∩ (fv(P ) ∪ {a}) = ∅.

4. Γ ` LP and ` Γ, ∆ IFF Γ, ∆ ` LP and dom(∆) ∩ fv(LP ) = ∅.

Lemma 3.7.3 (Evaluation preserves types)

If Γ ` e ∈ T and eval(e) is defined then Γ ` eval(e) ∈ T .

3.8 Type-Preserving Substitution and Matching

Substitutions, ranged over by σ, ρ, are finite maps associating names with values, as well as
type variables with types. Substitution is extended in the natural way to an operation on
processes (renaming bound names as necessary to avoid capture). We write

{T1/X1, . . . , Tn/Xn, v1/x1, . . . , vk/xk}

for the substitution that simultaneously replaces every occurrences of a type variable Xi by
the type Ti, and a name xj by the value vj . The result of applying σ to a process P is
written as σP , and similarly for other constructs such as type contexts, patterns and values.
We assign substitutions the highest precedence over the operators of the calculus. If a name
substitution is injective, it can be used for renaming free names in a process, often to avoid
name clashing. We prove that typing is preserved by renaming.

Lemma 3.8.1 (Injective substitution preserves typing)

Given that σ is an injective name substitution,

1. if Γ `a P then σΓ `σa σP ; and

2. if Γ ` LP then σΓ ` σLP .

In a strongly typed setting, it is important that name substitutions are type-preserving,
formally defined as follows:
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Definition 3.8.1 (Type-Preserving Substitution)

A substitution σ is said to be type-preserving w.r.t. Γ if,

• for all x ∈ dom(σ), Γ ` x ∈ T implies Γ ` σx ∈ σT ; and

• for all X ∈ dom(σ), Γ ` X implies Γ ` σX.

Since our type system is polymorphic, a type-preserving substitution ensures that when sub-
stituting a name x of type T , the value substituted to x has the type T after the occurrences
of type variables have been resolved. For example, if an input process c??? {|X|} [x]→P , well-
typed w.r.t. Γ, receives a value {|Int|} [5] along c, then the substitution σ = {Int/X, 5/x}
will be applied to P . In this case, σ is type-preserving w.r.t. Γ, X, x : X.

Type-preserving substitutions indeed preserve process typing. The formal statement of this
is given below.

Lemma 3.8.2 (Type-preserving substitution preserves typing)

If a substitution σ is type-preserving w.r.t. Γ then

1. Γ `a P implies Γ `σa σP ; and

2. Γ ` LP implies Γ ` σLP .

Proof: Routine induction on the typing derivation of Γ `a P and of Γ ` LP . �

When an input process receives a value v along a channel, it needs to deconstruct v, producing
a substitution to be applied to its continuation process. This can be done using matching : a
partial function mapping pairs of patterns and values to name substitutions, whenever they
are of the same shape. Its formal definition is given in Figure 3.13.

match( , v) def= {}
match(x, v) def= {v/x}
match([p1 . . . pn], [v1 . . . vn]) def= match(p1, v1) ∪ . . . ∪match(pn, vn)

match({|X|} p, {|T |} v) def= {T/X} ∪ match(p, v)

match(p, v) def= ⊥ (undefined) otherwise

Figure 3.13: Matching

The matching function simultaneously traverses the structure of the pattern and the value,
yielding bindings when variables are encountered in the pattern. Note that the variables
bound in a pattern are always distinct, so the ∪ operation, in effect combining the substitu-
tions with disjoint domains, is always well-defined.
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In a typed semantics, the type system can prevent a mismatch between the value received
and the shape expected in communication. However, matching a value and a pattern of the
same type does not always yield a substitution: for example let Γ be x : [[] []], a pattern [y z]
may have type [[] []] w.r.t. Γ, but match([y z], x) is undefined. Similar situation occurs when
matching a name x of an existential type to an existential pattern {|X|} p. To prevent this,
we define ground type contexts as follows.

Definition 3.8.2 (Ground Type Context)

A type context Γ is ground if, for all x ∈ dom(Γ), Γ ` x ∈ T implies T 6= [T1 . . . Tn] and
T 6= {|X|}S, for any T1, . . . , Tn, X, S.

Ground type contexts ensure that a pattern and a value of the same type can be matched,
producing a type-respecting substitution. This result is crucial to the proof of subject reduc-
tion (Theorem 4.5.1), its formal statement is given below.

Lemma 3.8.3 (Ground type context ensures matching is type-preserving)

Given that Γ is a ground located type context, if Γ ` v ∈ S and Γ ` p ∈ S . Ξ then
match(p, v) is defined, and is a type-preserving substitution w.r.t. Γ, Ξ.

Proof: The proof uses an induction on typing derivations of Γ ` v ∈ S. By insisting that
Γ is ground, the pattern p may have a tuple type if and only if the value v is a tuple; and
similarly for p being of existential type.

The details may be found in Appendix B.1 on page 190. �



Chapter 4

Operational Semantics

This chapter makes precise the informal descriptions of Nomadic π primitives given in Section
2.2.4 by giving two operational semantics: a reduction semantics and a labelled transition
semantics. The former formally describes the evolution of processes via internal computation.
This builds on the reduction semantics of Nomadic π-calculi given in [SWP99], adding a
type system. In order to do compositional reasoning, however, the reduction semantics
is insufficient. For that we define a labelled transition semantics (LTS), expressing how
processes interact with their environment.

The basic semantic theory for a π-calculus has long been associated with the aforementioned
styles of operational semantics. The reduction semantics, building on the Chemical Abstract
Machine ideas of Berry and Boudol [BB92] and the π semantics of Milner [Mil93b], are rel-
atively easy to define, and are widely employed for capturing informal intuition in novel
calculi. This style of semantics involves defining two relations on processes: a reduction
relation, which formalises how processes perform internal computations, and a structural
congruence relation. The structural congruence relation allows us to rewrite process terms
so that eg. any two co-located active input or output prefixes can be syntactically juxta-
posed. The labelled transition semantics, on the other hand, is more suited to compositional
reasoning, since it clarifies how processes interact (typically by inputs and outputs) with the
environment. Moreover, the labelled transitions of process terms are defined inductively on
its syntactic structure and hence do not rely on structural congruence. In general, the exis-
tence of some particular reduction is easier to show using the reduction semantics, whereas
all possible reductions are easier to enumerate by means of the labelled transition semantics.

Adapting these semantics for Nomadic π-calculi involves extending the standard π-calculus

45
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reduction and labelled transition semantics to deal with agent mobility, inter-agent commu-
nication, and a rich type system. We argue in Section 4.3 that migration of a free agent must
be considered an observable action in the labelled transition semantics, since migration of an
agent causes the location map to be updated — an action which has a direct effect on some
location-dependent actions performed by agents in the environment.

In this thesis, we are working with typed semantics, where the reduction/transition relations
are defined over well-typed process terms and, for the labelled semantics, allowing only well-
typed inputs and outputs with the environment. We adopt this for the following reasons.

• Typed semantics give a tighter notion of behaviour, definitely excluding pathological
terms whose behaviour is undesirable or even impossible to implement, eg. @aa!!![].

• Typed semantics simplifies the statement of subject reduction (Theorem 4.5.1) and, in
the labelled transition semantics, it allows the types of names (and the current sites
of agents) extruded by input or output actions to be made precise. The alternative,
of untyped semantics, has simpler definition of the rules, but more complex subject
reduction. It would be required where one wishes to consider interaction with badly-
typed processes, eg. a malicious attacker.

Before giving the formal definition of the semantics, we define structural congruence in Sec-
tion 4.1. The reduction semantics and the labelled transition semantics are then given in
Section 4.2 and Section 4.3. The latter section also discusses some alternative styles of la-
belled transition semantics, and why we discard them. Section 4.4 discusses runtime errors,
and how the type system guarantees the absence of such errors. We conclude this chapter
by stating properties of our semantics, including the subject reduction and reduction/LTS
correspondence.

4.1 Structural Congruence

We define a structural congruence as the smallest congruence relation closed under alpha-
conversion and the rules in Figures 4.1-4.2. The relation is defined for both basic and located
processes, denoted P ≡ Q and LP ≡ LQ.

The structural congruence rules are similar to a standard structural congruence for an asyn-
chronous π-calculus, with scope extrusion both for the new channel binder newnewnew c : ^̂̂IT ininin P

(Str-Extrude) and the new agent binder newnewnew a : AgentZ@s ininin LP (Str-L-Extrude).
Two rules given in Figure 4.2, however, are specific for this setting. The rules (Str-Distr)
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(Str-Null)
P ≡ P | 000

(Str-Prl)
P | Q ≡ Q | P

(Str-Assoc)
P | (Q | R) ≡ (P | Q) | R

(Str-Extrude)
x 6∈ fv(P )

P | newnewnew x : T ininin Q ≡ newnewnew x : T ininin (P | Q)

(Str-SwapNew)
x, x′ are distinct

newnewnew x : T, x′ : T ′ ininin P ≡ newnewnew x′ : T ′, x : T ininin P

Figure 4.1: Structural congruence: Basic processes

and (Str-N-Extrude) distribute location annotations down to basic process terms. More
precisely, (Str-Distr) enables parts of an agent to be syntactically separated or brought
together, and (Str-N-Extrude) allows channel binders to be extruded past locators.

Note that we choose not to include the null process in the syntax of located process; an
inactive located process is written @a000 rather than simply 000. A reason for this is to avoid a
structural congruence rule @a000 ≡ 000, which does not preserve free variables. A null process
located at a can be garbage-collected if it is placed in parallel with a located process which
contains fragments of agents a. For example, it is possible to derive LP ≡ LP |@a000 if
LP = @aP |LQ, but not possible if a 6∈ fv(LP ).

We prove the following properties for the structural congruence: that it preserves free vari-
ables as well as typing, and that it is preserved by arbitrary name substitution. Note in
Lemma 4.1.3 that the size of the derivation of a structural congruence relation is preserved
by name substitution; this is essential for proofs involving an induction on the size of the
derivation of LP ≡ LQ, eg. that of Theorem 4.5.2. The proofs of these lemmas are routine
inductions on the derivation of P ≡ Q and LP ≡ LQ; we omit the details.

Lemma 4.1.1 (Preservation of free names under str. cong.)

1. If P ≡ Q then fv(P ) = fv(Q).

2. If LP ≡ LQ then fv(LP ) = fv(LQ).

Lemma 4.1.2 (Type soundness of str. cong.)

1. If P ≡ Q and Γ `a P then Γ `a Q.

2. If LP ≡ LQ and Γ ` LP then Γ ` LQ.
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(Str-Distr)
@a (P | Q) ≡ @aP | @aQ

(Str-L-Assoc)
LP | (LQ | LR) ≡ (LP | LQ) | LR

(Str-L-Prl)
LP | LQ ≡ LQ | LP

(Str-N-Extrude)
x 6= a

@a(newnewnew x : ^̂̂IT ininin P ) ≡ newnewnew x : ^̂̂IT ininin @aP

(Str-Locate)
P ≡ Q

@aP ≡ @aQ

(Str-L-SwapNew)
∆ ≡ Ξ

newnewnew ∆ ininin LP ≡ newnewnew Ξ ininin LP

(Str-L-Extrude)
x 6∈ fv(LP )

LP | newnewnew x : T ininin LQ ≡ newnewnew x : T ininin (LP | LQ)
LP | newnewnew x : AgentZ@s ininin LQ ≡ newnewnew x : AgentZ@s ininin (LP | LQ)

Figure 4.2: Structural congruence: Located processes

Lemma 4.1.3 (Structural congruence is preserved under name substitution)

1. For any derivation of P ≡ Q, there is a derivation of the same size of ρP ≡ ρQ, for any
substitution ρ.

2. For any derivation of LP ≡ LQ, there is a derivation of the same size of ρLP ≡ ρLQ,
for any substitution ρ.

4.2 Reduction Semantics

In this section, we define the reduction semantics of Nomadic π-calculi as a reduction relation
between configurations, which are pairs Γ 
 LP of a located type context Γ and a located
process LP . We are concerned only with configurations for well-typed programs, and define
a reduction relation −→ as the smallest relation from {Γ 
 LP | `L Γ and Γ ` LP} to
{Γ 
 LP | LP ∈ nπLD,LI}, closed under the rules given in Figures 4.3-4.4.

The informal description of the primitives given in Section 2.2.4 should explain these rules,
so we omit detailed description here. The semantics of the high-level calculus is obtained by
adding (Red-LI-Send), for delivering LI messages to their destination agent.
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(Red-Create)
Γ ` a@s

Γ 
 @acreatecreatecreateZ b = P ininin Q −→ Γ 
 newnewnew b : AgentZ@s ininin (@bP | @aQ)

(Red-Migrate)
Γ 
 @amigrate tomigrate tomigrate to s→P −→ (Γ⊕ a 7→ s) 
 @aP

(Red-IfLocal-True)
Γ ` a@s Γ ` b@s

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aP | @bc!!!v

(Red-IfLocal-False)
Γ ` a@s Γ ` b@s′ s 6= s′

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aQ

(Red-Let)
eval(ev) defined

Γ 
 @aletletlet p = ev ininin P −→ Γ 
 @amatch(p, eval(ev)) P

(Red-Cond-True)
Γ 
 @aififif truetruetrue thenthenthen P elseelseelse Q −→ Γ 
 @aP

(Red-Cond-False)
Γ 
 @aififif falsefalsefalse thenthenthen P elseelseelse Q −→ Γ 
 @aQ

(Red-Comm)
Γ 
 @a (c!!!v|c???p→P ) −→ Γ 
 @amatch(p, v)P

(Red-Replic)
Γ 
 @a (c!!!v|***c???p→P ) −→ Γ 
 @a((match(p, v)P )|***c???p→P )

(Red-LI-Send)
Γ 
 @a〈b@?〉c!!!v −→ Γ 
 @bc!!!v

Figure 4.3: Reduction semantics I
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Note that the only inter-site communication in an implementation will be for the migrate tomigrate tomigrate to

reduction (Red-Migrate), in which the body of the migrating agent a must be sent from
its current site to site s — causing the location context to be updated to Γ⊕ a 7→ s, defined
as follows:

(Γ1, a : AgentZ@s′, Γ2)⊕ a 7→ s
def= Γ1, a : AgentZ@s, Γ2

Γ⊕ a 7→ s
def= Γ a 6∈ dom(Γ)

Reduction is closed under structural congruence, parallel composition, and newnewnew binding, as
specified by the rules below.

(Red-Cong)
LP ≡ LP ′ Γ 
 LP −→ Γ′ 
 LQ LQ ≡ LQ′

Γ 
 LP ′ −→ Γ′ 
 LQ′

(Red-Prl)
Γ 
 LP −→ Γ′ 
 LR

Γ 
 LP | LQ −→ Γ′ 
 LR | LQ

(Red-NewAgent)
Γ, x : AgentZ@s 
 LP −→ Γ′, x : AgentZ@s′ 
 LQ

Γ 
 newnewnew x : AgentZ@s ininin LP −→ Γ′ 
 newnewnew x : AgentZ@s′ ininin LQ

(Red-NewChannel)
Γ, x : ^̂̂IT 
 LP −→ Γ′, x : ^̂̂IT 
 LQ

Γ 
 newnewnew x : ^̂̂IT ininin LP −→ Γ′ 
 newnewnew x : ^̂̂IT ininin LQ

Figure 4.4: Reduction semantics II

Here, following [AP94], we present a fine-grain semantics, in that inter-agent communication
happens in two steps: messaging (Red-LI-Send or Red-IfLocal-True) and synchronisa-
tion (Red-Comm). Alternatively, we could define a coarse-grain semantics (as in eg. [Sew98])
where inter-agent communication happens in single reduction step. Rule (Red-LI-Send)
could then be replaced by the following:

Γ 
 @b〈a@?〉c!!!v | @ac???p→P −→ Γ 
 @amatch(p, v)P

The implementation of the coarse grain semantics requires some amount of global synchro-
nisation, and a handshaking procedure between the input and the output processes (see also
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the discussion in Section 8.1 on page 156). In the fine grain semantics, however, only a
single message needs to be sent via the network; this style of semantics can therefore be
implemented more efficiently. More crucial to the correctness proof, the fine-grain message
delivery step of LD primitives, eg. 〈b@s〉c!!!v, is a deterministic reduction (see Definition 6.3.2
on page 101). This allows the temporary immobility technique to be used for ensuring that
such a message will be safely delivered (see an example in Section 6.4).

4.3 Labelled Transition Semantics

The reduction semantics describes only the internal behaviour of processes — for composi-
tional reasoning we need also a labelled transition semantics, expressing how processes can
interact with their environment. The transition relations have the following forms, for basic
and located processes:

Γ 
a P
α−→
∆

LP Γ 
 LP
β−→
∆

LQ

Here the unlocated labels α are of the following forms:

τ internal computation
migrate to s migrate to the site s

c!!!v send value v along channel c

c???v receive value v from channel c

The located labels β are of the form τ or @aα for α 6= τ . Private names (together with
their types, which may be annotated with an agent’s current site) may be exchanged in
communication, and are made explicit in the transition relation by the extruded context ∆.
We assume that names in the extruded contexts are fresh and therefore dom(∆)∩dom(Γ) = ∅.
The example below shows an agent b announcing its presence to another agent a outside its
scope. This involves two steps: first, the high-level output @b〈a@?〉c!!!b delivers the message
c!!!b to a (a τ step); then such a message produces an output action @ac!!!b, and extrudes the
scope of b together with the annotated type Agentm@s to the environment.

Γ 
 newnewnew b : Agentm@s ininin (@b〈a@?〉c!!!b | @bP )
τ−−−−−−−→ newnewnew b : Agentm@s ininin (@a〈c〉b!!! | @bP )

@ac!!!b−−−−−−−→
b:Agentm@s

@bP

Adding migrate to s to the standard input/output and τ labels is an important design choice,
made for the following reasons.
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• Imagine a process LP in a program context. If an agent a in LP migrates, the location
context is consequently updated with a associated to its new site. This change of
location context has an effect on both LP and its environment, since it can alter their
execution paths (especially those involving LD communication with a). Migration of
an agent must therefore be thought of as a form of interaction with the environment.

• We observe, in the reduction rules, that the location context in the configuration after
the transition can only be modified by migration of an agent (see (Red-Migrate)).
Including this migrating action allows the location context on the right hand side to
be omitted.

Execution of other agent primitives (ie. createcreatecreate and iflocaliflocaliflocal) is regarded as internal compu-
tation, since it does not have an immediate effect on program contexts. In the case of createcreatecreate,
the newly created agent remains unknown to the environment unless its name is extruded by
an output action. Again we choose a fine-grain semantics where inter-agent communication
involves two steps of transition. Execution of iflocaliflocaliflocal (if successful) and LI-output does not
therefore produce an output action immediately.

Basic processes The labelled transition semantics for basic process is a transition rela-
tion from basic process configurations to located processes. A basic process configuration is
an annotated pair Γ 
a P of located type context Γ and basic process P , located at agent
a. We are concerned only with configurations for well-typed programs, and define a tran-
sition relation α−→

∆
as the smallest relation from {Γ 
a P | `L Γ, Γ `a P and ` Γ, ∆} to

{Γ 
 LP | LP ∈ nπLD,LI}, closed under the rules given in Figures 4.5-4.7.

The rules relating to input and output actions (given in Figure 4.6) are akin to those of a
standard asynchronous π-calculus labelled transition semantics, extended with a type system.
An output produces an output action in the obvious way (Lts-L-Out). The rule (Lts-L-

Open) ensures that if any private name x (created by a newnewnew-binding) is an argument of
output action then the scope of x must be extruded along with the output label. Since
only extensible names (ie. channels or agents) can be dynamically created, (Lts-L-(Rep-

)In) ensures that extruded names are always of extensible types. The rule (Lts-L-Comm)
permits synchronisation of an input and an output action, provided that they are co-located.
As a result of channel communication, extruded contexts are binding over the communicating
parties. The symmetric version of (Lts-L-Comm) is omitted.

The rules given in Figure 4.5 can be derived from their reduction rule counterparts by re-
moving the agent annotation from the process and placing it as part of the configuration,
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(Lts-L-Out)

Γ 
a c!!!v
c!!!v−−→ @a000

(Lts-L-Comm)

Γ 
a P
c!!!v−−→
∆

LP Γ 
a Q
c???v−−→
∆

LQ

Γ 
a P | Q
τ−→ newnewnew ∆ ininin (LP | LQ)

(Lts-L-(Rep-)In)
Γ ` c ∈ ^̂̂rT Γ, ∆ ` v ∈ T dom(∆) ⊆ fv(v) ∆ extensible.

Γ 
a c???p→P
c???v−−→
∆

@amatch(p, v)P

and Γ 
a ***c???p→P
c???v−−→
∆

@a (match(p, v)P | ***c???p→P )

(Lts-L-Open)

Γ, x : T 
a P
c!!!v−−→
∆

LP x ∈ fv(v) x 6= c

Γ 
a newnewnew x : T ininin P
c!!!v−−−−→

∆,x:T
LP

Figure 4.5: Labelled transition semantics: Basic processes — input and output

replacing → by τ→ and removing located type contexts on the right hand side. The only
exception is (Lts-L-Migrate), where instead of updating the located type context, the
rule produces a ‘migrate to s’ label. Again the high-level calculus has the additional axiom
(Lts-L-LI-Send), which can be derived from its reduction rule counterpart in the same way.

As for the reduction relation, the labelled transition relation is closed under parallel com-
position and newnewnew binding (provided the private name is not involved in the action). The
symmetric version of (Lts-L-Prl) is omitted. Unlike the reduction semantics, however, the
labelled transition semantics does not rely on the structural congruence; we do not need the
semantics to be closed under structural congruence on the left. Matching of the reduction
and the labelled transition semantics, however, requires the closure under structural congru-
ence on the right. This allows, for example, null processes produced by an output action to
be garbage-collected, as shown below.

Γ 
 @a(c!!!v|c???p→P ) τ−→ @a000 | @a(match(p, v)P ) ≡ @a(match(p, v)P )

The closure of the labelled transition relation are specified by the rules given in Figure 4.7.
Note that, since the semantics is typed, the x declared in (Lts-L-New) must be of channel
type; this means no location annotation is needed in the premise.
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(Lts-L-Create)
Γ ` a@s

Γ 
a createcreatecreateZ b = P ininin Q
τ−→ newnewnew b : AgentZ@s ininin (@bP | @aQ)

(Lts-L-Migrate)

Γ 
a migrate tomigrate tomigrate to s→P
migrate to s−−−−−−−→ @aP

(Lts-L-IfLocal-True)
Γ ` a@s Γ ` b@s

Γ 
a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
τ−→ @aP | @bc!!!v

(Lts-L-IfLocal-False)
Γ ` a@s Γ ` b@s′ s 6= s′

Γ 
a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
τ−→ @aQ

(Lts-L-Let)
eval(ev) defined

Γ 
a letletlet p = ev ininin P
τ−→ @amatch(p, eval(ev)) P

(Lts-L-Cond-True)
Γ 
a ififif truetruetrue thenthenthen P elseelseelse Q

τ−→ @aP

(Lts-L-Cond-False)
Γ 
a ififif falsefalsefalse thenthenthen P elseelseelse Q

τ−→ @aQ

(Lts-L-LI-Send)
Γ 
a 〈b@?〉c!!!v τ−→ @bc!!!v

Figure 4.6: Labelled transition semantics: Basic processes — internal computation
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(Lts-L-New)
Γ, x : T 
a P

α−→
∆

LP x 6∈ fv(α)

Γ 
a newnewnew x : T ininin P
α−→
∆

newnewnew x : T ininin LP

(Lts-L-Prl)
Γ 
a P

α−→
∆

LP

Γ 
a P | Q
α−→
∆

LP | @aQ

(Lts-L-Cong-R)
Γ 
a P

α−→
∆

LP LP ≡ LQ

Γ 
a P
α−→
∆

LQ

Figure 4.7: Labelled transition semantics: Basic processes — closure

Located Processes Computation of located processes is based on computation at the basic
process level. The labelled transition semantics for located process is a transition relation
from configurations to located processes. Again, we are concerned only with configurations
for well-typed programs, and define a transition relation

β−→
∆

as the smallest relation from

{Γ 
 LP | `L Γ, Γ ` LP and ` Γ, ∆} to {Γ 
 LQ | LQ ∈ nπLD,LI}, closed under the rules
given in Figures 4.8-4.9.

(Lts-Local) annotates the visible action performed by a basic process, relating the two
forms of labelled semantics. (Lts-New), (Lts-Prl) and (Lts-Cong-R) ensure labelled
transitions for located processes are closed under structural congruence (though again only
on the right), parallel composition and newnewnew-binding (provided the private name is not involved
in the action). The symmetric versions of (Lts-Comm) and (Lts-Prl) are omitted.

The rules involving newnewnew declaration of located processes are similar to those of basic processes,
although they have to additionally deal with agent declaration. Migration of a bound agent
is not observable, since it has no effect on the environment. In this case, the site annotation
of the migrating agent is “silently” updated (Lts-Bound-Mig). As in (Lts-L-Open), a
private name x can be extruded by an output action — also, if x is an agent then its site
annotation must be attached. We insist that x must not be the locator of the output action.
This prevents, for example, newnewnew x : Agentm@s ininin @xc!!!v from performing an output action,
even though the environment cannot have an input process located at x that may react to
the output.

Early versus Late Semantics Here we have described an early form of labelled transition
semantics, where the value involved in an input action is instantiated at the time when the
action is being performed. Alternatively, the late form of labelled transition semantics gives
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(Lts-Local)

Γ 
a P
α−→
∆

LP β =

τ if α = τ

@aα otherwise

Γ 
 @aP
β−→
∆

LP

(Lts-Prl)

Γ 
 LP
β−→
∆

LR

Γ 
 LP | LQ
β−→
∆

LR | LQ

(Lts-Comm)

Γ 
 LP
@ac!!!v−−−−→

∆
LP ′ Γ 
 LQ

@ac???v−−−−→
∆

LQ′

Γ 
 LP | LQ
τ−→ newnewnew ∆ ininin (LP ′ | LQ′)

(Lts-Cong-R)

Γ 
 LP
β−→
∆

LQ LQ ≡ LR

Γ 
 LP
β−→
∆

LR

(Lts-NewChannel)

Γ, x : ^̂̂IT 
 LP
β−→
∆

LQ x 6∈ fv(β)

Γ 
 newnewnew x : ^̂̂IT ininin LP
β−→
∆

newnewnew x : ^̂̂IT ininin LQ

(Lts-NewAgent)

Γ, x : AgentZ@s 
 LP
β−→
∆

LQ x 6∈ fv(β)

Γ 
 newnewnew x : AgentZ@s ininin LP
β−→
∆

newnewnew x : AgentZ@s ininin LQ

Figure 4.8: Labelled transition semantics: Located processes — basic

(Lts-Bound-Mig)

Γ, a : Agentm@s 
 LP
@amigrate to s′−−−−−−−−−→ LQ

Γ 
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ

(Lts-OpenChannel)

Γ, x : ^̂̂IT 
 LP
@ac!!!v−−−−→

∆
LQ x ∈ fv(v) x 6= c x 6= a

Γ 
 newnewnew x : ^̂̂IT ininin LP
@ac!!!v−−−−−→

∆,x:̂^̂IT
LQ

(Lts-OpenAgent)

Γ, x : AgentZ@s 
 LP
@ac!!!v−−−−→

∆
LQ x ∈ fv(v) x 6= c x 6= a

Γ 
 newnewnew x : AgentZ@s ininin LP
@ac!!!v−−−−−−−−→

∆,AgentZ@s
LQ

Figure 4.9: Labelled transition semantics: Located processes — new declaration
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input actions a functional operational intuition: when inputing, a process becomes a function
of the actual transmitted name. The examples below show the late transitions of input and
output processes.

x(y).P x−→ (y).P x̄〈z〉.Q x̄−→ 〈z〉.Q

Communication between the above processes may occur. This involves “fusing” (y).P and
〈z〉.Q to obtain {y/z}P | Q.

It is a matter of taste which semantics to adopt. Parrow [Par00] claims that the proof systems
and decision procedures of late semantics are slightly more efficient. On the other hand, it
could be argued that the early semantics follows more closely an operational intuition since,
after all, an agent performs an input action only when it actually receives a particular value;
it is on this line of reasoning that we adopt the early semantics. Other styles of semantics
include open semantics [San96b] and symbolic transitions [Lin94]. We omit their definitions;
reader may refer to [Par00] for further details.

Alternative choices In Nomadic π-calculi, processes located at the same agent may dis-
perse throughout a located process. This flexibility of syntax allows processes to make a
transition without any need to be rearranged (by means of structural congruence) so that
it fits a particular form (cf. (Red-Comm) and Theorem 4.5.2). We may imagine a more
restricted treatment of agent distribution where all processes are located at the same agent
must be grouped together (eg. the LTS presented in [CG98]). This requires the rules with
across-agent effects need to be treated with care. However, we argue that our treatment of
distribution is more suited to compositional reasoning since it allows equivalences between
fragments of located processes to be defined. In Lemma 6.4.3, for example, to show that
the following process is temporarily immobile, we need to analyse its possible transitions,
without considering other parts of the daemon D (especially the daemon lock).

newnewnew Ωaux ininin @D(Daemon|
∏

i mesgReq{|Ti|} [a ci vi])
| @a([[P ]]a |currentloc!!!s|Deliverer)

There are alternative design choices for the labelled transition semantics; the author has
experimented with the following.

1. Γ 
 LP
β−→
∆

Γ′ 
 LQ: The LTS is in the same form as the reduction semantics. In this
case the located label β can be τ , @ac???v and @ac!!!v.

Potential problem: since the transition relation is now between configurations, oper-
ational equivalences should now compare the behaviour exhibited by configurations.
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This allows behavioural comparison of systems of agents, even though the location
contexts of such systems are different. For example, executing a location-independent
output 〈b@?〉c!!!v as part of an agent a should deliver c!!!v to b, regardless of where a, b

are. More formally, provided that Γi ` @a〈b@?〉c!!!v, for i = 1, 2, we may derive the
following.

Γ1 
 @a〈b@?〉c!!!v ∼̇ Γ2 
 @a〈b@?〉c!!!v

where ∼̇ is a standard strong bisimulation relation. This kind of property might be
desirable in many cases, but the meta-theory for such operational equivalences is likely
to be complex.

2. Γ 
a P
α−→
∆

Q: Our labelled transition relation for basic process is from (basic process)
configurations to located processes, since executing agent creation and inter-agent com-
munication primitives produces processes which are located at other agents. To obtain
this new form for basic process transition, we would need to extend the syntax of α to
signify the effects caused by such primitives. For example, we may extend the syntax
of basic process labels as follows.

β ::= . . . | createcreatecreateZ b = P

(Lts-L-Create) could then be replaced by the following rules.

(Lts-L-CreateLabel)

Γ 
a createcreatecreateZ b = P ininin Q
createcreatecreateZ b=P−−−−−−−−→ Q

(Lts-Creating)

Γ ` a@s Γ 
a Q
createcreatecreateZ b=P−−−−−−−−→ R

Γ 
 @aQ
τ−→ newnewnew b : AgentZ@s ininin @bP | @aR

This alternative poses many difficulties. First one is that of scoping: after the execu-
tion, the scope of b in createcreatecreateZ b = P ininin Q must be over @aQ |@bP . This means that
a transition which undergoes a create action must not be closed under parallel compo-
sition. More crucially, based on the work on higher-order process calculi of Sangiorgi
[San96a], a labelled transition semantics in which processes are included in the syntax of
labels are likely to give rise to operational equivalences with undesirable discriminative
power.
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4.4 Runtime Errors

The operational semantics do not define the situations in which executing a located process
leads to runtime errors. To ensure that the type system prevents such runtime errors, we
identify the following situations in which errors may occur.

• Mismatching: a located process LP contains an output c!!!v and an input c???p→P in
the same agent, but match(p, v) is undefined.

• Incapability: a located process LP , well-typed w.r.t. Γ, attempts to migrate a static
agent, use an input-only channel for output, or use an output-only channel for input.

• Invalid expression: evaluating the value in a well-typed letletlet expression or conditional
yields an undefined result.

The type system does not always guarantee the absence of such errors, though. The examples
below show the situations in which mismatching and invalid expression occur when executing
well-typed programs.

s : Site, a : Agentm@s, c : ^̂̂rw[[][]], x : [[][]] 
a (c!!!x | c???[y z]→000) 6 τ−→
s : Site, a : Agentm@s, x : Bool 
a ififif x thenthenthen P elseelseelse Q 6 τ−→

In the first situation, communication between the input and output processes cannot occur
since match([y z], x) is undefined. This type of situation can be avoided by working with
programs which are well-typed w.r.t. ground type contexts. In the second situation, the
process contains a name of base type, which cannot be evaluated. To avoid the above
situations, we define closed type contexts as follows.

Definition 4.4.1 (Closed Type Context)

A type context Γ is closed if it is ground and fv(Γ) ∩ T V = ∅ and, for all x ∈ dom(Γ),
Γ ` x ∈ T implies T 6∈ T .

It is easy to show that each name declared in a closed type context is either a site, an agent,
or a channel. The following three lemmas ensure that no situation discussed above may occur
in processes well-typed w.r.t. closed type contexts.

Lemma 4.4.1 (Runtime safety: Channels)

Given that Γ is a closed type context, and (Γ, ∆)(c) = ^̂̂IT , we have:

1. if Γ ` newnewnew ∆ ininin (@ac!!!v | LP ) then I ≤ w;

2. if Γ ` newnewnew ∆ ininin (@ac???p→P | LP ) then I ≤ r;
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3. if Γ ` newnewnew ∆ ininin (@a***c???p→P | LP ) then I ≤ r;

4. if Γ ` newnewnew ∆ ininin (@a(c!!!v|c???p→P ) | LP ) then match(p, v) is defined; and

5. if Γ ` newnewnew ∆ ininin (@a(c!!!v|***c???p→P ) | LP ) then match(p, v) is defined.

Proof: The first three properties are straightforward examination of the typing rules. The
last two rely on Lemma 3.8.3. �

Lemma 4.4.2 (Runtime safety: Expressions)

Given that Γ is a closed type context, we have:

1. if Γ ` newnewnew ∆ ininin (@a(ififif v thenthenthen P elseelseelse Q) | LP ) then v ∈ {truetruetrue,falsefalsefalse};

2. if Γ ` newnewnew ∆ ininin (@a(letletlet p = ev thenthenthen P ) | LP ) then eval(ev) and match(p, eval(ev))
are defined.

Proof: The first property is easy to establish. The second property is proved by an
induction on the syntax of ev. The proof relies on the fact that each basic function f ∈ F is
a total function (for eval(ev) being defined), and Lemma 3.8.3 (for match(p, eval(ev)) being
defined). �

Lemma 4.4.3 (Immobility implies no migration)

Given that Γ ` newnewnew ∆ ininin LP , if (Γ, ∆)(a) = Agents@s then there exists no LQ and s′ such
that

1. a ∈ dom(Γ) and Γ 
 newnewnew ∆ ininin LP
@amigrate to s′−−−−−−−−−→ LQ;

2. a ∈ dom(∆) and Γ 
 newnewnew ∆ ininin LP
τ−→ newnewnew (∆⊕ a 7→ s′) ininin LQ.

Proof: We may prove by an induction on transition derivation that if a ∈ dom(Γ) and

Γ, ∆ 
 LP
@amigrate to s′−−−−−−−−−→ LQ then Γ, ∆ ` a ∈ Agentm. This leads to a contradiction with the

premise (Γ, ∆)(a) = Agents@s. The assumption cannot be true, and hence the lemma.

A similar argument applies for the case where a ∈ dom(∆). �

The intuition about runtime errors could alternatively be formalised by defining an error
predicate on terms, as in eg. [PS96, RH98], with P

err→ meaning that P may immediately
produce a runtime error. Below we sketch some example rules of such as error predicate
on untyped configuration, written L 
 LP , where LP may be ill-typed, and L ranges over
location contexts, mapping agents to their current locations. Each agent and channel name
must be tagged with its capability, so that violations of capability can be checked in these
rules. The rules given are for detecting mismatching of the value sent to and expected from
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a channel (Mismatch), violation of type capabilities (Incapable-Mig), and propagation of
errors through parallel composition and new binding (Propagate).

match(p, v) undefined or I 6≤ w or I ′ 6≤ r

L 
aZ cI!!!v | cI′???p→P
err−−→

(Mismatch)

Z = s

L 
aZ migrate tomigrate tomigrate to s→P
err−−→

(Incapable-Mig)

L 
 LP
err−−→

L 
 LP | LQ
err−−→

L 
 LP
err−−→

L/dom(∆) 
 newnewnew ∆ ininin LP
err−−→

(Propagate)

Given the above error predicate, the runtime safety result could be stated as follows.

If Γ ` LP and Γ ` L then L 
 LP 6err−−→

where Γ ` L ensures that names in the domain and the range of L are of the correct types.
This runtime safety result is clearly more precise than that given in this subsection. The
cost is that the error predicate has to be defined for every syntactic constructs and possible
scenarios of runtime error. We believe an error predicate can easily be given for Nomadic
π-calculi.

4.5 Properties of the Semantics

We prove a number of properties of our semantics. The first three results, together with those
in Section 4.4 which deal with absence of runtime errors, constitute soundness theorems of the
Nomadic π-calculi. The results given here relate the type system, the structural congruence,
and the two semantics. A subject-reduction theorem (Theorem 4.5.1) states that well-typed
processes remains well-typed after a successful transition step. Theorem 4.5.2 shows that
process transitions are preserved by structural congruence. This theorem simplifies the task
of exhaustively enumerating transitions, since we only need to check one form of a process and
be sure that no more transition is possible in other structurally congruent forms. Finally,
Theorem 4.5.3 shows that the two semantics coincide in the absence of input or output
actions.

Theorem 4.5.1 (Subject reduction)

Given a closed located type context Γ,

1. if Γ 
a P
α−→
∆

LP then Γ, ∆ ` LP ; and

2. if Γ 
 LP
β−→
∆

LQ then Γ, ∆ ` LQ.
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Proof: An induction on the derivations of Γ 
a P
α−→
∆

LP and Γ 
 LP
β−→
∆

LQ. Γ needs
to be closed so that, matching a pattern with a value of the same type always yields a type-
preserving substitution, whenever the transition involves matching occurs (eg. that derived
by Lts-L-Let or Lts-L-(Rep-)In). See full details in Appendix B.3 on page 203. �

Theorem 4.5.2 (Cong-L absorption)

Given a closed located type context Γ,

1. if P ≡ Q and Γ 
a P
α−→
∆

LP then Γ 
a Q
α−→
∆

LP ; and

2. if LP ≡ LR and Γ 
 LP
β−→
∆

LQ then Γ 
 LR
β−→
∆

LQ.

Proof: This is proved by an induction on the derivation of P ≡ Q and LP ≡ LQ. Much of
this proof built on that shown in [Sew00] — only the rules (Str-Locate) and (Str-Distr)
are specific to our setting.

Full details can be found in Appendix B.4 on page 206. �

Theorem 4.5.3 (Labelled and reduction semantics matching)

Given a closed located type context Γ, and a located process LP ,

Γ 
 LP −→ Γ′ 
 LQ IFF

Γ 
 LP
τ−→ LQ Γ′ = Γ or

Γ 
 LP
@amigrate to s−−−−−−−−−→ LQ Γ′ = Γ⊕ a 7→ s

Proof: We need to show this in two parts: that a reduction implies a silent transition
or a migrate action, and vice versa. Each of the two parts is shown by an induction on
reduction/transition derivations. The case where the silent transition of LP is derived by
(Lts-Comm) needs the following lemma, which can easily be proved by an induction on
transition derivations (details omitted).

Lemma 4.5.4

• If Γ 
 LP
@ac!!!v−−−−→

Ξ
LQ then LP ≡ newnewnew ∆, Ξ ininin (@ac!!!v | LP ′) for some ∆ and

LP ′. Moreover, LQ ≡ newnewnew ∆ ininin LP ′.

• If Γ 
 LP
@ac???v−−−−→

Ξ
LQ then, for some ∆, p and LP ′, Q, with dom(∆) ∩

dom(Ξ) = ∅, either:

– LP ≡ newnewnew ∆ ininin (@ac???p→Q | LP ′) and
LQ ≡ newnewnew ∆ ininin (@a(match(p, v)Q) | LP ′); or

– LP ≡ newnewnew ∆ ininin (@a***c???p→Q | LP ′) and
LQ ≡ newnewnew ∆ ininin (@a(match(p, v)Q) | @a***c???p→Q | LP ′).
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• If Γ 
 LP
@amigrate to s−−−−−−−−−→ LQ then

LP ≡ newnewnew ∆ ininin (@amigrate tomigrate tomigrate to s→P | LP ′)

for some ∆ and LP ′, P . Moreover, LQ ≡ newnewnew ∆ ininin (@aP | LP ′).

As in Theorem 4.5.1, Γ needs to be closed so that, matching a patterns with a value of
the same type always yields a type-preserving substitution, whenever the transition involves
matching occurs.

Full details may be found in Appendix B.5 on page 208. �

The remaining lemmas are required for proving meta-theoretic results and the correctness of
distributed infrastructures. Lemma 4.5.5 allows strengthening and weakening of the located
type context Γ in transition relations by a Θ, provided that the bindings in Θ do not clash with
Γ or with the extruded names. The side-condition of this lemma is delicate — the following
examples show why the names in Θ must neither occur in the label nor the extruded context.

Γ, X 
a c??? {|Y |} p→P
c???{|X|}v−−−−→ @amatch({|Y |} p, {|X|} v)P

Γ, s : Site 
a x???p→P
x???a−−−−−−−→

a:Agentm@s
@amatch({|Y |} p, {|X|} v)P

We may observe that in such cases, the names X and s are necessary for both transitions, and
therefore cannot be strengthened even though they are not used in c??? {|Y |} p→P or x???p→P .

Lemma 4.5.6 shows that extensible name arguments in an input action can be considered
a part of the extruded context or of the main context. Lemma 4.5.7 shows that labelled
transitions are preserved by injective substitutions. Again this lemma does not hold for
an arbitrary name substitution, since the semantics is typed and applying a non-injective
substitution to a well-typed configuration may result in an ill-typed one. For example, let
Γ be s : Site, s′ : Site and σ be {s/s′}; clearly σΓ is not a well-formed type context. The
proofs of these lemmas use induction on the transition derivations; they can be found in
Appendix B.2 on page 192.

Lemma 4.5.5 (Weakening and strengthening transition)

Given that `L Γ, Θ,

1. Γ `a P and dom(Θ) ∩ (fv(∆) ∪ fv(β)) = ∅ implies

Γ 
a P
α−→
∆

LP ⇔ (Γ, Θ) 
a P
α−→
∆

LP

2. Γ ` LP and dom(Θ) ∩ (fv(∆) ∪ fv(β)) = ∅ implies

Γ 
 LP
β−→
∆

LQ ⇔ (Γ, Θ) 
 LP
β−→
∆

LQ
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Lemma 4.5.6 (Shifting: input transitions)

Given that Θ is an extensible context with a, c 6∈ dom(Θ) and dom(Θ) ⊆ fv(v), we have:

1. Γ `a P and `L Γ, Θ implies Γ 
a P
c???v−−→
∆,Θ

LP ⇔ (Γ, Θ) 
a P
c???v−−→
∆

LP ; and

2. Γ ` LP and `L Γ, Θ implies Γ 
 LP
@ac???v−−−−→
∆,Θ

LQ ⇔ (Γ, Θ) 
 LP
@ac???v−−−−→

∆
LQ.

Lemma 4.5.7 (Injection preserves transition)

Given that ρ : dom(Γ) → X is injective and σ : dom(∆) → X is injective and range(ρ) ∩
range(σ) = ∅, we have:

1. if Γ 
a P
α−→
∆

LP then ρΓ 
ρa ρP
(ρ+σ)α−−−−→

σ∆
(ρ + σ)LP ; and

2. if Γ 
 LP
β−→
∆

LQ then ρΓ 
 ρLP
(ρ+σ)β−−−−→

σ∆
(ρ + σ)LQ.



Chapter 5

Operational Equivalences

The next two chapters form the second part of this thesis, in which we investigate semantic
and proof techniques required for stating and proving the correctness of distributed infrastruc-
tures. We are expressing distributed infrastructure algorithms as encodings from a high-level
calculus to its low-level fragment, so the behaviour of a source program and its encoding can
be compared directly with some notion of operational equivalence — our main theorem will
be roughly of the form

∀LP . LP ' C [[LP ]] (‡)

where LP ranges over well-typed programs of the high-level calculus (LP may use LI commu-
nication whereas C [[LP ]] will not). Now, what equivalence ' should we take? The stronger
it is, the more confidence we gain that the encoding is correct. At first glance, one might
take some form of weak bisimulation since (modulo divergence) it is finer than most notions
of testing [dH84, Sew97] and is easier to work with. However, as in Nestmann’s work on
choice encodings [NP96], Equation ‡ would not hold, as the encoding C [[P ]] involves partial
commitment of some nondeterministic choices (see more discussion in Section 5.4.2). We
therefore take ' to be coupled simulation [PS92], a slightly coarser relation, adapted to our
calculi.

To prove Equation ‡, however, we need compositional techniques, allowing separate parts
of the protocols to be treated separately. In particular, we need operational congruences
(both equivalences and preorders) that are preserved by program contexts involving parallel
composition and new-binding. In Nomadic π the behaviour of LD communications depends
on the relative location of agents: if a and b are at the same site then the LD message
@b〈a@s〉c!!!v reduces to (and in fact is weakly equivalent to) the local output @ac!!!v, whereas

65
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if they are at different sites then the LD message is weakly equivalent to 000. A parallel
context, eg. [.]|@amigrate tomigrate tomigrate to s → 000, can migrate the agent a, so to obtain a congruence
we need refined equivalences, taking into account the possibility of such changes of agent
location caused by the environment.

As in Chapter 4, we are working with typed operational equivalences, where the equivalences
are defined exclusively over well-typed terms. The advantage of this is that properties in-
volving such equivalences are more precise (eg. in Lemma 5.3.5, we can never strengthen or
weaken an equivalence unless the located type context involved is extensible). Furthermore,
types also play an important role in many definitions (eg. the definition of translocating
equivalences).

This chapter is organised as follows. Section 5.1 gives some background of standard opera-
tional equivalences in process calculi, in particular, bisimulation. This standard definition is
adapted to Nomadic π-calculi, adding located type contexts and migrate actions, in Section
5.2. Section 5.3 explores a number of ways in which the definition of standard bisimulation
can be extended so that it takes into account movements of agents. We are looking for
an operation equivalence which is a congruence for Nomadic π-calculi; we show, by using
counter-examples, why these attemps are not suffice. We introduce translocating bisimu-
lations, and show that they are indeed preserved by parallel composition and newnewnew-binding;
translocating bisimulations (and other relations) will occur extensively in the thesis later on.
Section 5.4 concludes this chapter by giving two other relations which are essential for our
proof of correctness: an expansion adapted with translocation and a coupled simulation.

5.1 Background

Operational relations (both equivalences and preorders) provide formal ways in which the
behaviour of processes can be compared, abstracting away the algebraic structure of process
terms. They play an important role in the semantic theory of process calculi, allowing
verification of processes by comparing them to some specifications (themselves written as
processes), proofs of the correctness of encodings, and comparison between expressiveness of
calculi. It is essential that such equivalences possess a reasonable discriminating power on
process behaviour as well as some convenient proof techniques. There exists a large number
of existing notions of equivalences in the process calculi literature, differing eg. in their
treatment of internal computation, termination and divergence. Detailed analysis of these
notions can be found in the surveys of van Glabbeek [vG90, vG93].
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Here we shall concentrate on operational equivalences based on simulation relations and
bisimilarity. Bisimilarity is an equality based on operational behaviour, introduced into
computer science by Park [Par81] and developed by Milner in his theory of CCS [Mil89].
The operational behaviour of processes can be based on the labelled transition semantics or
the reduction semantics equipped with some notion of barbs. This gives rise to two major
kinds of operational equivalences: bisimulation and barbed bisimulation. Bisimulation is
based on labelled transitions: a bisimulation relation is a relation between processes which
is closed under transition relation. In the CCS, a binary relation R is a strong bisimulation
if it is symmetric and, for any PRQ, the following holds.

P
α−→ P ′ implies there exists Q′ such that Q

α−→ Q′ and P ′RQ′

where α ranges over CCS actions {τ, x, x̄, . . .}. Two processes are bisimilar if they are related
by some bisimulation relation R. Barbed bisimulation [MS92], on the other hand, requires
only the reductions and immediate offers of communication to be matched. It can be obtained
by replacing α→ with a reduction relation →, and adding the following condition which ensures
matching of all possible barbs:

• P ↓x if and only if Q ↓x.

For each process, its set of barbs indicates the possible interactions with its environment:
informally P ↓x means that P can do an input or output on channel x (depending on whether
x is a name or a co-name).

The advantage of bisimulation equivalences over other operational equivalences such as trace
equivalence [Hoa85] or testing equivalence [dH84] is the co-inductive style of their definition:
two processes are bisimilar if assuming that they are leads to no contradiction. Furthermore,
only one computation step needs to be matched at a time (in contrast to analysing all possible
paths required by the other quoted equivalence).

To simplify proofs of operational equivalences, it is often required that bisimulation equiva-
lences are preserved by parallel composition, name binding, and (in some cases) other pre-
fixes. This enables compositional reasoning, allowing decomposition of verification tasks and
proof reuse. An operational equivalence which satisfies the above requirement is said to be a
congruence. This does not hold for all operational equivalences. For example, the standard
strong bisimulation of the π calculus is not a congruence since it is not preserved by input
prefixes (see [MPW92], part II p. 14). Nevertheless, congruence properties remain important
goals in defining operational equivalences.

Bisimulation equivalence and barbed bisimulation are different styles of definition, each with
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its merits. The definition of barbed bisimulation does not depend on an LTS, and so may
be readily given for novel calculi which are equipped with reduction semantics (as is the case
for the Distributed Join [FG96] and the Ambient calculus [GC99]). Nevertheless we shall
be working with bisimulations (and operational relations based on the labelled transition
semantics) in this thesis for two reasons. Firstly, barbed equivalence is not suitable for
compositional reasoning, since barbs ignore some crucial information, eg. values exchanged
in channel communication. Definitions of barbed congruence generally involve quantification
over all process contexts; proving barbed congruence relation between processes can therefore
be difficult. The second reason is specific to the problem of verifying infrastructure: the
labelled transition semantics is required for identifying temporarily immobile processes (see
Section 6.4), and for proving their key property. Using the reduction relation and the barbed
congruence for dealing with temporary immobility would be awkward.

For the π-calculi, taking into account the treatment of names exchanged in input or output
action leads to other variants of bisimulation equivalences. If the value involved in an input
action is instantiated at the time when the action is being performed (as in the early semantics
in § 4.3 on page 55) then adapting the above definition leads to an early bisimulation. In a
late bisimulation, however, such an instantiation is delayed in such a way that, when a pair of
bisimilar processes perform a matching input transition, it becomes a pair of processes that
are bisimilar with respect to all instantiations of the values received. More formally, this
requires the above definition of bisimulation to be strengthened with the following condition.

P
α−→ P ′ with α = c(x) implies there exists Q′ such that Q

c(x)−−→ Q′ and, for all y,
P ′{x/y}RQ′{x/y}

where c(x) denotes an input action on a channel c, receiving a name x. It is argued [MPW92,
Par00] that the early style of equivalences corresponds closer to operational intuition, whereas
the late style seems to lead to more efficient verification in automated tools. Other alternative
notions have been proposed, for example, an open bisimilarity [San96b], used in the Mobility
Workbench [VM94], and an asynchronous bisimulation [ACS98] defined for an asynchronous
π-calculus.

It is sometimes convenient to visualise the relations between processes, transitions, and oper-
ational relations. Following [Fou98], such relations can be illustrated by diagrams consisting
of nodes that represent configurations or located processes, linked by labelled edges that rep-
resent relations among the nodes. By convention, solid edges stand for universally-quantified
relations, whereas dotted edges stand for existentially-quantified relations. The example
shown below illustrates CCS processes P,Q which are related by a strong simulation S.
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P

S

α
P ′

S

Q
α

Q′

5.2 Bisimulations

In this section, we extend the standard notion of bisimulation to Nomadic π-calculi. This
involves indexing bisimulation relations by the located type contexts required by the tran-
sition relation. The definition of bisimulations for Nomadic π-calculi requires the following
preliminary notions. Since, in the labelled transition semantics, the located type context in
the configuration needs be updated after a migration by a free agent occurs, we write Γβ for
the result of relocating Γ by β, formally defined as follows:

Γβ
def=

Γ1, a : AgentZ@s, Γ2 if β = @amigrate to s and Γ = Γ1, a : AgentZ@s′, Γ2.

Γ otherwise.

We also define a weak transition, denoted
β

=⇒
∆

or
β̂

=⇒
∆

, generally defined as follows.

β
=⇒
∆

def= τ−→∗ β−→
∆

τ−→∗

β̂
=⇒
∆

def=


τ−→∗ β = τ
τ−→∗ β−→

∆

τ−→∗ otherwise

In the context of the Nomadic π-calculi semantics, we define Γ 
 LP
β

=⇒
∆

LQ if there exists
LP1, . . . , LPn and LQ1, . . . , LQk with LP = LP1 such that:

• Γ 
 LPi
τ−→ LPi+1, for i = 1 . . . n− 1,

• Γ 
 LPn
β−→
∆

LQ1,

• Γ 
 LQj
τ−→ LQj+1, for j = 1 . . . k − 1, and

• LQk = LQ.

The definition of Γ 
 LP
β̂

=⇒
∆

LQ is similar to above except that if β = τ then the second

clause is replaced by LPn = LQ1. We also define τ̂−→ to be τ−→ ∪ Id , with Id being the identity
relation. The formal definition of strong and weak simulations for Nomadic π-calculi can
now be given as follows.
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Definition 5.2.1 (Simulations for Located Processes)

1. A binary relation S, indexed by closed located type contexts, and over terms of nπLD,LI,
is a strong simulation if, for all well-formed Γ, (LP, LQ) ∈ SΓ implies:

• `L Γ, Γ ` LP and Γ ` LQ; and

• if Γ 
 LP
β−→
∆

LP ′ then there exists LQ′ such that Γ 
 LQ
β−→
∆

LQ′ and (LP ′, LQ′) ∈
SΓβ,∆.

S is called a strong bisimulation if all of its indexed relations are symmetric. Two lo-
cated processes LP and LQ are strongly bisimilar with respect to Γ, denoted LP ∼̇Γ LQ,
if there exists a strong bisimulation S with LPSΓLQ.

2. Replacing Γ 
 LQ
β−→
∆

LQ′ in the previous item of this definition with Γ 
 LQ
β̂

=⇒
∆

LQ′

yields the weak versions of the corresponding simulations. A located process LP weakly
bisimulates LQ with respect to Γ, denoted LP ≈̇Γ LQ if there exists a weak bisimulation
indexed by Γ containing the pair (LP, LQ).

We now prove that ∼̇ and ≈̇ are reasonable equality relations: they are equivalence relations,
they are preserved by injective substitution, and they include structural congruence. The
proofs are standard.

Lemma 5.2.1 (Bisimulation is an equivalence relation)

For any closed well-formed type context Γ, ∼̇Γ and ≈̇Γ are equivalence relations.

Lemma 5.2.2 (Injective substitution preserves bisimilarity)

Let Γ be a closed located context and ρ : dom(Γ) → X be injective:

1. if LP1 ∼̇Γ LP2 then ρLP1 ∼̇ρΓ ρLP2; and

2. if LP1 ≈̇Γ LP2 then ρLP1 ≈̇ρΓ ρLP2.

Lemma 5.2.3 (Strong bisimulation subsumes structural congruence)

Given a closed located type context Γ, if Γ ` LP1 and LP1 ≡ LP2 then LP1 ∼̇Γ LP2.

We also prove that the relations ∼̇ and ≈̇ are themselves strong and weak bisimulation, and
that ≈̇ subsumes ∼̇.

Lemma 5.2.4

The binary relations, ∼̇ and ≈̇, indexed by closed well-formed located type contexts, are
strong and weak bisimulations; moreover, ∼̇ ⊆ ≈̇.
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5.3 Translocating Equivalences

To prove operational relation between processes, it is convenient to use a compositional tech-
nique, factoring out irrelevant program context which is common to both and concentrating
on their “cores”. Many process calculus techniques, such as that given in [San95b], have been
formulated for this purpose. The most common way is to work with operational congruences:
operational relations which are preserved by application of a program context.

In Nomadic π-calculi, the behaviour of location-dependent processes depends on the relative
location of agents. Processes which are equivalent under one setting might not be equivalent
under another setting; for example, consider LP, LQ defined below. Obviously LP ∼̇ΓLQ

whenever Γ ` LP, LQ and a, b are agents located at the same site s in Γ.

LP = @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q

LQ = @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q′

The standard equivalence ∼̇, defined in Section 5.2, is clearly not resilient to changes in
location context caused by process contexts. For example, if the above pair of processes are
executed in parallel with a located process LR = @bmigrate tomigrate tomigrate to s′→000, for a different site s′,
then clearly LP | LR does not have the same behaviour as LQ | LR under Γ, despite a and b

being initially co-located. To obtain a congruence, we need a refined equivalence that takes
into account the possibility of such changes of locations by the environment. Relocators,
ranged over by δ, can be applied to located type contexts in order to relocate agents in such
contexts. A valid relocator for (Γ,M), is a type-respecting partial function from M to site
names of Γ, formally defined below.

Definition 5.3.1 (Valid relocators)

A relocator δ is said to be valid for (Γ,M) if dom(δ) ⊆ M and, for all x ∈ M , Γ ` x ∈ Agentm

and Γ ` δ(x) ∈ Site.

We write Γδ for the result of applying δ to Γ and Γδβ for (Γδ)β.

A naive attempt is to check whether a pair of located processes is related by ∼̇Γδ for all
relocators δ (ie. being bisimilar under any relocation of agents in Γ), are congruent.

Unfortunately, this does not suffice. To give a counterexample, consider the following pair of
processes:

LP = @a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen (iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P1 elseelseelse P2)

LQ = @a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen (iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P1 elseelseelse P ′
2)



72 CHAPTER 5. OPERATIONAL EQUIVALENCES

These are clearly equivalent for any location context Γ (provided that Γ ` LP, LQ). However,
putting such processes in parallel with a located process

LR = @bmigrate tomigrate tomigrate to s′→000

with b located s 6= s′, shows that they are not congruent, since LR may move the agent b

after the first iflocaliflocaliflocal has been tested but before the second, resulting in a situation similar
to the previous counterexample.

It is quite clear from the previous example that, in order for a pair of processes to be congru-
ent, they must simulate each other under any relocation of free agents capable of migrating,
at any step of their computation. Agents bound in the processes cannot be migrated by the
environment, and therefore are not subjected to relocation. Allowing arbitrary relocations
would give too strong a notion, though, for some environment may never migrate certain
agents. For example, the located processes LP, LQ from the previous example remain equiv-
alent under program contexts E [·], provided that E [·] never moves a, b. We need to index
standard operational equivalences by a set of agents that the environment may move, which
hereinafter shall be referred to as a translocating index. We first give some preliminary
notions.

Definition 5.3.2 (Translocating Indexed Relation)

A translocating indexed relation is a binary relation between nπLD,LI, indexed by closed well-
formed located type contexts Γ and sets M ⊆ mov(Γ), where mov(Γ) is the set of names of
type Agentm in Γ:

mov(•) def= ∅
mov(Γ, X) def= mov(Γ)

mov(Γ, x : T ) def= mov(Γ) T 6= AgentZ

mov(Γ, x : AgentZ@s) def=

mov(Γ) ∪ {x} Z = m

mov(Γ) otherwise

The set agents(Γ) is defined similarly to be the set of all names of type AgentZ in Γ. Con-
sidering relocation of agents at every steps of computation is insufficient for obtaining a
congruence, however. To demonstrate this we introduce the following bisimulation; it will
not occur later on in the thesis.

Definition 5.3.3 (Strong M-bisimulation)

A translocating indexed relation S is a strong M -simulation if (LP, LQ) ∈ SM
Γ implies:

• `L Γ, Γ ` LP and Γ ` LQ;
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• M ⊆ mov(Γ); and

• for any relocator δ valid for (Γ,M), if Γδ 
 LP
β−→
∆

LP ′ then there exists LQ′ such that

Γδ 
 LQ
β−→
∆

LQ′ and (LP ′, LQ′) ∈ SM
Γδβ,∆.

S is called a strong M -bisimulation if all of its indexed relations are symmetric.

This strong M -bisimulation is not a congruence, since it ignores the extrusion of new names
to and from the environment by output and input actions. To show why such is the case,
consider the following pair of processes.

LP = @bc???y→ iflocaliflocaliflocal 〈y〉c!!!v thenthenthen (iflocaliflocaliflocal 〈y〉c!!!v thenthenthen P1 elseelseelse P2)

LQ = @bc???y→ iflocaliflocaliflocal 〈y〉c!!!v thenthenthen (iflocaliflocaliflocal 〈y〉c!!!v thenthenthen P1 elseelseelse P ′
2)

The above processes consist of a free agent b which may receive a name of an agent from the
environment via a channel c and, reacting to such a message, the agent b becomes a process
similar to the previous counterexample. Let Γ be the located type context given below.

s : Site, s′ : Site, b : Agents@s, c : ^̂̂rwAgents

Since neither agent b (which is static) nor agent y (received from the environment) are to
be relocated, LP, LQ can be related by strong mov(Γ)-bisimulation. Yet placing LP, LQ in
parallel with

LR = newnewnew a : Agentm@s ininin @a(〈b@s〉c!!!a | migrate tomigrate tomigrate to s′ thenthenthen P )

is sufficient to show that they are not congruent, since one reduction places the pairs LP |LR

and LQ|LR in the same situation as the previous counterexample. Note that we can neither
simplify the number of iflocaliflocaliflocal tests in LP and LQ, nor let b be mobile, otherwise the
mov(Γ)-bisimulation relation between LP and LQ will not hold.

Now consider an output of a new-bound agent name a to the environment. Other components
in the environment may then send messages to a, but cannot migrate it, so when checking a
translocating equivalence we do not need to consider relocation of a. On the other hand, a
new agent name received from the environment by an input process is the name of an agent
created in the environment, so as in the example above (if created with the mobile capability)
it may be migrated at any time. Therefore the translocating index of the bisimulation only
needs to be updated when an input action occurs. For this we define the set M1 ]β M2 to
be M1 ∪M2 whenever β is an input, and to be M1 otherwise.

M1 ]β M2
def=

M1 ∪M2 ∃a, c, v, β = @ac???v

M1 otherwise
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The notion of translocating bisimulation can therefore be formalised as follows.

Definition 5.3.4 (Translocating Simulations)

1. A translocating indexed relation S on nπLD,LI is a translocating strong simulation if
(LP, LQ) ∈ SM

Γ implies the following:

• `L Γ, Γ ` LP and Γ ` LQ;

• M ⊆ mov(Γ); and

• For any relocator δ valid for (Γ,M), if Γδ 
 LP
β−→
∆

LP ′ then there exists LQ′

such that Γδ 
 LQ
β−→
∆

LQ′ and (LP ′, LQ′) ∈ SM]βmov(∆)
Γδβ,∆ .

S is called a translocating strong bisimulation if all of its indexed relations are sym-
metric. Two located processes LP and LQ are translocating strongly bisimilar w.r.t.
Γ,M , written LP ∼̇M

Γ LQ, if there exists a translocating strong bisimulation which
when indexed by Γ and M , contains the pair (LP, LQ).

2. Replacing Γδ 
 LQ
β−→
∆

LQ′ in the final item of this definition with Γδ 
 LQ
β̂

=⇒
∆

LQ′ yields the weak version of translocating simulation. A located process LQ weak
translocating bisimulates LP w.r.t. Γ,M , denoted LP ≈̇M

Γ LQ, if there exists a weak
translocating bisimulation which when indexed by Γ,M , contains the pair (LP, LQ).

Some simple examples of translocating bisimulations are the following.

@aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q ∼̇M1
Γ @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q′

@a〈b@s〉c!!!v ≈̇M2
Γ @bc!!!v

where M1 ⊆ mov(Γ)/{a, b} and M2 ⊆ mov(Γ)/{b}; we assume that the processes above are
well-typed w.r.t. Γ, and that Γ ` a@s and Γ ` b@s.

In Section 5.3.2, we determine the conditions under which the above relations are preserved
by program contexts. Prior to that, we shall show some basic properties of translocating
bisimulations which are required for the proof of congruence results, as well as for the cor-
rectness proof.

5.3.1 Basic Properties

We now prove that translocating bisimulations are reasonable equality relations: they are
equivalence relations, they are preserved by injective substitution, and they include structural
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congruence. We also prove that the translocating indexed relations ∼̇ and ≈̇ are themselves
strong and weak bisimulation, and that ≈̇ subsumes ∼̇. The proofs of these lemmas are
standard.

Lemma 5.3.1 (Transloc. equivalences are equivalent relations)

For any closed well-formed type context Γ and M ⊆ agents(Γ), ∼̇M
Γ and ≈̇M

Γ are equivalence
relations.

Lemma 5.3.2 (Injection preserves translocating equivalences)

Given that Γ is a closed located type context and ρ : dom(Γ) → X is injective, we have:

1. if LP1 ∼̇M
Γ LP2 then ρLP1 ∼̇ρM

ρΓ ρLP2; and

2. if LP1 ≈̇M
Γ LP2 then ρLP1 ≈̇ρM

ρΓ ρLP2.

Proof: See Appendix B.6 on page 211. �

Lemma 5.3.3

The translocating indexed relations ∼̇ and ≈̇ are strong and weak translocating bisimulations;
moreover, ∼̇ ⊆ ≈̇.

Lemma 5.3.4 (Str. Congruence is a strong translocating bisimulation)

If Γ is a closed located type context with Γ ` LP1 and LP1 ≡ LP2 then, for any M ⊆ mov(Γ),
LP1 ∼̇M

Γ LP2.

An extensible located type context ∆ can be added to, or removed from, the index of a
translocating relation LP ∼̇M

Γ LQ, provided that ∆ does not intersect with the names in LP

or LQ. This result is used frequently in the proofs of meta-theory as well as the proof of
infrastructure correctness.

Lemma 5.3.5 (Strengthening and weakening: transloc. bisimulations)

Let Γ, Θ be closed located type contexts with Θ extensible and `L Γ, Θ. Let M1 ⊆ mov(Γ)
and M2 ⊆ mov(Θ), then if Γ ` LP, LQ the following hold.

LP ∼̇M1∪M2
Γ,Θ LQ ⇐⇒ LP ∼̇M1

Γ LQ

LP ≈̇M1∪M2
Γ,Θ LQ ⇐⇒ LP ≈̇M1

Γ LQ

Proof: See Appendix B.6 on page 211. �

Note that the above lemma does not hold for strengthening/weakening of site names, for
example, consider the following processes.

LP = @aiflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q

LQ = @aiflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q′
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If these processes are placed under the located type context containing a single site, for
example

Γ = s : Site, a : Agentm@s, b : Agentm@s, c : ^̂̂w[]

then, clearly, LP ∼̇{b}
Γ LQ, since no translocation may occur. However, this relation cannot be

weakened by a new site name, eg. LP ∼̇{b}
Γ,s′:SiteLQ does not hold, since the agent b may be

migrated by the environment to s′. Since we only use this lemma for dealing with dynamically
created names, for simplicity we restrict our attention to extensible names.

5.3.2 Congruence Properties

We now show that translocating bisimulation is indeed preserved by certain program con-
texts, involving (from the syntax of LP ) parallel composition and newnewnew-binding. Intuitively,
translocating equivalence is preserved by parallel composition if the translocating equiva-
lence of its components allows all the agent movements of other components. More precisely,
LP |LR ∼̇M

Γ LQ|LR if LP ∼̇M
Γ LQ and M contains all agents that may migrate in LR. We

generalise this intuition to a pair of equivalent processes, adding newnewnew-binding, as follows.

Theorem 5.3.6 (Composing translocating bisimulations)

Let Γ, Θ be closed located type contexts, with Θ extensible; moreover, let MP ,MQ ⊆
mov(Γ, Θ), and suppose mayMove(LQ, LQ′) ⊆ MP and mayMove(LP, LP ′) ⊆ MQ.

• LP ∼̇MP
Γ,Θ LP ′ and LQ ∼̇MQ

Γ,Θ LQ′ implies:

newnewnew Θ ininin (LP | LQ) ∼̇MP∩MQ∩mov(Γ)
Γ newnewnew Θ ininin

(
LP ′ | LQ′) ; and

• LP ≈̇MP
Γ,Θ LP ′ and LQ ≈̇MQ

Γ,Θ LQ′ implies:

newnewnew Θ ininin (LP | LQ) ≈̇MP∩MQ∩mov(Γ)
Γ newnewnew Θ ininin

(
LP ′ | LQ′) .

The theorem uses a further auxiliary definition: the set mayMove(LP ) is the set of free agents
in LP syntactically containing migrate tomigrate tomigrate to.

mayMove(@aP ) def= mayMovea(P )

mayMove(LP |LQ) def= mayMove(LP ) ∪mayMove(LQ)

mayMove(newnewnew ∆ ininin LP ) def= mayMove(LP )/dom(∆)
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mayMovea(000) def= ∅
mayMovea(P |Q) def= mayMovea(P ) ∪mayMovea(Q)

mayMovea(newnewnew ∆ ininin P ) def= mayMovea(P )

mayMovea(c!!!v) def= ∅
mayMovea(c???p→P ) def= mayMovea(P )

mayMovea(***c???p→P ) def= mayMovea(P )

mayMovea(ififif v thenthenthen P elseelseelse Q) def= mayMovea(P ) ∪mayMovea(Q)

mayMovea(letletlet p = ev ininin P ) def= mayMovea(P )

mayMovea(createcreatecreateZ b = P ininin Q) def= mayMovea(Q)

mayMovea(migrate tomigrate tomigrate to s→P ) def= {a}
mayMovea(iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q) def= mayMove(P ) ∪mayMove(Q)

We may easily prove that if a 6∈ mayMove(LP ) then LP will not make a transition under
@amigrate to s for any s.

Proof Sketch: The proof of this theorem is non-trivial. It deals with derivatives of
newnewnew Θ ininin LP | LQ w.r.t. Γ, which have the general form of

LRk = newnewnew Θ, Θcomm ininin (LPk | LQk)

well-typed w.r.t. Γ, Θin, Θout. Here we classify new names bound in the derivative, and those
extruded to or from the environment as follows.

• Θcomm consists of names exchanged by communication between LP and LQ. This can
be classified further as ΘLP

comm, the private names of LP extruded by output actions to
LQ, and vice versa for ΘLQ

comm.

• Θout consists of names extruded by output actions to the environment. Again, this can
be classified further as ΘLP

out, for the names extruded by LP , and vice versa for ΘLQ
out.

• Θin consists of names received from the environment.

Using this classification of names, the set mov(Θin) anticipates the movements of agents
received from the environment (ie. the context of LRk), and the set MP ∪mov(ΘLQ

comm, ΘLQ
out)

anticipates the movements of free agents in LQk. Since the environment of LPk comprises
LQk and the context of LRk as a whole, the translocating index of the bisimulation relations
between LPk and LP ′

k must include the set below.

MPk
= MP ∪mov(ΘLQ

comm, ΘLQ
out, Θin)

The premises of Theorem 5.3.6 can therefore be generalised in the coinduction as follows.
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• LPk∼̇
MPk
Γ,Θin,Θout,Θcomm,ΘLP ′

k, and LQk∼̇
MQk
Γ,Θin,Θout,Θcomm,ΘLQ′

k, where MQk
is defined in

the similar way as MPk
;

• mayMove(LPk, LP ′
k) ⊆ MQ ∪mov(ΘLP

comm, ΘLP
out); and

• mayMove(LQk, LQ′
k) ⊆ MP ∪mov(ΘLQ

comm, ΘLQ
out).

The proof of this theorem relies on the invariance under labelled transitions of the above
premises. The details of this proof can be found in Appendix B.7 on page 215. �

Note that here we determine a set of agents that may migrate in a process LP by examining
its syntax. Alternatively, we might use means of typing for determining this; the author has
experimented with the following.

1. If Γ ` LP then mayMove′(LP ) could be defined as the set mov(Γ). This means that the
above theorem would hold only when MP = MQ = mov(Γ, Θ). We reject this solution
since, in some cases, we need to work with translocating equivalences which are not
resilient to movement of all mobile agents, as illustrated by an example at the end of
this section.

2. If Γ ` LP then mayMove′′(LP ) could be defined as the largest subset of mov(Γ) such
that ∆ ` LP , where ∆ is obtained from Γ by replacing the capabilities of names
in mayMove′′(LP ) with s. We reject this solution for the set of potentially mobile
agent determined in this way is not preserved under transition. For example, let LP be
@a(c???x→c!!!x), well-typed w.r.t. Γ. In this case, we have a 6∈ mayMove′′(LP ). However,
consider the following transition.

Γ 
 LP
@ac???a−−−−→ @ac!!!a

If Γ ` c ∈ ^̂̂rwAgentm then a ∈ mayMove′′(@ac!!!a).

Congruence Congruence relation over located processes can be defined as translocating
bisimulations which are resilient to relocation of any mobile agent, and hence will be preserved
by any process context.

Definition 5.3.5 (Congruences for Located Processes)

• Located Processes LP and LQ are strongly congruent w.r.t. Γ, written LP ∼Γ LQ, if

LP ∼̇mov(Γ)
Γ LQ.

• Located Processes LP and LQ are weakly congruent w.r.t. Γ, written LP ≈Γ LQ, if
LP ≈̇mov(Γ)

Γ LQ.
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To prove the congruence property, we first define located process contexts, ranged over by
E [·], as follow:

E [·] ::= · | E [·]|LQ | newnewnew x : ^̂̂IT ininin E [·] | newnewnew x : AgentZ@s ininin E [·]

We write E [LP ] for the located process obtained by substituting LP for the hole [·] in the
process context E [·].

We also typecheck process contexts, by the typing rules given in Chapter 3 extended with
the following rule.

(Hole)
` Γ

Γ ` [.]

Typing can determine which placement of processes in a context is sensible. If Γ ` E [·] then,
for E [LP ] to be well-typed w.r.t. Γ, we need to typecheck LP w.r.t. Γ together with any
binders in E [.] whose scope includes the hole. We define the extension of Γ by E [.], written
E [Γ], as follows:

[Γ] def= Γ newnewnew x : ^̂̂IT ininin E [Γ] def= E [Γ, x : ^̂̂IT ]

E [Γ] | LQ
def= E [Γ] newnewnew x : AgentZ@s ininin E [Γ] def= E [Γ, x : AgentZ@s]

Using Theorem 5.3.6, we may easily prove that the operational congruences are indeed pre-
served by application of any process context.

Theorem 5.3.7 (Congruence: Located Processes)

Given a located proccess context E [·], such that Γ ` E [·], we have:

• If LP ∼E[Γ] LQ then E [LP ] ∼Γ E [LQ].

• If LP ≈E[Γ] LQ then E [LP ] ≈Γ E [LQ].

Proof: Easily obtained from Theorem 5.3.6 by an induction on the typing derivation of
Γ ` E [·]. �

Note that, although this operational congruence gives a less restricted congruence result
than translocating bisimulations, we still require the latter in many cases. As an example,
we may derive the following relation using the techniques related to temporary immobility
(see Section 6.4 on page 104).

newnewnew ack : ^̂̂rw[], currentloc : ^̂̂rwSite ininin

@D〈a@s〉ack!!![] | @a([[P ]]a | ack???[]→Q | Deliverer)
≈̇M

Φ newnewnew ack : ^̂̂rw[], currentloc : ^̂̂rwSite ininin

@aack!!![] | @a([[P ]]a | ack???[]→Q | Deliverer)
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assuming that Φ ` a@s and a 6∈ M . This property will not hold, however, if a can migrate
away (ie. a ∈ M), and therefore the above processes are not weakly congruent.

5.4 Other Operational Relations

Strong and weak bisimulations are insufficient for stating and proving the correctness of
distributed infrastructures. We require two further operational relations, defined in this
section: expansion and coupled simulation.

5.4.1 Expansions

An expansion preorder refines weak bisimulation in an asymmetric manner — informally,
to state that a process P expands a process Q is to state that P and Q exhibit the same
observable behaviour, but P may have more internal computation. This equivalence was
introduced for CCS by Arun-Kumar and Hennessy in [AKH90], where it is used for proving
the correctness of two implementations of a FIFO buffer by relating them to a specification,
as well as for comparing their efficiency. One of its key technical properties is that expansion
relation can be used for “closing” weak bisimulation relations — as in the technique of weak
bisimulation “up to” [SM92], adapted to our setting in §6.1.

A definition of expansion uses two refinements of weak simulation: progressing and strict
simulation. We adapt their definitions from [Nes96], adding type contexts and translocation.

Definition 5.4.1 (Progressing and Strict Simulation)

A weak translocating simulation S is called

• strict if, for all (LP, LQ) ∈ SM
Γ and valid δ for (Γ,M), Γδ 
 LP

β−→
∆

LP ′ implies there

exists LQ′ such that Γδ 
 LQ
β̂−→
∆

LQ′ with (LP ′, LQ′) ∈ SM]βmov(∆)
Γδβ,∆ .

• progressing if, for all (LP, LQ) ∈ SM
Γ and valid δ for (Γ,M), Γδ 
 LP

β−→
∆

LP ′ implies

there exists LQ′ such that Γδ 
 LQ
β

=⇒
∆

LQ′ with (LP ′, LQ′) ∈ SM]βmov(∆)
Γδβ,∆ ; and

LQ is said to progressing simulate (or strictly simulate) LP w.r.t. Γ,M if there exists a
progressing simulation S (or a strict simulation) such that (LP, LQ) ∈ SM

Γ .
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Γ 
 LP

SM
Γ

β

∆
Γβ, ∆ 
 LP1

S
M]βmov(∆)

Γβ,∆

Γ 
 LQ
β̂

∆
Γβ, ∆ 
 LQ1

Γ 
 LP

SM
Γ

β

∆
Γβ, ∆ 
 LP1

S
M]βmov(∆)

Γβ,∆

Γ 
 LQ
β

∆
Γβ, ∆ 
 LQ1

(a) strict simulation (b) progressing simulation

The above diagrams show progressing and strict simulations. Informally, LQ strictly simu-
lates LP means that LQ weakly simulates LP , but LQ never introduce more internal steps
and may ignore the silent transitions of LP . On the other hand, LQ progressing simulates
LP means that LQ weakly simulates LP , but LQ introduces more internal steps and never
ignores a silent action, hence the absence of ˆ in the weak transition of LQ in the definition.
The definition of expansion simply makes use of these two refinements.

Definition 5.4.2 (Expansion à la [Nes96])

An indexed binary relation S is a translocating expansion if S is a strict simulation and S−1

is a progressing simulation.

LP translocating expands LQ w.r.t. Γ under M , written LP �̇M
Γ LQ, if there exists an ex-

pansion S with (LP, LQ) ∈ SM
Γ . Moreover, if LP �̇mov(Γ)

Γ LQ then LP and LQ are said to be
related by expansion congruence, written LP �Γ LQ.

We prove some basic properties of translocating expansion: that it is preserved by injective
substitution, and the strengthening and weakening lemma. The proofs of these lemmas are
similar to those for translocating bisimulations.

Lemma 5.4.1 (Injection preserves translocating equivalences)

Given that Γ is a closed located type context and ρ : dom(Γ) → X is injective, if LP1 �̇
M
Γ LP2

then ρLP1 �̇
ρM
ρΓ ρLP2.

Lemma 5.4.2 (Strengthening and weakening: transloc. expansions)

Let Γ, Θ be closed located type contexts with Θ is extensible and `L Γ, Θ. Let M1 ⊆ mov(Γ)
and M2 ⊆ mov(Θ), then if Γ ` LP, LQ the following hold.

LP �̇M1∪M2

Γ,Θ LQ ⇐⇒ LP �̇M1

Γ LQ

Adding translocation allows compositional reasoning using expansions. We depend on a
congruence result, analogous to Theorem 5.3.6, for expansion. Its proof is similar to that of
Theorem 5.3.6.
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Theorem 5.4.3 (Composing translocating expansion)

Let Γ, Θ be closed located type contexts, with Θ extensible; moreover, let MP ,MQ ⊆
mov(Γ, Θ), mayMove(LQ, LQ′) ⊆ MP , mayMove(LP, LP ′) ⊆ MQ, and suppose LP �̇MP

Γ,Θ LP ′

and LQ �̇MQ

Γ,Θ LQ′, then we have:

newnewnew Θ ininin (LP | LQ) �̇MP∩MQ∩mov(Γ)
Γ newnewnew Θ ininin

(
LP ′ | LQ′)

As in Theorem 5.3.7, we may easily prove that the expansion congruence is indeed preserved
by application of any located process context.

Theorem 5.4.4 (Expansion congruence: Located Processes)

For any context E [·], if Γ ` E [·] and LP �E[Γ] LQ then E [LP ] �Γ E [LQ].

Proof: Easily obtained from Theorem 5.4.3 by an induction on the typing derivation of
Γ ` E [·]. �

5.4.2 Coupled Simulations

The bisimulation requirement is sometimes too strong for intuitively correct protocols. In
particular, some protocols involve making internal choices, resulting in partially committed
states — which cannot be related by a bisimulation relation, either to their initial or to their
committed states.

As an example, consider the encoding C [[LP ]] of an agent a which sends message c!!!v to agent
b at the current site of a, and in parallel visits the sites s1 and s2 (in any order).

LP
def= @a(〈b〉c!!!v | (migrate tomigrate tomigrate to s1→000) | (migrate tomigrate tomigrate to s2→000))

Assuming a and b are initially at the same site, parts of the derivation trees of LP and C [[LP ]]
can be represented as in Figure 5.1. If the migrate tomigrate tomigrate to s1 process in C [[LP ]] successfully
acquires the local lock (a partial commitment step) the resulting process (LQ1p in Figure 5.1)
does not correspond exactly to any state of LP . LQ1p cannot correspond to LP1 since,
executing 〈b〉c!!!v at this point means that c!!!v will reach b (which is not the case for node
LP1); it cannot correspond to LP either, since we know that a will eventually end up in s2.

Testing equivalence [Hen88] is a weaker equivalence which does not suffer from this problem.
This equivalence presupposes some precisely defined class of tests, and two transition systems
are equivalent if they can pass exactly the same test; different classes of tests yield different
equivalences. By including traces and deadlock detection among the tests, an interesting
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LP
migrate to s1 migrate to s2

LP1
migrate to s2

LP2
migrate to s1

LP12 LP21

C [[LP ]]

LQ1pmigrate to s1
LQ2p migrate to s2

LQ1 LQ2

LQ12pmigrate to s2
LQ21p migrate to s1

LQ12 LQ21

Figure 5.1: An example of partial committed state

equivalence that coincides with the “failure” equivalence of CSP [Hoa85] can be obtained.
This equivalence is weaker than bisimilarity; so it can equate transition systems which differ
in the way internal choices are resolved. However, to establish that testing equivalence holds
it is necessary to perform a case analysis over all possible sequence of transitions. This
is a much more difficult task than analysing single transitions, and can be awkward when
analysing processes with a large number of transitions.

The coupled simulation of Parrow and Sjodin [PS92] allows the behaviour of processes con-
taining different internal choices to be related, yet retains the co-inductive proof technique
enjoyed by bisimulation equivalence. It relaxes the bisimulation clauses by allowing related
processes to mutually simulate each other via two contrary simulation relations, yet requires
them to be coupled in some way. Several candidates have been presented for what it means
to be coupled. No coupling at all will lead to an equivalence which is finer than trace equiv-
alence [Hoa85], but is coarser than bisimulation. A non-trivial notion of coupling was based
on the property of stability [PS92], requiring the coincidence of the two simulations whenever
processes are stable, ie. when they cannot commit a τ action. This style induces a relation
which is an equivalence only for convergent processes; it has been proven to be strictly weaker
than bisimulation and strictly stronger than testing equivalence [PS92]. Following [Nes96],
we use a generalisation for divergent processes, as suggested in [vG93] and [PS94a], where
coupling requires the ability of a simulating process to evolve into a simulated process by
internal actions.

The definition of coupled simulation, adapted from Nestmann’s notion by adding located
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type contexts, is given below.

Definition 5.4.3 (Coupled Simulation à la [Nes96])

A pair of binary relations on nπLD,LI, indexed by closed located type contexts, (S1,S2) is a
coupled simulation if:

• S1 and (S2)−1 are weak simulations;

• if (LP, LQ) ∈ (S1)Γ then there exists LQ′ such that Γ 
 LQ =⇒ LQ′ and (LP, LQ′) ∈
(S2)Γ; and

• if (LP, LQ) ∈ (S2)Γ then there exists LP ′ such that Γ 
 LP =⇒ LP ′ and (LP ′, LQ) ∈
(S1)Γ.

Two processes LP, LQ are coupled similar w.r.t. Γ, written LP �Γ LQ, if they are related
by both components of some coupled simulation.

Intuitively “LQ coupled simulates LP” means that “LQ is at most as committed as LP”
with respect to internal choices and that LQ may reduce to a state LQ′ which is at least as
committed as LP , ie. where LP coupled simulates LQ′.

Note that in this thesis coupled simulation will be used for relating whole systems, which
cannot be placed in any program context. For this reason, we do not need to incorporate
translocation into the definition above.

Considering the previous example, we should be able to relate the partial-committed process
LQ1p to LP and LP1 by a coupled simulation relation. Unfortunately, however, this is not
possible without further restriction. Consider the following relations S1,S2.

S1 =
{ (LP, C [[LP ]]), (LP1, LQ1), (LP12, LQ12p), (LP12, LQ12),

(LP2, LQ2), (LP21, LQ21p), (LP21, LQ21)

}

S2 =
{ (LP, C [[LP ]]), (LP1, LQ1p), (LP1, LQ1), (LP12, LQ12p), (LP12, LQ12),

(LP2, LQ2p), (LP2, LQ2), (LP21, LQ21p), (LP21, LQ21)

}
It is not difficult to show that S1 and (S2)−1 are weak simulation. Now for (S1,S2) to be a
coupled simulation, the coupling condition requires that there exists LQ′ such that

Φ 
 LQ1p =⇒ LQ′

and the pair (LP, LQ′) is related by S1. The above reduction cannot hold, since in order
that LQ1 can reach its fully-committed state LQ1 it needs to perform an observable action
migrate to s.
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It might be thought that migration should be made a silent action, so that the above problem
would not occur and the coupling condition can be met. This is untrue. Considering the
simulation relation between LP1 and LQ1p. We see that the behaviour of such processes
are compared w.r.t. different located type contexts: Γ for LQ1p and (Γ ⊕ a 7→ s) for LP1,
since a has migrated. This is not possible for our operational equivalences, and to avoid
dealing with such a situation, we only work with systems in which all observable agents are
static. Such a restriction does not reduce the expressiveness of programs, however. One may
imagine each of these observable agents to be assigned to each site, acting as an I/O manager
which forwards keyboard inputs to agents, and sends messages to the standard output when
requested by an agent. Mobile agents, which can be dynamically created by a program (and
hence are newnewnew-bound), may then interact with the users via these I/O managers.

We prove two properties of coupled simulation: that it is an equivalence relation, and that it
subsumes translocating expansion. These properties are required in the proof of correctness
for relating the operational correspondence result between the source and the intermediate
languages to that between the target and the intermediate languages.

Lemma 5.4.5 (Coupled simulation is an equivalence relation)

For any closed well-formed type context Γ, �Γ is an equivalence relation.

Proof: Standard. Reflexivity and symmetry are easy to establish. Transitivity, however, is
non-trivial.

Supposing LP �Γ LQ and LQ �Γ LR, then there exist two pairs of coupled simulation
(S1, T1) and (S2, T2) such that

• (LP, LQ) ∈ (S1)Γ ∩ (T1)Γ; and

• (LQ, LR) ∈ (S2)Γ ∩ (T2)Γ.

We construct two relations S, T as follows.

SΓ = {(LP, LR) | ∃LQ . (LP, LQ) ∈ (S1)Γ ∧ (LQ, LR) ∈ (S2)Γ}

TΓ = {(LP, LR) | ∃LQ . (LP, LQ) ∈ (T1)Γ ∧ (LQ, LR) ∈ (T2)Γ}

It is easy to show that S and T −1 are weak simulations. To prove that (S, T ) is a coupled
simulation, we need to show that the above relations satisfy the coupled condition.

Let (LP ′, LR′) ∈ SΓ′ , ie. there exists LQ′ such that (LP ′, LQ′) ∈ (S1)Γ′ and (LQ′, LR′) ∈
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(S2)Γ′ . Graphically, we need to show that:

Γ 
 LP ′

S′Γ′
T ′

Γ′

Γ 
 LR′ LR′′′

By considering the pairs of coupled simulation (S1, T1) and (S2, T2), we have:

Γ 
 LP ′

(S′1)Γ′
(T ′

1)Γ′

Γ 
 LQ′

(S′2)Γ′

LQ′′

(S′2)Γ′
(T ′

2)Γ′

LR′ LR′′ LR′′′

More precisely:

• Since (S1, T1) is a coupled simulation, there exists LQ′′ such that Γ′ 
 LQ′ =⇒ LQ′′

and (LP ′, LQ′′) ∈ (T1)Γ′ .

• Since S2 is a weak bisimulation, there exists LR′′ such that Γ′ 
 LR′ =⇒ LR′′ and
(LQ′′, LR′′) ∈ (S2)Γ′ .

• Since (S2, T2) is a coupled simulation, there exists LR′′′ such that Γ′ 
 LR′′ =⇒ LR′′′

and (LQ′′, LR′′′) ∈ (T2)Γ′ .

This means there exists LR′′′ such that Γ′ 
 LR′′ =⇒ LR′′′ and (LP ′, LR′′′) ∈ TΓ′ . Similarly
the other coupling condition can be derived. Hence the lemma. �

Lemma 5.4.6 (Coupled simulation subsumes expansion)

LP �̇M
Γ LQ implies LP �Γ LQ.

Proof: LP �̇M
Γ LQ implies there exists a translocating expansion S such that (LP, LQ) ∈

SM
Γ . It is easy to prove that the pair (S,S) is a coupled simulation. We omit the details. �



Chapter 6

Proof Techniques

This chapter investigates proof techniques which are required for proving the example in-
frastructure correct. Many of these techniques are adapted from the π-calculus, adding
translocation. Section 6.1 discusses the technique of bisimulation “up to”. In particular,
we give a definition of an expansion up to expansion. This allows reduction of the size of
the relation used for establishing an expansion by omitting processes that are related (in
some “stronger” way) to other processes in such a relation. Section 6.2 defines a number of
channel usage disciplines which allow, among other things, expansions to be derived from
computational steps that are essentially functional. Section 6.3 digresses to a discussion
of determinacy and confluence in process calculi. We argue that proving that a process is
confluent is non-trivial in general, and especially in Nomadic π-calculi where we need to
take into account type contexts and translocation. As an alternative, we give a definition
of deterministic processes, whose reductions give rise to translocating expansions. Next we
introduce a novel technique, identifying properties of agents that are temporary immobile,
waiting on a lock somewhere in the system. In Section 6.4, we make this precise, and show
that a deterministic reduction, when placed in parallel with a temporarily immobile process,
gives rise to an expansion. Finally, Section 6.5 gives an encoding of the finite maps used in
the example infrastructure and proves its correctness.

6.1 Techniques of Bisimulation “Up To”

The most straightforward way of proving an expansion (or similar coinductive relation) be-
tween a pair of Nomadic π processes is to construct a translocating expansion relation con-

87
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taining the pair. The task of constructing a translocating indexed relation and verifying that
it meets all the requirements is only manageable for processes whose structures are simple,
or whose possible set of transitions is relatively small. In practice, the relation can be quite
complex and the case analysis involved becomes quite challenging.

The technique of bisimulation “up to” [SM92] offers a way of reducing the size of bisimulation
relations: One may define a relation which is a bisimulation only when closed up under some
stronger relation, so reducing the required proof work. We adapt expansion up to expansion
from [SM92], adding translocation. The definition is given below.

Definition 6.1.1 (Expansion up to Expansion)

A translocating indexed relation S on nπLD,LI is a translocating expansion up to expansion if,
for all closed located type context Γ and M ⊆ mov(Γ), LPSM

Γ LQ implies the following.

• For any valid δ for (Γ,M), Γδ 
 LP
β−→
∆

LP ′ implies there exists LQ′ such that

– Γδ 
 LQ
β̂−→
∆

LQ′ and;

– LP ′ �̇M]βmov(∆)
Γδβ,∆ SM]βmov(∆)

Γδβ,∆ ∼̇M]βmov(∆)
Γδβ,∆ LQ′.

• For any valid δ for (Γ,M), Γδ 
 LQ
β−→
∆

LQ′ implies there exists LP ′ such that

– Γδ 
 LP
β

=⇒
∆

LP ′ and;

– LP ′ �̇M]βmov(∆)
Γδβ,∆ SM]βmov(∆)

Γδβ,∆ ∼̇M]βmov(∆)
Γδβ,∆ LQ′.

The relations between processes which are related by an expansion up to expansion must
satisfy two diagrams below.

Γ 
 LP

SM
Γ

β

∆
Γ, ∆ 
 LP ′

�̇
M]βmov(∆)

Γβ,∆ S
M]βmov(∆)

Γβ,∆ ∼̇
M]βmov(∆)

Γβ,∆

Γ 
 LQ
β̂

∆
Γ, ∆ 
 LQ′

Γ 
 LP
β

∆
�̇M]βmov(∆)

Γβ,∆ Γ, ∆ 
 LP ′

Γ 
 LQ

SM
Γ

β

∆
Γ, ∆ 
 LQ′

S
M]βmov(∆)

Γβ,∆ ∼̇
M]βmov(∆)

Γβ,∆

Processes which are related by an expansion up to an expansion are indeed related by an
expansion.
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Lemma 6.1.1 (Expansion up to expansion)

If S is a translocating expansion up to expansion and LP SM
Γ LQ then LP �̇M

Γ LQ.

Proof: Standard. Supposing S is a translocating expansion up to expansion, we construct
an (indexed) relation R such that RM ′

Φ is defined as follows:

SM ′
Φ

def= {(LP ′, LQ′) | ∃LP ′′, LQ′′ . LP ′�̇M ′

Φ LP ′′ ∧ LP ′′SM ′
Φ LQ′′ ∧ LQ′∼̇M ′

Φ LQ′′}

We may then check that S is a translocating expansion. Hence the lemma (details omitted).
�

Fournet and Gonthier advocate proving bisimulation using decreasing diagrams [Fou98]: a
technique which reduces bisimulation diagrams to a series of decreasing tiles that can be
proved separately in smaller, easier to reuse, lemmas. It is shown that many of the standard
up to techniques are easily and uniformly subsumed by the decreasing diagram method.
This technique could be generalised for Nomadic π-calculi. However, the fact that we are
dealing with the labelled transition semantics, translocating and typed operational relations
may introduce some difficulties, since the base meta-theory (from [vO94]) does not deal with
indexed relations between processes. Expansion up to expansion is sufficient for the proof of
infrastructure correctness; we defer a full investigation of applying the decreasing diagram
technique to Nomadic π-calculi to future work.

6.2 Channel-Usage Disciplines

In the π-calculus, channels are first-class data: they can be used for sending, or receiving
messages, but also as parts of messages themselves. This flexibility, although giving rise to a
great expressive power, can sometimes make programs difficult to read and debug. Program-
mers often impose certain disciplines on usage of channels to ensure that their programs are
ultimately free from race conditions, unintended deadlocks, and other kinds of protocol vio-
lations. In the process calculi literature, there are many static analysis techniques capable of
detecting such errors, eg. I/O subtyping [PS96], uniform receptiveness [San99], linear types
[KPT96], and a generic type system of Igarashi and Kobayashi [IK01]. These techniques
mostly involve enriching channel types; typechecking can then be employed for capturing
useful properties of programs. This section shows how these techniques can be adapted to
Nomadic π-calculi, although to avoid meta-theoretic complexity, they are now based on the
syntactic structure of process rather than embellishing the current type system.

We begin in Section 6.2.1 by studying non-sendable channels, which cannot be transmitted
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by communication and therefore enable all possible usages of such channels to be directly
determined from the syntax. Sections 6.2.2 and 6.2.3 are devoted to channels which behave
as functions in the following senses:

• a communication step which consumes an output on such channels guarantees a deter-
ministic result; and

• each such channel has an input which is always present.

We demonstrate two ways which this can be accomplished, and prove that computational
steps that are essentially functional give rise to expansions. In Section 6.2.4, we conclude by
studying channels that are only used locally within agents, allowing scope readjustment.

6.2.1 Non-sendability

A name is said to be non-sendable if it is never transferred from one process to another. For
example, x is non-sendable in @a(x!!![] | P ) (provided eg. x 6∈ fv(P )), but not in @ac!!!x, since
x can be sent to the environment. A formal definition of non-sendability can therefore be
given below.

Definition 6.2.1 (Non-Sendability)

A channel c is said to be non-sendable in LP if c 6∈ chObj(LP ), where the definition of
chObj(LP ) is given in Figure 6.1.

Note that for a channel c to be non-sendable, it must not occur in the expression ev of the
process letletlet p = ev ininin P . This prevents c from being involved in the substitution applied to
P in the letletlet process, as in @aletletlet x = c ininin c′!!!x.

In [YH99b], Yoshida and Hennessy study locality of channels in a distributed process calculi
Dπλ. A type system is formulated to guarantee that, at any one time, the input capability
of channels resides at exactly one location. Sendable/non-sendable subtyping is incorporated
in such a type system to ensure that locality is preserved by communication. Likewise, we
use non-sendability to ensure that subsequent channel disciplines are not violated by channel
communication. The following lemma shows that non-sendability is preserved by labelled
transitions. The case where the non-sendable channel is received from the environment via
an input action must be excluded, however. Such pathological cases could be easily handled
by the labelled transition semantics of Nomadic π-calculi if sendable/non-sendable subtyping
were to be incorporated.
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chObj(@aP ) def= chObj(P )

chObj(LP |LQ) def= chObj(LP ) ∪ chObj(LQ)

chObj(newnewnew ∆ ininin LP ) def= chObj(LP )/dom(∆)

chObj(000) def= ∅
chObj(P |Q) def= chObj(P ) ∪ chObj(Q)

chObj(newnewnew ∆ ininin P ) def= chObj(P )/dom(∆)

chObj(c!!!v, 〈b@?〉c!!!v) def= fv(v)

chObj(c???p→P,***c???p→P ) def= chObj(P )/fv(p)

chObj(ififif v thenthenthen P elseelseelse Q) def= chObj(P ) ∪ chObj(Q)

chObj(letletlet p = ev ininin P ) def= fv(ev) ∪ chObj(P )/fv(p)

chObj(createcreatecreateZ b = P ininin Q) def= (chObj(P ) ∪ chObj(Q))/{b}
chObj(migrate tomigrate tomigrate to s→P ) def= chObj(P )

chObj(iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q) def= fv(v) ∪ chObj(P ) ∪ chObj(Q)

Figure 6.1: Sendable names

Lemma 6.2.1 (Non-sendability is preserved by LTS)

Given that c is non-sendable in LP , if Γ 
 LP
β−→
∆

LQ and β 6= @ax???v with c ∈ fv(v) then c

is non-sendable in LQ.

Proof: An induction on the transition derivations of process in which c is non-sendable. �

6.2.2 Access Restrictions

An early form of the π-calculus [MPW92] allowed parametric process definitions of the general
form K(~x) def= PK . Executing such definitions invokes a structural congruence law K(~y) ≡
PK{~y/~x}, which in effect makes a function call, ie. instantiates the definition of PK with
appropriate parameters. Milner [Mil93b] shows that such process definitions can be easily
encoded into π-calculus with replication (provided that the number of such definitions are
finite). For example, a single recursive definition with a single parameter A(x) def= P in a
process S can be translated to:

(νc)(Ŝ | !c(x).P̂ ) (∗)

where Q̂ is obtained from Q by replacing each call A(z) just by c̄z (assuming c is not free in
S, P ). The replicated resource !c(x).P̂ reacts to the output c̄z by instantiating a new copy
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of P . Structure similar to that in (∗) is widely employed in programs expressed in the π-
calculus, encodings of data structures etc. The programming language Pict [PT00] includes
this style of parametric process definition as a derived form.

A communication via c of the process in (∗) can be considered functional, since its result is
deterministic, guaranteed by the fact that there exists a unique process which may react to
outputs on c. To formalise this, we need a way of checking that c is not used for input in Ŝ

and P̂ . A channel c is said to be output-only in a process LP if LP only uses c for output.
As in [PS96], we use input/output subtyping for ensuring restricted usage of a channel in a
process.

Definition 6.2.2 (Output-only)

Let LP be a located process and Γ be a closed type context such that Γ ` LP . A channel c,
with Γ(c) = ^̂̂IT , is output-only in LP w.r.t. Γ if ∆ ` LP , where ∆ is obtained from Γ by
replacing the capability of c by w.

Replacing LP with P and Γ ` LP with Γ `a P , for some a, we obtain the definition of c

being output-only in basic processes.

The restriction of usage of a channel in a process is an invariant under labelled transitions;
this property is formally stated below. As for Lemma 6.2.1, we exclude the cases where the
channel which is output-only is received from the environment via an input action.

Lemma 6.2.2 (LTS preserves access discipline)

If c is output-only in LP w.r.t. Γ with Γ 
 LP
β−→
∆

LQ, β 6= @ax???v and c ∈ fv(v) then c is
output-only in LQ w.r.t. Γ, ∆.

Proof: An induction on transition derivations. �

The structure in (∗) can be adapted to Nomadic π-calculi, adding location annotations. Since
in Nomadic π only co-located inputs and outputs on the same channel may synchronise, the
function definition and function calls must be located at the same agent (any agent may
remotely invoke the function c at another agent a by sending an inter-agent message c!!!v to
a). We prove that communicating on a functional channel gives rise to an expansion. The
formal statement is given below.

Lemma 6.2.3 (Functional computation yields an expansion)

Given a closed located type context Γ with

• (Γ, c : ^̂̂rwT ) ` LP | @ac!!!v, (Γ, c : ^̂̂rwT ) ` p ∈ T . ∆, and (Γ, c : ^̂̂rwT, ∆) `a P ;

• c is output-only in P w.r.t. Γ, c : ^̂̂rwT, ∆ and in LP w.r.t. Γ, c : ^̂̂rwT ; and



6.2. CHANNEL-USAGE DISCIPLINES 93

• c is non-sendable in LP and @a(c!!!v | ***c???p→P ),

we have:
newnewnew c : ^̂̂rwT ininin (LP | @a(c!!!v | ***c???p→P ))

�Γ newnewnew c : ^̂̂rwT ininin (LP | @a(match(p, v)P | ***c???p→P )).

Proof: Standard. We first claim that: if Γ, c : ^̂̂rwT ` @a(c!!!v|***c???p→P ) then

newnewnew c : ^̂̂rwT ininin @a(c!!!v | ***c???p→P )
�Γ newnewnew c : ^̂̂rwT ininin @a(match(p, v)P | ***c???p→P )

This claim can be easily validated; we omit the details. Given the premises, we may derive
the following.

newnewnew c : ^̂̂rwT ininin (LP | @a(c!!!v | ***c???p→P ))
�Γ (newnewnew c : ^̂̂rwT ininin (LP | @a***c???p→P )) | (newnewnew c : ^̂̂rwT ininin @a(c!!!v | ***c???p→P ))

by Lemma 6.2.4 below
�Γ newnewnew c : ^̂̂rwT ininin (LP | @a***c???p→P )

| newnewnew c : ^̂̂rwT ininin @a(match(p, v)P | ***c???p→P )
by the claim and Theorem 5.4.3

�Γ newnewnew c : ^̂̂rwT ininin (LP | @a(match(p, v)P | ***c???p→P ))
by Lemma 6.2.4 below

Hence the lemma. �

The proof of this relies on Lemma 6.2.4 below which can be informally described as follows.
Imagine that two processes LP, LQ share a replicated resource LR = @a***c???p→R; moreover,
such a resource is private, ie. the scope of c is over LP, LQ,LR. Provided that LP and LQ

never use c for interacting between them, it makes no difference if we give LP and LQ its
own private resource. The formal statement is given below.

Lemma 6.2.4 (Replicated resource)

Given a closed located type context Γ with

• Γ, c : ^̂̂rwT ` LP |LQ and (Γ, c : ^̂̂rwT, ∆) `a R, where (Γ, c : ^̂̂rwT ) ` p ∈ T . ∆;

• c is output-only in LP and LQ w.r.t. Γ, c : ^̂̂rwT , and in R w.r.t. Γ, c : ^̂̂rwT, ∆; and

• c is non-sendable in LP, LQ,R,

we have:

newnewnew c : ^̂̂rwT ininin (LP | LQ | @a***c???p→R)
∼Γ (newnewnew c : ^̂̂rwT ininin (LP | @a***c???p→R)) | (newnewnew c : ^̂̂rwT ininin (LQ | @a***c???p→R)).
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Proof: Standard. First we construct an indexed relation S as follows:

SΓ′
def=


newnewnew Θ, c : ^̂̂rwT ininin (LP ′ | LQ′ | @a***c???p→R),
newnewnew Θ, c, c′ : ^̂̂rwT ininin ((LP ′ | @a***c???p→R)

| {c′/c}(LQ′ | @a***c???p→R))

∣∣∣∣∣ side-conditions


where the side-conditions are:

• Γ′, Θ, c : ^̂̂rwT ` LP ′|LQ′ and Γ′, Θ, c : ^̂̂rwT, Ξ `a R, where Γ′, Θ, c : ^̂̂rwT ` p ∈ T .

Ξ;

• ` Γ′, Θ, c : ^̂̂rwT, c′ : ^̂̂rwT ;

• c is non-sendable in LP ′, LQ′ and R;

• c is output-only in LP ′ and LQ′ w.r.t. Γ′, Θ, c : ^̂̂rwT ; and

• c is output-only in R w.r.t. Γ′, Θ, c : ^̂̂rwT, Ξ.

We may then show that S a strong congruence (detail omitted).

Having proved such a result, we may now derive the lemma.

newnewnew c : ^̂̂rwT ininin (LP | LQ | @a***c???p→R)
∼Γ newnewnew c, c′ : ^̂̂rwT ininin (LP | @a***c???p→R | {c′/c}(LQ | @a***c???p→R))
≡ (newnewnew c : ^̂̂rwT ininin (LP | @a***c???p→R))

| (newnewnew c′ : ^̂̂rwT ininin {c′/c}(LQ | @a***c???p→R))
≡ (newnewnew c : ^̂̂rwT ininin (LP | @a***c???p→R))

| (newnewnew c : ^̂̂rwT ininin (LQ | @a***c???p→R))

�

The above lemma is adapted from “the replication theorem” [Mil93b], adding location an-
notation. It expresses a useful distributivity property of private replicated processes and
is essential in the proof of validity of β-reduction of encodings of the λ-calculus [Mil92], as
well as in the proof of representability of Higher-Order π-calculus in first-order π-calculus
[San93a]. Subsequent typing technology such as I/O-subtyping [PS96] reduces the original
heavy side-condition, and uniform receptiveness [San99] enables the theorem to be used in
the situation where the set of clients of the replicated resource may change dynamically. In
the next subsection, we show how the latter can be adapted so as to deal with the situation
where the agents in which replicated resources reside can be created dynamically.
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6.2.3 Uniform Receptiveness

The model of functional computation in the previous section does not deal with the cases
where function definitions (ie. replicated resources) reside in dynamically created agents.
Consider the process below, for example.

@a(***c???p→P | createcreatecreatem b = ***c???p→Q ininin (〈b〉c!!!v|R))

Clearly, the output 〈b〉c!!!v may react with the replicated input ***c???p→Q in the newly created
agent b; moreover, since the channel c is functional for agent b, such a reaction step will
induce an expansion. This expansion cannot be derived using Lemma 6.2.3, however, since c

is used for input both in ***c???p→P and in the createcreatecreatem process.

To deal with the above situation, which is the case for deliver channel in the example
infrastructure, we turn to Sangiorgi’s notion of uniform receptiveness [San99]. A channel x is
receptive in a process P if P is always ready to accept an input at x (at least as long as there
are processes that could send messages at x). Uniformity of reception means that all inputs
at x have the same continuation, implying the channel x is functional. We adapt this to a
distributed setting, regarding x as uniformly receptive in LP if each agent in LP , including
those which are dynamically created and newnewnew-bound, either contain a unique replicated input
on x or does not use x for input.

We define two forms of judgements: x : m �a P and x : S � LP , where m ∈ {0, ω} and
S is a set of names. Informally, x : 0 �a P means that x is never used for input in P ,
whereas x : ω �a P means that P contains exactly one replicated input on x. The meta-
variable m is therefore a receptive variable which is either 0 or ω. For located processes,
x : S � LP implies x is uniformly receptive in LP ; moreover, each agent a ∈ S contains
a unique replicated input on x, whereas each agent b 6∈ S does not use x for input. When
x : m �a P and x : S � LP , the name x can be used for output in P and LP , but x is
not sendable in such processes. This ensures that uniform receptiveness is preserved by the
labelled transitions. Note that dynamically created and newnewnew-bound agents are not obliged to
contain a function definition for x, but if they do then such a definition will be unique for
such agents. This allows x to be uniformly receptive in agents created by the syntactic sugar
eg. in 〈b@s〉c!!!v. The formal definition of uniform receptiveness is given below.

Definition 6.2.3 (Uniform Receptiveness)

Given that Γ ` LP and Γ ` x ∈ ^̂̂rwT , the channel x is said to be S-uniformly receptive in
LP if, S ⊆ agents(Γ) and x : S � LP , derivable by the rules given in Figures 6.2-6.3.
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(UR-Nil)
x : 0 �a 000

(UR-Rep)
x : 0 �a P

x : ω �a ***x???p→P

(UR-New)
x : m �a P x 6∈ dom(∆)

x : m �a newnewnew ∆ ininin P

(UR-IfLocal)
x : 0 �a P, Q x 6∈ fv(v)

x : 0 �a iflocaliflocaliflocal 〈b〉x!!!v thenthenthen P elseelseelse Q

(UR-Create)
x : m �b P x : 0 �a Q

x : 0 �a createcreatecreateZ b = P ininin Q

(UR-Plain)
x : 0 �a P, Q c 6= x x 6∈ fv(v) x 6∈ fv(ev)

x : 0 �a letletlet p = ev ininin P, ififif v thenthenthen P elseelseelse Q,

iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q, migrate tomigrate tomigrate to s → P,

c???p→P, ***c???p→P, c!!!v, 〈b〉c!!!v, 〈b@s〉c!!!v, 〈b@?〉c!!!v

(UR-Out)
x 6∈ fv(v)

x : 0 �a x!!!v, 〈b〉x!!!v, 〈b@s〉x!!!v, 〈b@?〉x!!!v

(UR-Par)
x : m1 �a P x : m2 �a Q (m1 = 0) ∨ (m2 = 0)

x : m1 + m2 �a P | Q

Figure 6.2: Uniform receptiveness: Basic process

(UR-At)
z ∈ S ⇒ x : ω �z P z 6∈ S ⇒ x : 0 �z P

x : S � @zP

(UR-LPar)
x : S1 � LP x : S2 � LQ S1 ∩ S2 = ∅
x : S1 ∪ S2 � LP | LQ

(UR-LNew)
∃S′ ⊆ agents(∆) . x : S ∪ S′ � LP x 6∈ dom(∆) S ∩ dom(∆) = ∅
x : S � newnewnew ∆ ininin LP

Figure 6.3: Uniform receptiveness: Located process
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We prove a result similar to Lemma 6.2.3, ie. that a τ -step caused by a communication on a
uniformly-receptive channel gives rise to an expansion. The proof of such a lemma relies on
the preservation of uniform receptiveness under transitions.

Lemma 6.2.5 (Uniform receptiveness is preserved by LTS)

Given that Γ is a closed located type context with Γ ` LP , if x : S � LP with S ⊆ agents(Γ)

and Γ 
 LP
β−→
∆

LQ then the following hold:

• if β is an output label then there exists S′ ⊆ agents(∆) such that x : S ∪ S′ � LQ;

• if β = @ac???v, for some a, c, v, and x 6∈ fv() then x : S � LQ;

• if α is a migrate or τ label then then x : S � LQ.

Proof: An induction on the derivation of Γ 
 LP
β−→
∆

LQ. �

Lemma 6.2.6 (Functional computation yields an expansion)

Given a closed located type context Γ, supposing the following hold:

• Γ ` newnewnew c : ^̂̂rwT ininin (LP | @a(c!!!v | ***c???p→P )).

• For some S ⊆ agents(Γ), c : S � LP | @a(c!!!v | ***c???p→P ).

then
newnewnew c : ^̂̂rwT ininin (LP | @a(c!!!v | ***c???p→P ))
�Γ newnewnew c : ^̂̂rwT ininin (LP | @a(match(p, v)P | ***c???p→P )).

Proof: In order to prove this, we construct the following relation.

RΦ
def=

{
newnewnew Θ ininin (LQ | @a(c!!!v | ***c???p→P )),
newnewnew Θ ininin (LQ | @a(match(p, v)P | ***c???p→P ))

∣∣∣∣∣ side-condition

}
∪ ≡Φ

where the side condition is: there exists S ⊆ agents(Φ, Θ) such that

• Φ ` newnewnew Θ ininin (LQ | @a(c!!!v | ***c???p→P ));

• c : S � LQ | @a(c!!!v | ***c???p→P ); and

• a ∈ dom(Φ) and c ∈ dom(Θ).

We may then prove that R is a translocating expansion congruence. We omit the details. �

Amadio et al. [ABL99] also adapted the concept of uniform receptiveness to a distributed
setting. Their work is different from ours in many respects:

• their type system ensures that all channels are uniformly receptive;
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• as in the distributed join-calculus, for each channel c there exists a unique location in
which c can be used for input; and

• inter-agent messages are guaranteed to find appropriate receptors at their target loca-
tions.

These restrictions require a new programming style, many examples of which are given by
the authors.

6.2.4 Local Channels

In distributed process calculi literature, a channel is said to have a locality if there exists a
unique location which can use such a channel either for input, for output, or for both. In
the distributed join-calculus [FGL+96], for each channel there exists a unique location where
inputs on such a channel reside (cf. Section 8.1 on page 156). More generally, Sewell [Sew98]
studied a type system which refines channel types with global and local capabilities as well
as input and output. Using such a type system, the join-calculus channels, for example, can
be thought of as roughly those which have global output and local input capabilities. A
different view of locality is given by Amadio and Prasad [AP94]. They studied a calculus in
which each channel is associated with a location in such a way that if a location fails, then
all the channel associated with such a location can no longer be used for communication.

In this section, we study channels which are local in the sense that they are never used
for inter-agent communication; an example of this is currentloc in the C-translation. We
formally define this below.

Definition 6.2.4 (Local Channels)

A channel c is said to be local in LP if it is non-sendable in LP and c 6∈ chSubj(LP ),
where chSubj(LP ) is the set of channels which are used for output in iflocaliflocaliflocal or LI output
primitives in LP .

The exact definition of chSubj(·) can be obtained from that of chObj(·), given in Figure 6.1,
by replacing the rules involving outputs with the following.

chSubj(c!!!v) def= ∅

chSubj(〈b@?〉c!!!v) def= {c}

chSubj(iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q) def= {c} ∪ chSubj(P ) ∪ chSubj(Q)
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Consider the example process below.

newnewnew c : ^̂̂rwT ininin (@aP | @bQ)

If a channel c is used locally in (@aP | @bQ) then the agent a will not use c for sending
messages to b, or vice versa. This means that we can, without changing the observable
behaviours, redefine the scope of c so it is “localised” to each agent. We generalise this
intuition to arbitrary located processes below.

Lemma 6.2.7 (Scope narrowing of local channel)

Given that Γ is a closed located type context with Γ, c : ^̂̂IT ` LP |LQ, if c is a local channel
in LP, LQ and agents(LP ) ∩ agents(LQ) = ∅ then

newnewnew c : ^̂̂IT ininin (LP | LQ) ∼Γ (newnewnew c : ^̂̂IT ininin LP ) | (newnewnew c : ^̂̂IT ininin LQ).

where agents(LP ) is the set of agents in LP which syntactically locate a basic process.

agents(@aP ) def= {a}

agents(LP |LQ) def= agents(LP ) ∪ agents(LQ)

agents(newnewnew ∆ ininin LP ) def= agents(LP )/dom(∆)

Proof Sketch: It is awkward to construct a translocating congruence using the premises of
this lemma. In particular, we need to explicitly rearrange processes after transition so that
the premise agents(LP )∩ agents(LQ) = ∅ holds (consider eg. inter-agent messaging between
LP and LQ). It is simpler to ensure that c will not used for a communication between LP

and LQ. For this we define writeA(c, LP ) and readA(c, LP ) as the sets of agents which may
use c for reading and writing respectively.

readAa(c, c???p→P ) def= {a}
readAa(c,***c???p→P ) def= {a}
readA(c, @aP ) def= readAa(c, P )

writeAa(c, c!!!v) def= {a}
writeAa(c,iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q) def= {a}
writeA(c, @aP ) def= writeAa(c, P )

For the rest, readA(c, ·) and writeA(c, ·) are homomorphic. We observe that if c is a local
channel then the sets writeA(c, LP ) and readA(c, LP ) are preserved by transitions in which
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c is not received as an argument. The problematic premise can be replaced by the following,
which is preserved by transitions.

readA(c, LP ) ∩ writeA(c, LQ) = readA(c, LQ) ∩ writeA(c, LP ) = ∅

We may now construct a translocating indexed relation, and prove that it is a translocating
strong bisimulation. The details are given in Appendix B.8 on page 221. �

Readjusting the scopes of names is necessary for the uses and the proofs of temporary im-
mobility later. For example, it is simpler to show that an agent a encapsulated by

newnewnew currentloc ininin @a([[P ]] | ack???[]→ ..)

is temporarily immobile blocked by ack, than to deal with the whole system of many agents,
bound with currentloc at the top-level.

6.3 Determinacy and Confluence

Components in a concurrent program are often independent, in the sense that execution
of one component does not (immediately) affect that of the others. This is reflected in
operational semantics when transitions originated by different components commute. The
notion of confluence, used in process calculi by Milner in [Mil80, Mil89], formally captures
this phenomenon. For clarity, we recapitulate the definition of strong confluence for CCS
processes below. Note that in this definition ∼̇ is the strong bisimulation defined for CCS
processes, and a, b are CCS actions.

Definition 6.3.1 (Strong confluence à la [Mil80])

P is always strongly 0-confluent.
P is strongly (k + 1)-confluent iff:

1. P
a−→ P1 and P

b−→ P2 implies either:

• a = b and P1 ∼̇ P2 or

• there exists P3 and P4 such that P1
b−→ P3, P2

a−→ P4 and P3 ∼̇ P4.

2. P
µ−→ Q implies Q strongly k-confluent.

P is strongly confluent iff it is strongly k-confluent for all k ≥ 0.
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The key property of a confluent system is that it implies τ -inertness (or τ -stability in [Tof91]),
where a process P is τ -inert if it satisfies:

If P
τ−→ Q then P �̇ Q

where here �̇ is the expansion defined for CCS processes. Note the similarity to sequential
computation where reduction does not change the value of a term: here (internal) reduction
does not change a term’s behaviour. This property can be very useful for process verification
since it allows the state space to be reduced, sometimes drastically, by performing as many
internal reductions as possible without changing the equivalence class of the process under
investigation (see some examples in [GS95]).

Realistic protocols do not often meet the requirement set by Definition 6.3.1, however. Alter-
native definitions, such as progressing confluence [GS95] and partial confluence [Phi96], have
been formulated. These definitions retain the τ -inertness property, but relax the clauses of
Definition 6.3.1 so that only certain actions are required to commute with all other actions.
Nevertheless such notions of confluence involve quantification over all derivatives, and can
therefore be difficult to establish. Moreover, compositional techniques cannot be applied as
confluence is not preserved by parallel composition (unless composed processes share no free
names and cannot communicate with each other). Yet a notion of confluence is useful for
proving our infrastructure correct, since many of the additional reductions introduced by the
encoding are essentially confluent.

When proving the example infrastructure correct, we observe that a confluent step is often
introduced by a subprocess which is τ -deterministic. A process is said to be τ -deterministic if,
under a translocation, the next computational step of a process is completely determined. For
example, a conditional ififif truetruetrue thenthenthen P elseelseelse Q reduces to P regardless of the location context,
and @a〈b@s〉c!!!v reduces to @bc!!!v provided that b is located at s and is not to be moved. A
key property of a τ -deterministic process is that its reduction step induces a translocating
expansion. Hence, if placed in a program context which respects its translocation, a reduction
generated from a τ -deterministic process is τ -inert. The formal definition of τ -determinism
is given below.

Definition 6.3.2 (Deterministic reduction)

Given a closed located type context Γ and M ⊆ mov(Γ), a located processes LP is said to

deterministically reduce to LQ w.r.t. (Γ,M), written Γ 
 LP
det−−→
M

LQ, if, for any valid δ for

(Γ,M), the following hold:

• Γδ 
 LP
τ−→ LQ; and
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• Γδ 
 LP
β−→
∆

LQ′ implies β = τ , ∆ = • and LQ′∼̇M
ΓδLQ.

We also define the relation det=⇒
M

to be the transitive closure of det−−→
M

; that is Γ 
 LP
det=⇒
M

LQ

implies there exists LP1, . . . , LPn such that, letting LP = LP0 and LQ = LPn+1, we have

Γ 
 LPi
det−−→
M

LPi+1 0 ≤ i ≤ n

A process LP is said to be τ -deterministic w.r.t. Γ,M if there exists LQ such that Γ 
 LP
det=⇒
M

LQ.

A non-trivial example of a τ -deterministic process is the following.

newnewnew m : Map[Agents Site], dack : ^̂̂rw[] ininin
(@D〈a@s〉deliver!!! {|T |} [c v dack]
| @D(makeMap(m; map) | dack???[]→lock!!!m))

This is a part of the daemon which is about to forward a message c!!!v to an agent a at site
s. Note that the input on dack cannot receive a message until the LD output has extruded
the scope of dack.

The lemma below states the key property of τ -determinacy: that a deterministic reduction
gives rise to a translocating expansion.

Lemma 6.3.1 (Deterministic reduction induces expansion)

If Γ 
 LP
det−−→
M

LQ then LP �̇M
Γ LQ.

Proof: Construct a translocating indexed relation S such that

SM ′
Φ

def= {(LP, LQ) | Φ 
 LP
det−−→
M ′

LQ} ∪ ∼̇M ′
Φ

This can be easily proved to be a translocating expansion. �

Many internal computations, including LD-messaging, are τ -deterministic (Facts 6.3.2 to
6.3.6 below). Fact 6.3.7 shows the confluence of communication along linear channels, ie.
those that can be used at most once throughout their lifetime for communication. This
result is simple compared to that of [KPT96], which uses a refined type system, yet it is
sufficient for proving τ -inertness of communication via acknowledgement channels in the
example infrastructure.

Lemma 6.3.2 (Determinacy of conditional statement)

Given that Γ is a closed located type context, and Γ `a P,Q. For all M ⊆ agents(Γ), the
following hold.
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• Γ 
 @aififif truetruetrue thenthenthen P elseelseelse Q
det−−→
M

@aP .

• Γ 
 @aififif falsefalsefalse thenthenthen P elseelseelse Q
det−−→
M

@aQ.

Lemma 6.3.3 (Determinacy of local messaging)

Given that Γ is a closed located type context, and Γ `a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q. For
all M ⊆ agents(Γ)/{a, b}, the following hold.

• Γ ` a@s and Γ ` b@s implies:

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
det−−→
M

@aP | @bc!!!v.

• Γ ` a@s, Γ ` b@s′ with s 6= s′ implies:

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
det−−→
M

@aQ.

Lemma 6.3.4 (Determinacy of agent creation)

Given that Γ is a closed located type context, and Γ `a createcreatecreateZ b = P ininin Q. If Γ ` a@s

then, for all M ⊆ agents(Γ)/{a}, the following holds.

Γ 
 @acreatecreatecreateZ b = P ininin Q
det−−→
M

newnewnew b : AgentZ@s ininin (@bP |@aQ)

Lemma 6.3.5 (Determinacy of inter-agent messaging)

Given that Γ is a closed located type context, Γ `a 〈b@s〉c!!!v and Γ ` b@s. For any M ⊆
agents(Γ)/{b}, we have:

Γ 
 @a〈b@s〉c!!!v det=⇒
M

@bc!!!v.

Lemma 6.3.6 (Determinacy of evaluation)

Given that Γ is a closed located type context, and Γ ` @aletletlet p = ev ininin P . For any
M ⊆ agents(Γ), we have:

Γ 
 @aletletlet p = ev ininin P
det−−→
M

@amatch(p, eval(ev))P.

Lemma 6.3.7 (Determinacy of use-once channel communication)

Given thatΓ is a closed located type context, and Γ, c : ^̂̂rwT ` @a(c!!!v | c???p→P ). For any
M ⊆ agents(Γ), we have:

Γ 
 @anewnewnew c : ^̂̂rwT ininin (c!!!v | c???p→P ) det−−→
M

@anewnewnew c : ^̂̂rwT ininin match(p, v)P.
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The theory of determinacy and confluence for the π-calculus has been an important verifica-
tion tool. It has been employed for protocol verification [Mil89, GS95], on-the-fly reduction
of finite state spaces [HP94, Qin91], and reasoning about objects [Phi96]. By comparison,
our notion of τ -determinacy is restrictive, since the deterministic reductions do not commute
with some migrate actions. Nevertheless we can use mutual exclusion techniques for ensuring
that such migrate actions will not occur before the deterministic reduction steps. For exam-
ple, a deterministic reduction may subsequently release a lock which an agent must acquire
in order to migrate. In Section 6.4 we make this precise, and prove that in such situations a
reduction by a τ -deterministic component is τ -inert.

6.4 Temporary Immobility

It is generally difficult to guarantee the safe delivery of location-dependent messages to mobile
agents. In practice, some means of mutual exclusion is often used to ensure that, while
an LD operation is being executed, the agents involved are not migrating. Our example
infrastructure algorithm (as well as those presented in [SWP99, Woj00a]) uses lock channels
(both within the daemon and each agent) to ensure such mutual exclusions. The daemon lock
ensures that whenever an agent migrates, the site map of the daemon is updated accordingly
before the daemon deals with the next request. This section makes precise such informal
reasoning. It identifies processes which are temporarily immobile, waiting for a lock to be
released or an acknowledgement from the daemon. This technique is vital in infrastructure
verification, since it guarantees the safety of LD communication between the daemon and
agents.

Intuitively, an agent a in a process LP is prevented from migrating if there exists an input (or
output) action which always precedes migration of a in any derivative of LP . To formalise
this, we need to determine the possible sequences of actions of a located process w.r.t. a
located context. However, to simplify the task of evaluating all possible paths, we may
decompose the process into smaller subprocesses and only concentrate on the essential part.
This means we must introduce a translocating index for handling possible relocations of
agents by program contexts. For this, we define translocating paths below.

Definition 6.4.1 (Translocating Paths)

A translocating path of LP0 w.r.t. (Γ,M) is a sequence

β1−−→
∆1

. . .
βn−−→
∆n

for which there exist LP1, . . . , LPn and δ0, . . . , δn−1 such that for each i ∈ 0 . . . n− 1:
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• δi is a relocator, valid w.r.t. Γ, ∆1, . . . , ∆i;

• dom(δi) ⊆ M ]β1 mov(∆1) . . . ]βi
mov(∆i); and

• ((Γδ0, ∆1)δ1β1, ∆2 . . . βi, ∆i)δi 
 LPi
βi+1−−−→
∆i+1

LPi+1.

LP1, . . . , LPn are then said to be translocating derivatives of LP with respect to Γ under M .

There are many ways in which the intuition about temporary immobility can be formalised.
Here we choose a notion which is applicable to the example infrastructure and is relatively
easy to establish: a located process LP is said to be temporarily immobile if no migration
of any agent can occur unless preceded by an input on the lock channel. To ease the task of
proving temporary immobility, we cut down the space of translocating derivatives required
to be checked by assuming that the lock channel is non-sendable, and hence never received
from the environment as an argument. To ensure this, we also insist that the lock channel is
non-sendable in the temporarily immobile process. The formal definition is given below:

Definition 6.4.2 (Temporary Immobility)

Given a closed located type context Γ, a located process LP with Γ ` LP , and a translocating
index M ⊆ agents(Γ), LP is temporarily immobile under lock l w.r.t. (Γ,M) if, for all
translocating paths

β1−−→
∆1

. . .
βn−−→
∆n

of LP w.r.t. (Γ,M) which do not contain an input action βj = @ac???v with l ∈ fv(c, v), the
following hold for all i ≤ n, b, c, v and s:

• βi = @bc!!!v implies l 6∈ fv(βi); and

• βi 6= @bmigrate to s.

Note that a temporarily immobile process LP may contain parts of many agents. The above
definition, however, ignores the location annotation of the input on the lock channel action,
as well as that of the migrate action. This allows the following situations to be dealt with:

• More than one agent may be prevented from migrating, until the lock is released. This
is certainly the case for the example infrastructure algorithm; for example, neither a
newly-created agent nor its parent can migrate until the former receives an acknowl-
edgement from the daemon.

• Receiving an input on the lock channel on one agent may allow another agent to
migrate. This situation is illustrated by the example process in (6.1) below, where an
agent cannot migrate until the daemon sucessfully acquires the daemon lock lock.
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Definition 6.4.2 captures our intuition of temporary immobility. Proving that a process is
temporarily immobile, however, can be difficult for we need to perform a case analysis over
possible sequences of transitions. A coinductive proof technique is preferable for proving
temporary immobility — not only as such a technique allows analysis of single step transi-
tions, but also as it allows the space of possible transition sequences to be cut down by using
an “up to” technique (see later). Following this, we formulate blocking sets. A blocking set
is a set of located processes (indexed by a translocating index and a located type context)
which is closed under transitions that are not input actions containing l; moreover, none of
the processes in such a set can immediately migrate. The formal definition is as follows.

Definition 6.4.3 (Blocking Set)

A translocating unary relation M is a blocking set under lock l if, for any LQ ∈ MM
Γ ,

M ⊆ mov(Γ), Γ ` LQ, and valid relocator δ for (Γ,M), whenever Γδ 
 LQ
β−→
Θ

LQ′, we have:

• β = τ implies LQ′ ∈MM
Γδ;

• β = @bc???v with l 6∈ fv(β) implies LQ′ ∈MM∪mov(Θ)
Γδ,Θ ;

• β = @bc!!!v implies l 6∈ fv(β) and LQ′ ∈MM
Γδ,Θ; and

• β 6= @bmigrate to s, for any b, s.

It is not difficult to check that if a process belongs to a blocking set under l then it is
temporarily immobile under the same lock, and vice versa.

Lemma 6.4.1 (Coincidence of two temporary immobility definitions)

Let Γ be a closed located type context and M ⊆ agents(Γ) be a translocating index. LP is
temporary immobile under l w.r.t. (Γ, M) if and only if there exists a blocking set M under
l such that LP ∈MM

Γ .

To see how temporary immobility is used, consider the example process below.

LQ
def= newnewnew Ωaux ininin

@DDaemon

| @a([[P ]]a |currentloc!!!s|Deliverer)

(6.1)

where Ωaux = Φaux/ΩD and

ΩD
def= D : Agents@SD,

lock : ^̂̂rwMap[Agents Site],
deliver : ^̂̂rw {|X|} [̂^̂wX X ^̂̂w[]]
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Here agent a cannot migrate until the daemon lock lock is successfully acquired, so LQ

is temporarily immobile under lock with respect to any type-correct (Γ,M) that does not
admit environmental relocation of a, ie. with a 6∈ M . Assume further that a is at s and that
the daemon is forwarding an LI message to a, ie. the above is in parallel with

LP
def= @D〈a@s〉deliver!!![c v ack]

This parallel composition, with a surrounding new-binder for lock, expands to

newnewnew lock : ^̂̂rwMap[Agents Site] ininin (LQ | @adeliver!!![c v ack])

To prove this expansion, we consider the transitions of LP . Assuming that a remains at s,
such transitions will eventually deliver the message to a at s, as shown below.

LP = @Dcreatecreatecreatem b = migrate tomigrate tomigrate to s→(iflocaliflocaliflocal 〈a〉deliver!!![c v ack] thenthenthen 000) ininin 000
τ−→ newnewnew b : Agentm@SD ininin @bmigrate tomigrate tomigrate to s→(iflocaliflocaliflocal 〈a〉deliver!!![c v ack] thenthenthen 000)
τ−→ newnewnew b : Agentm@s ininin @biflocaliflocaliflocal 〈a〉deliver!!![c v ack] thenthenthen 000
τ−→ @adeliver!!![c v ack]

We observe that all these transitions are deterministic reduction. Moreover, since none of
these steps yields an output on lock and LQ is temporarily immobile, blocked by lock, the
agent a will remain at s while the above transitions occur. This can be generalised to the
following lemma, capturing the key property of temporarily immobile processes.

Lemma 6.4.2 (Safety of deterministic reduction)

Given that LQ is temporary immobile under l w.r.t. ((Γ, ∆),M), with ∆ being extensible

and l ∈ dom(∆), if Γ, ∆ 
 LP1
det−−→
M

LP2 then

newnewnew ∆ ininin (LP1 | LQ) �̇M∩dom(Γ)
Γ newnewnew ∆ ininin (LP2 | LQ)

Proof Sketch: The basic idea here is that LP1 cannot trigger the lock, since it has a
deterministic reduction to LP2. As the lock is not triggered by LP1, agents in LQ cannot
migrate until after LP1 safely reduces to LP2.

Since LQ is temporarily immobile under l w.r.t. ((Γ, ∆),M), there exists M, a blocking set
under lock l, such that LQ ∈ MM

Γ,∆. To prove this lemma, we construct a translocating
indexed relation R as follows.

RM ′
Ξ = { (newnewnew ∆ ininin (LP1 | LR), newnewnew ∆ ininin (LP2 | LR)) | side-condition } ∪ ≡Ξ

where the side-condition is that there exists Γ, Θin, Θex,M ′′ satisfying:
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• Ξ ≡ Γ, Θex, Θin;

• Ξ, ∆ ` LP1, LR;

• M ′ = (M ′′ ∩mov(Γ)) ∪mov(Θin);

• l ∈ dom(∆);

• LR ∈MM ′′∪mov(Θin)
Ξ,∆ ; and

• Ξ, ∆ 
 LP1
det−−−−−−−−−−−−→

M ′′∪mov(Θex,Θin)
LP2.

Informally, Θin is the located type context extruded from the environment by input actions,
Θex is that extruded to the environment by output actions of LR (LP1 can never commit an
output until it reduces to LP2). The translocating index M ′ must include all mobile agents
received from the environment, but it does not need to contain those of Θex. The premises of
the lemma which concern temporary immobility and deterministic reduction are extended,
so that they deal with the new agents in Θin and Θex.

This relationR is proved to be a translocating expansion. Details can be found in Appendix C
on page 228. �

Example 6.1 shows a situation in the C-translation where an agent is temporarily immobile,
blocked by the daemon lock. An agent can also be temporarily immobile if it is waiting for its
local lock, for an acknowledgement from the daemon, or from a newly-created child. These
situations are captured precisely in the following lemmas.

Lemma 6.4.3 (Blocked by daemon lock)

Given that Γ is a closed located type context, lock 6∈ fv(P ) and M ⊆ agents(Γ)/{a}, the
following processes (each well-typed w.r.t. Γ, ΩD)

newnewnew Ωaux ininin

@D(Daemon|
∏

i mesgReq{|Ti|} [a ci vi])
| @a([[P ]]a |currentloc!!!s|Deliverer)

newnewnew Ωaux, rack : ^̂̂rw[], pack : ^̂̂rw[], b : AgentZ@s ininin

@D(Daemon|regReq[b s rack]|
∏

i mesgReq{|Ti|} [a ci vi])
| @a(regBlockP(pack Q)| [[P ]]a |Deliverer) | @bregBlockC(rack pack R)

newnewnew Ωaux, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
@D(Daemon|migReq[a mack]|

∏
i mesgReq{|Ti|} [a ci vi])

| @a(migBlock(mack Q)| [[P ]]a |Deliverer)
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are temporary immobile under lock w.r.t. ((Γ, ΩD),M).

Lemma 6.4.4 (Blocked by local lock)

Given that Γ is a closed located type context, Γ `a P , `L Γ, Φaux and M ⊆ agents(Γ)/{a}.
@a([[P ]]a |Deliverer) is temporarily immobile under currentloc w.r.t. ((Γ, Φaux),M).

Lemma 6.4.5 (Blocked by acknowledgement)

Let Φ−
aux be defined as follows.

Φ−
aux

def= Φaux/currentloc : ^̂̂rwSite

Given that Γ is a closed located type context, {ack, currentloc} ∩ fv(P,Q) = ∅, and
Γ, Φ−

aux, ack : ^̂̂rwT ` LP , where LP is defined below.

LP = newnewnew currentloc : ^̂̂rwSite ininin @a([[P ]]a | (ack???p→Q) | Deliverer)

LP is temporarily immobile under ack w.r.t. ((Γ, Φ−
aux, ack : ^̂̂rwT ),M).

The proofs of these lemmas are non-trivial, since the C-encoding introduces many additional
τ -steps, which can make it hard to determine all the possible derivatives. Many of these
τ -steps, however, are confluent, which means that some of the derivatives are related by
expansion — a useful property that cannot be exploited by Definitions 6.4.2-6.4.3. To deal
with the additional confluent τ -steps, we use a technique similar to “up to” equivalences,
allowing blocking sets to be closed up under translocating weak bisimulation.

Definition 6.4.4 (Blocking Set up to ≈̇)

A translocating unary relation M is a blocking set up to ≈̇ under lock l if, for any LQ ∈MM
Γ ,

M ⊆ mov(Γ), Γ ` LQ, and valid relocator δ for (Γ,M), we have Γδ 
 LQ
β−→
Θ

LQ′ implying
the following:

• β = τ implies there exists LQ′′ such that LQ′≈̇M
ΓδLQ′′ and LQ′′ ∈MM

Γδ;

• β = @bc???v with l 6∈ fv(β) implies there exists LQ′′ such that LQ′≈̇M∪mov(Θ)
Γδ,Θ LQ′′ and

LQ′′ ∈MM∪mov(Θ)
Γδ,Θ ;

• β = @bc!!!v implies l 6∈ fv(β), and there exists LQ′′ such that LQ′≈̇M
Γδ,ΘLQ′′ and LQ′′ ∈

MM
Γδ,Θ; and

• β 6= @bmigrate to s, for any b, s.

We have proved that if a process belongs to a blocking set up to ≈̇ under l then it is
temporarily immobile under the same lock. The details of the proof are in Appendix C on
page 227.



110 CHAPTER 6. PROOF TECHNIQUES

Lemma 6.4.6 (Blocking set up to ≈̇ implies temporary immobility)

Given that Γ is a closed located type context, and M ⊆ agents(Γ) is a translocating index, if
there exists a blocking set up to ≈̇ under l, M, such that LP ∈MM

Γ then LP is temporary
immobile under l w.r.t. (Γ, M).

By using blocking sets up to ≈̇, we drastically cut down the size of the transition analysis
required for proving Lemmas 6.4.4 to 6.4.3. The details of the proofs of properties related
to C-encoding can be found in Appendix C.1 on page 232. Other useful properties are that
temporary immobility is preserved by parallel composition and newnewnew-binding, and by weak
translocating bisimulation; the formal statements are given below. The details of the proofs
of these properties can be found in Appendix C on page 230.

Lemma 6.4.7 (Composition preserve temporary immobility)

If LP and LQ are temporarily immobile under l, w.r.t. ((Γ, ∆),M) with l ∈ dom(Γ) and ∆
extensible, then newnewnew ∆ ininin (LP |LQ) is temporarily immobile under l, w.r.t. (Γ,M ∩dom(Γ)).

Lemma 6.4.8 (Weak bisimulation preserves temporary immobility)

If LP is temporary immobile under l w.r.t. (Γ,M) and LP ≈̇M
Γ LQ then LQ is temporary

immobile under l w.r.t. (Γ,M).

6.5 Maps and Their Operators

The expressiveness of the π-calculus allows a wide-range of data structures to be encoded
into its core syntax. Such data structures include lists [Mil93b], objects [Wal95], and B-trees
[Phi96]. This section gives an encoding of finite maps, used in the example infrastructure
for keeping track of current sites of registered agents. The encoding builds on that given in
[SWP99], adding types. Maps are represented as linked data cells. Each cell is a replicated
input on a channel — say m — and is either empty (represented by emptyCell(m)) or contain-
ing an entry v1 with a corresponding value v2 and a pointer to the next cell m′ (represented
by mapCell(m, m′, v1, v2)). The encoding of map cells is given below.

emptyCell(m) def= ***m???[x fnd nfd]→nfd!!![]

mapCell(m,m′, v1, v2) def= ***m???[x fnd nfd]→
ififif x = v1 thenthenthen fnd!!!v2 elseelseelse m′!!![x fnd nfd]

A map cell m can be queried by sending a tuple [v fnd nfd] along the channel m. If m is
an empty cell, the “not found” channel nfd is signalled. If the cell is mapCell(m, m′, v, v2),
the corresponding value v2 is sent along the “found” channel fnd. Otherwise, if the cell is
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mapCell(m,m′, v1, v2) with v1 6= v, the tuple [v fnd nfd] is forwarded to the next cell m′, in
effect searching the reminder of the linked cells.

Each map type Map[T1 T2] is parameterised by two types: the type of its entries T1 and the
type of its entry values T2. We translate map types to the core type syntax below.

Map[T1 T2] def= ^̂̂rw[T1 ^̂̂wT2 ^̂̂w[]]

Using these map cells, the encoding of the operators on maps is as follow.

c!!!emptymapemptymapemptymap[T1 T2] def= newnewnew m : Map[T1 T2] ininin (c!!!m | emptyCell(m))

lookuplookuplookup[T1 T2] v ininin m withwithwith

foundfoundfound(p)→P

notfoundnotfoundnotfound→Q

def= newnewnew fnd : ^̂̂rwT2, nfd : ^̂̂rw[] ininin (m!!![v fnd nfd]
| fnd???p→P

| nfd???[]→Q)
letletlet[T1 T2] m′ = (m withwithwith v1 7→ v2) ininin P

def= newnewnew m′ : Map[T1 T2] ininin P | mapCell(m,m′, v1, v2)

An output of an empty map via channel c is translated to an empty cell m in parallel with an
output of a reference to (newnewnew-bound) m on c. Looking up an entry, say v, in the map simply
exploits the map cell construct: two fresh channels fnd, nfd are created and sent, together
with v, to the head of the linked cells m. Such a message transverses the linked cells until
it reacts with a cell whose entry matches the queried entry v; in this case, the value, say v′,
corresponding to v will be sent along fnd. This output on fnd triggers the execution of P

with the appropriate parts of the value v′ bound to the parameters in the pattern p. If no
such cell exists, however, the channel nfd will be signalled, in effect triggering the execution
of Q. Updating a map, whether adding a new entry or updating an existing entry, causes a
new map cell to be appended in front of the linked cells. This is clearly not efficient in terms
of storage for cells of out-of-date entries are never garbage-collected.

In the rest of this section, we shall prove that this encoding of finite maps is correct. This
involves thinking of the linked cells which implement a map as a list of pairs (possibly
duplicated). We show how a map can be constructed from a list of pairs, and then show how
map operations affect (or use) such a list.

Firstly, we need to check the elements of ls with respect to some type context, to ensure that
the process constructed from a list ls is well-formed. We then define a function that turn a
list of pairs into the corresponding Nomadic π process.

Definition 6.5.1 (Well-typed list)

A list ls consists of pairs of types T1 and T2 w.r.t. Γ, written Γ ` ls ∈ List T , if for all
element e in ls, Γ ` e ∈ T .
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Definition 6.5.2 (Making Maps)

Given a closed located type context Γ, the function makeMap(m; ls) takes a list of pairs ls,
such that Γ ` ls ∈ List [T1 T2], to a basic process P , accessible via channel m of type
Map[T1 T2]. It is defined recursively as follows:

makeMap(m;nilnilnil) def= emptyCell(m)

makeMap(m; [v1 v2]::::::ls) def= newnewnew m′ : Map[T1 T2] ininin makeMap(m′; ls)
| mapCell(m, m′, v1, v2)

We prove that our definition of map cell and linking is well-formed.

Lemma 6.5.1 (Map construction preserves typing)

For a closed located type context Γ, if Γ ` ls ∈ List [T1 T2] and m 6∈ dom(Γ) then Γ, m :
Map[T1 T2] ` makeMap(m; ls).

Proof: An induction on the size of ls. �

It is not hard to prove that the result of a map update is structurally congruent to a map
represented by the appended list.

Lemma 6.5.2 (Map update induces structural congruence)

If m′ 6∈ fv(ls) and m 6∈ fv(P ) then

@anewnewnew m : Map[T1 T2] ininin (makeMap(m; ls) | letletlet m′ = (m withwithwith v 7→ v′) ininin P )
≡ @anewnewnew m′ : Map[T1 T2] ininin (makeMap(m′; [v v′]::::::ls) | P ).

Proof: All we need do is to expand definitions and apply structural congruence.

LHS = @anewnewnew m : Map[T1 T2] ininin (makeMap(m; ls)
| newnewnew m′ : Map[T1 T2] ininin (mapCell(m′,m, v, v′) | P )) since m′ 6∈ fv(ls)

≡ @anewnewnew m,m′ : Map[T1 T2] ininin (makeMap(m; ls) | mapCell(m′,m, v, v′) | P )

≡ @anewnewnew m′ : Map[T1 T2] ininin (P
| newnewnew m : Map[T1 T2] ininin (makeMap(m; ls) | mapCell(m′,m, v, v′)))

since m 6∈ fv(P )

= @anewnewnew m′ : Map[T1 T2] ininin (P | makeMap(m′; [v v′]::::::ls))

�

The correctness of the map encoding relies on the fact that when looking up an entry, the
linked list is being searched from its head to its tail. The most recent entry will therefore be
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found first. We define a function lookupL(v; ls), which searches for the first entry [v v′′] in
the list ls and returns v′′. This is formally defined as follows.

lookupL(v;nilnilnil) def= undefined

lookupL(v; [v v′′]::::::ls) def= v′′

lookupL(v; [v′ v′′]::::::ls) def= lookupL(v; ls) v 6= v′

The lemma below shows the correctness of the map lookup operation.

Lemma 6.5.3 (Map lookup yields an expansion)

Given a closed located type context Γ and Γ ` ls ∈ List [T1 T2], if m is output-only in P

and in Q w.r.t. Γ,m : Map[T1 T2] and

Γ ` @anewnewnew m : Map[T1 T2] ininin makeMap(m; ls) | lookuplookuplookup[T1 T2] v ininin m withwithwith

foundfoundfound(p)→P

notfoundnotfoundnotfound→Q

then the following hold.

• v ∈ dom(ls) and lookupL(v; ls) = v′ implies

@anewnewnew m : Map[T1 T2] ininin makeMap(m; ls) | lookuplookuplookup[T1 T2] v ininin m withwithwith

foundfoundfound(p)→P

notfoundnotfoundnotfound→Q

�Γ @anewnewnew m : Map[T1 T2] ininin (makeMap(m; ls) | match(p, v′)P ).

• v 6∈ dom(ls) implies

@anewnewnew m : Map[T1 T2] ininin makeMap(m; ls) | lookuplookuplookup[T1 T2] v ininin m withwithwith

foundfoundfound(p)→P

notfoundnotfoundnotfound→Q

�Γ @anewnewnew m : Map[T1 T2] ininin (makeMap(m; ls) | Q).

Proof: The proof of this lemma easily follows from this result: given that Γ ` ls ∈
List [T1 T2] and that a process m is output-only in R w.r.t. Γ,m : Map[T1 T2], we have:

• if v ∈ dom(ls) then

@anewnewnew m : Map[T1 T2] ininin (R|makeMap(m; ls)|m!!![v f n])
�Γ @anewnewnew m : Map[T1 T2] ininin (R|makeMap(m; ls)|f!!!lookupL(v; ls))
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• if v 6∈ dom(ls) then

@anewnewnew m : Map[T1 T2] ininin (R|makeMap(m; ls)|m!!![v f n])
�Γ @anewnewnew m : Map[T1 T2] ininin (R|makeMap(m; ls)|n!!![])

whenever the LHS process is well-typed w.r.t. Γ and M ⊆ mov(Γ).

The proof of this uses an induction on the size of ls. We do not need to define an expan-
sion relation here, since we can use the earlier proof techniques for deriving this result. In
particular, channel m is functional, so the techniques of Section 6.2.2 can be applied. To
demonstrate this, we include the inductive case when v ∈ dom(ls). Let ls = [v1 v2]::::::ls′ with
v1 6= v and lookupL(v; ls′) = v′. We have:

makeMap(m; ls) = newnewnew m′ : Map[T1 T2] ininin (makeMap(m′; ls′) | mapCell(m,m′, v1, v2)).

Let LP denote @anewnewnew m : Map[T1 T2] ininin (R|makeMap(m; ls)|m!!![v f n]), we have:

LP �Γ @anewnewnew m,m′ : Map[T1 T2] ininin (R
| makeMap(m′; ls′) | mapCell(m,m′, v1, v2)
| ififif v = v1 thenthenthen f!!!v2 elseelseelse m′!!![v f n])

By Lemma 6.2.3

�Γ @anewnewnew m,m′ : Map[T1 T2] ininin (R
| makeMap(m′; ls′) | mapCell(m,m′, v1, v2)
| m′!!![e f n])

By Lemma 6.3.1

�Γ @anewnewnew m,m′ : Map[T1 T2] ininin (R
| makeMap(m′; ls′) | mapCell(m,m′, v1, v2)
| f!!!v′)

by the induction hypothesis

= @anewnewnew m : Map[T1 T2] ininin (R | makeMap(m; ls) | f!!!v′)

Clearly, lookupL(e; ls) = v′, thus true for this case.

Other cases are omitted. �

We may also prove that the lookupL(v; ls) indeed finds the first pair with the entry v in the
list ls. The function consolidate(ls) defined below removes duplicate entries in the list ls, so
that only the most recent update remains for each entry.

consolidate(ls) def= deflate∅(ls)

deflateS(nilnilnil) def= nilnilnil

deflateS([v v′]::::::ls) def=

[v v′]::::::deflateS,v(ls) v 6∈ S

deflateS(ls) v ∈ S
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We prove that lookupL(v; ls) = lookupL(v; consolidate(ls)) for any v. This result confirms the
correctness of the map encoding.
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Chapter 7

The Correctness Proof

This chapter focuses on the correctness proof of the centralised server translation. The
operational equivalences given in Chapter 5 can be used for directly comparing the behaviour
of a source program and its encoding, since nπLD is a fragment of nπLD,LI. In particular, we
use a coupled simulation, since the C-encoding introduces partial commitment (an example
of which is given in Section 5.4.2).

It is infeasible, however, to directly write down relations which form a coupled simulation,
since our example infrastructure introduces many τ steps — making exhaustive enumeration
of derivatives difficult. Each of the additional τ step induces an intermediate state: a target
level term which is not a literal translation of any source level term. Some of these steps
are deterministic house-keeping steps, eg. looking up a site in the site map; they can be
reduced to (and related by expansions to) normal forms. Terms are said to be in the normal
form if they have no house-keeping steps. Some, however (migration steps and acquisitions
of the daemon lock or of local agent locks), are partial commitment steps. They involve
nondeterministic internal choices and lead to partially committed states: target level terms
which are not bisimilar to any source level term, but must be related to them by coupled
simulation.

We factor the construction of the main coupled simulation (between a source program and its
encoding) by introducing an intermediate language IL. This helps us manage the complexity
of the state-space of the encoding, by:

1. reducing the size of the relation, omitting states which reduce with house-keeping steps
to certain normal forms; and

117



118 CHAPTER 7. THE CORRECTNESS PROOF

2. dealing with states in which many agents may be partially committed simultaneously;
and

3. capturing some invariants, eg. that the daemon’s site-map is correct, in a type system
for IL.

The cost is that the typing and labelled transition rules for IL must be defined. The infras-
tructure encoding is factored into the composition of a loading encoding L, mapping source
terms to corresponding terms in the intermediate language, and a flattening encoding F ,
mapping terms in the intermediate language to their corresponding target terms.

nπLD,LI

C[[·]]

L[[·]]
IL

F [[·]]

nπLD

nπLD,LI IL
D][[·]]

D[[[·]]

We use two functions mapping intermediate language states back into the source language.
The undo and commit decoding functions, D[ and D] respectively, undo and complete par-
tially committed actions.

Using these encoding and decoding functions, we are able to construct behavioural relations
among the source, the intermediate and the target language. Two key properties are:

1. F is an expansion between the intermediate language terms and target terms; and

2. (D[,D]) is a coupled simulation between the intermediate language terms and source
terms.

In proving the former result, we essentially deal with all the house-keeping steps, relating
terms introduced by such steps to some normal forms. Such normal forms allow house-
keeping steps to be abstracted away, so that in proving the latter result, we can concentrate
on relating partially-committed terms to target-level terms. The two key results can then
be combined to provide a coupled simulation on source and target terms. The observation
that every source term LP and its translation C [[LP ]] are related by this coupled simulation
concludes the proof of correctness of C-encoding.

This chapter is organised as follows. We start with Section 7.1, giving an overview of cor-
rectness proofs of encodings in process calculi literature. In Section 7.2, we describe the
intermediate language, giving its syntax, type system and labelled transition semantics. In
Section 7.3 and Section 7.4, we give the loading and flattening encodings as well as the two
decoding functions, for relating the source, intermediate language and target terms. Be-
havioural properties of such functions are shown using the proof techniques developed in
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Chapters 5 and 6. Section 7.5 gives the correctness statement, directly relating the source
and target terms. The proof of this statement combines the behavioural properties proved
for the encoding and decoding functions.

7.1 Background

In theoretical computer science, to study a particular problem it is often more convenient to
introduce a variant of existing calculi, or to design a specific calculus, instead of relying on
established formalisms. Differences in design choices and styles — syntax, type system and
operational semantics — of these particular calculi are difficult to compare. A formal way to
assess the similarities and differences between two calculi (typically a novel calculus and an
established calculus) is via encodings, accompanied by proofs of some notion of correctness.
Here, in this thesis, we regard an encoding or a translation, ranged over by [[·]], as a function
from terms in a source calculus to terms in a target calculus.

There exists a large body of literature on encodings. Here we shall focus on the encodings
which are related to the π-calculus and its variants, some examples of which include: various
encodings of λ-calculi into π-calculi [Mil92, San93b, San94b], the encoding of concurrent
object-based language POOL in π-calculus [Wal95], the encoding of choice into a choice-free
π-calculus [Nes96], the encodings of the π calculus to and from the Join calculus [FG96], and
the encodings of various calculi to the fusion calculus [Vic98]. In this brief overview, we shall
discuss a few themes common to the encodings in the context of process calculi. We refer to
the thesis of Nestmann [Nes96] and that of Fournet [Fou98] for further details and discussion.

Direct Correspondence vs. Full Abstraction Intuitively, for an encoding [[]] to be
correct, we require that every source term P (perhaps being well-formed in some way) and
its translation [[P ]] should exhibit the same behaviour. There are two common styles of
formally stating the correctness of encodings. The first style directly relates the source and
the translated terms by some operational equivalence — a style which we shall refer to as
direct correspondence. To state this type of result, the source and the target calculi must
have the same form of operational semantics. The encodings with direct correspondence
correctness result are typically internal, ie. with the target calculus a fragment of the source
calculus. The examples of such encodings include the choice encodings of [NP96], translating
the π-calculus with input-only choice into its choice-free fragment, and the translation of the
choice-free asynchronous π-calculus into trios [Par99]. Since the example infrastructure is
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internal (the low-level Nomadic π-calculus is a fragment of the high-level), the correctness
result given in this chapter is also of this style.

In general, however, the semantics of the source and the target calculi may differ, so that the
behaviour of their terms cannot be directly related. The second alternative is to express the
correctness of an encoding as the preservation and reflection of equivalence of source terms.
This is known as full abstraction; a typical statement is as below:

P 's Q if and only if [[P ]] 't [[Q]]

where 's and 't denote equivalences of the source and the target calculi respectively. If the
above statement can be proved, we may say that the source calculus is at least as expressive as
the target calculus. There are numerous examples of encodings whose correctness statements
require full abstraction. Some examples of these are:

• various encodings of the λ-calculus to the π-calculus [Mil92, San94a, San95a],

• an encoding of higher-order π-calculus to π-calculus [San93b],

• the encoding of the choice-free asynchronous π-calculus into the join-calculus [FG96],

• the encoding of a variant of the join calculus with authentication primitives to another
variant with cryptographic primitives [AFG00].

Full abstraction results may be less convincing than direct correspondence results, but are
necessary eg. when the translation is from the λ-calculus to the π-calculus, or when the
notions of barbs of the two calculi are defined differently.

There exists many plausible notions of operational equivalences and preorders that one may
choose for stating the correctness result (whether it is in the direct correspondence form,
or in the full abstraction). Such notions include strong and weak bisimulation, expansion,
coupled simulation, testing and trace equivalence. The choice of an equivalence is generally
closely related to the particular encodings. However, for the correctness result to be con-
vincing, the operational relations relating the source and the translated terms should be as
strong as possible. Furthermore, for the proof to be tractable, such an equivalence should
have convenient proof techniques. For these reason, simulation-based equivalences such as
expansion, bisimulation and coupled simulation are generally employed for proving encodings
correct.

Operational Correspondence To prove a correctness statement (whether it is in the
direct correspondence or full abstraction form), we are often require some operational cor-
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respondence results, in essence demonstrating a simulation-like relation between the source
and the target terms. For example, we may show that an encoding [[·]] preserves a reduction
up to some equivalence 't, formally:

P →s Q implies [[P ]] ⇒t't [[Q]]

where →s and →t denote reduction relation of the source and the target calculi respectively,
and ⇒t=→∗

t . The reduction relations of the above statement can be replaced by labelled
transition relations if the source and the target calculi share the same form of LTS (typically
when the encoding is internal). This is referred to as a completeness result in [Nes96]. The
converse of the above result is referred to as a soundness result, which reflects the steps
committed by the target-level terms back to those of source-level terms. As discussed in
[Nes96], there are many plausible ways of stating a soundness result, an example of which is
below:

[[P ]] ⇒t't Qt implies ∃Q . P →s Q ∧ Qt 't [[Q]]

In some cases, where one of the calculi is not equipped with a notion of operational equiva-
lence, eg. in [PV98], the operational correspondence results (both completeness and sound-
ness) may be considered sufficient.

Uniformity According to Palamidessi [Pal97], an encoding [[·]] is uniform if it satisfies the
following for any processes P,Q and substitution σ:

[[P |Q]] = [[P ]] | [[Q]] [[σ(P )]] = σ([[P ]])

The uniformity property often simplifies proofs of correctness, especially if the operational
equivalences employed are also congruences, since it facilitates use of induction on the syntax
of terms. Encodings which benefit from this are, eg. the choice encodings of Nestmann. Our
example infrastructure is not uniform, though, as it introduces a centralised daemon at top
level. This means that our reasoning must largely be about the whole system, dealing with
interactions between encoded agents and the daemon. We cannot use simple induction on
source program syntax.

7.2 The Intermediate Language

This section introduces the intermediate language IL, which provides an abstraction of target-
level reductions. We first give the syntax and its informal description; the type system and
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the formal semantics of the intermediate language are given in Section 7.2.1 and Section 7.2.2
respectively. A term in the intermediate language is referred to as a system, describing the
states of the encoded agents and of the daemon. Each system represents a normal form of
target-level derivatives, possibly in a partially committed state. The syntax is:

Sys ::= eProg(∆; D; A)

Each system eProg(∆; D; A) is parameterised by ∆, a located type context corresponding to
all names dynamically created during the execution of the program, and D and A, the state
of the daemon and of the agents. ∆ is binding in eProg(∆; D; A), and is therefore subject
to alpha-conversion. The latter two parameters are described in more detail below.

• The state D of the daemon is a term of the following grammar:

D ::= [map mesgQ]
mesgQ ::=

∏
i∈I mesgReq({|Ti|} [ai ci vi]) I is an index set

Each daemon state [map mesgQ] consists of two components: a site map, map, ex-
pressed as a list of pairs; and a message queue mesgQ, expressed as a parallel com-
position of message forwarding requests, indexed by I. A message forwarding request
mesgReq({|T |} [a c v]) requires the daemon to forward c!!!v to the agent a, where T is the
type of v. The definition of mesgReq as a process is given in Figure 2.3.

• The state A of the agents is a partial function mapping agent names to agent states.
Each agent state, represented as [P E], consists of a main body P and a pending state
E. The syntax of E is given below:

E ::= FreeA(s) | RegA(b Z s P Q) | MtingA(s P ) | MrdyA(s P )

The pending states basically describe the state of the local lock in an agent. If an
agent a has pending state FreeA(s), the local lock of a is free. Otherwise, the local
lock of a is acquired by createcreatecreateZ b = P ininin Q (when its state is RegA(b Z s P Q)) or
migrate tomigrate tomigrate to s→ P (when its state is MtingA(s P ) or MrdyA(s P )). In FreeA(s) and
RegA(b Z s P Q), s denotes the current site of a, internally recorded and maintained
by the agent itself. In RegA(b Z s P Q), the name b is bound in P and Q and is subject
to alpha-conversion.

Informally, the transitions of a system can be classified into three classes: local computation,
initialising request, and request processing. The description of each kind of transition is given
below.
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Local computation A process from the main body of an agent may be executed immedi-
ately if it is an iflocaliflocaliflocal, ififif, letletlet or a pair of an output and a (replicated) input on the same
channel. The result of such an execution (as described by the LTS of Nomadic-π) is placed
in parallel with other processes in the main body. These steps correspond exactly to those
taken by source- and target-level terms.

Initialising Request This deals with execution which produces a registration, migration,
or message forwarding request. A process createcreatecreateZ b = P ininin Q or migrate tomigrate tomigrate to s → P

from the main body of a may begin execution if the local lock is free, ie. the pending
state is FreeA(s′). The result of such initiation turns the pending state to RegA(b Z s′ P Q)
or MtingA(s P ) respectively. Translating into target-level terms, an agent in such a state
has successfully acquired its local lock and sent a registration or migrating request to the
daemon. To be more precise, we may use the definitions of regReq, migReq, and regBlockC,
regBlockP, migBlock, given in Figures 2.3 and 2.4. In the creation case, the daemon reacts to
an output on register, spawning regReq(b s ack); agents b (newly created) and a become
regBlockC(s pack rack P ) and regBlockP(s pack Q), waiting for an acknowledgement from
the daemon and from b, respectively. In the migration case, the daemon reacts to an output
on migrating, spawning migReq(a ack); a becomes migBlock(s mack P ), waiting for the
permission to migrate from the daemon.

Executing an LI 〈b@?〉c!!!v from the main body of a may begin execution regardless of the
pending state of a. The execution results in the message forwarding request mesgReq({|T |} [b c v])
being added to the message queue of the daemon (T is the type of v in the context). In the
target-level terms, this corresponds to the daemon reacting to an output on message, spawn-
ing mesgReq({|T |} [b c v]).

Request Processing This deals with the message forwarding requests in the daemon, and
the pending states of agents (when they are not FreeA(s)).

• A system with a message forwarding request mesgReq({|T |} [b c v]) executes a single
reduction step, corresponding in the target-level to acquiring the daemon lock, looking
up the site of b, delivering the message, and receiving an acknowledgement from b.
After completion, the message c!!!v is added to the main body of b.

• A system with an agent in the registration request state RegA(b Z s P Q) has a sin-
gle reduction step, corresponding, in the target-level, to acquiring the daemon lock,
updating the site map and sending the acknowledgement to b. After completion, the
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declaration b : AgentZ@s is placed at the top level and, at the same time, the site map
is updated with the new entry [b s]. The new agent b, with the state [P FreeA(s)], now
commences its execution, and so does its parent.

• Serving a migrating request MtingA(s P ) from an agent a, however, involves two steps.
The first step acquires the daemon lock, initialising the request, and turns the pending
state of a to MrdyA(s P ). In the second step, the agent a migrates to s (hence changes
the top-level declaration) and the site map is updated with the entry [a s]. The first
step corresponds in the target-level to acquiring the daemon lock, looking up the site
of a in the site map, and sending an acknowledgement, thus permitting a to migrate.
The daemon becomes migProc(a m migrated), waiting for an acknowledgement from
the agent a; a becomes migReady(s migrated P ), and is now ready to migrate. The
second step corresponds in the target-level to a migrating to s and sending an acknowl-
edgement back to the daemon, which updates its site map and then sends the final
acknowledgement to a, allowing it to proceed.

Figure 7.1 relates the states of intermediate terms to the infrastructure algorithm. It shows
how the pending states correspond to the inter-agent communications involved in delivering
an LI output, the migration, and the creation of a single agent, repeating the diagrams given
in Section 2.3. Figure 7.2 gives the correspondence between steps in the source, intermediate
and the target languages in the creation, migration and location-independent messaging
cases. In the figure, some τ communication steps are annotated with the command or the
name of the channel involved.

Note that when an agent, say a, is in the state MrdyA(s P ), the daemon has already acquired
the daemon lock, and is waiting for an acknowledgement from a. This has the following
consequences.

• Since the C-encoding preserves the invariant that at any time there is at most one
output on the daemon lock, this means that, apart from a, there can be no other agent
in the state MrdyA(s′ P ′), for any s′, P ′.

• To proceed with any other request, the daemon lock must first be acquired. This means
that while a is in such a state, no other request may proceed.
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a D b

message!!!{|T |}[b c v]

deliver!!!{|T |}[c v dack]
mesgReq({|T |} [b c v])

dack!!![]

a
createcreatecreate

b D

register!!![b s rack]

rack!!![]
RegA(b Z s P Q)

pack!!![]

a D

migrating!!![a mack]

mack!!!migrated
MtingA(s P )

migrate tomigrate tomigrate to

MrdyA(s P )

migrated!!![s ack]

ack!!![]

Figure 7.1: Relationship between the pending states and interaction between agents and
the daemon
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The steps involved in serving registration and message forwarding requests are all house-
keeping steps, inducing expansions. We therefore do not need to represent terms in which
the daemon is busy serving such requests, for they can be related by expansion to terms in
which such requests have been fully committed. On the other hand, the migration step that
an agent in the state MrdyA(s P ) may perform is not a house-keeping step (and does not
induce expansion). It is therefore necessary to represent the state in which the daemon is
busy serving a migration request. We refer to a system whose daemon lock is not available
as a busy system, formally defined below.

Definition 7.2.1 (Busy and Idle Systems)

A system eProg(∆; D; A) is said to be busy if there exists a ∈ dom(A) such that A(a) =
MrdyA(s P ) for some s, P . It is said to be idle otherwise.

In the process calculi literature, intermediate languages are often used for structuring proofs
of encoding correctness. This includes the intermediate level of the Higher-Order π-calculus
[San94a] for an encoding of the λ-calculus into the π-calculus, and the πv calculus — a calculus
with primitive values, higher-order abstractions and first-order interaction [LW95] — for an
encoding of object-based languages into the π-calculus. Our work has been informed by
the annotated choice language, introduced in Nestmann’s work on choice encodings [Nes97,
NP96]. As here, the intermediate language is used for dealing with partial commitment,
although the uniformity of the encodings allows the language to be considerably simpler.

7.2.1 Type System

We formulate a type system for the intermediate language for ensuring the typability of
processes contained in the main body of each agent in a system, as well as for capturing some
invariants, eg. that the daemon’s site map is correct. The typing rules of the intermediate
language allows typing judgements of the following forms to be derived:

` Φ ok located type context Φ is a valid system context
Φ ` map ok site map map is well-formed w.r.t. Φ
Φ ` mesgQ ok message queue mesgQ is well-formed w.r.t. Φ
Φ ` A ok state A of agents is well-formed w.r.t. Φ
Φ ` E ok pending state E is well-formed w.r.t. Φ
Φ ` Sys ok system Sys is well-formed w.r.t. Φ

Note that we prove the coupled simulation over programs which are well-typed with respect
to a valid system context, formally defined below.
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(Sys-T-Map)
Θ ` map ∈ List [Agents Site] ∧ consolidate(map) = [a1 s1]:::::: . . .::::::[an sn]::::::nilnilnil ∧
{a1, . . . , an} = agents(Θ) ∧ ∀i ∈ {1, . . . , n} . Θ ` ai@si

Θ ` map ok

(Sys-T-MesgQ)
mesgQ =

∏
i∈I mesgReq({|Ti|} [ai ci vi]) ∀i ∈ I . Θ ` [ai ci vi] ∈ [Agents ^̂̂wTi Ti]

Θ ` mesgQ ok

(Sys-T-FreeA)
Θ ` a@s

Θ `a FreeA(s) ok

(Sys-T-RegA)
Θ, b : AgentZ@s `b P Θ, b : AgentZ@s `a Q

Θ ` a@s ` Θ, b : AgentZ@s

Θ `a RegA(b Z s P Q) ok

(Sys-T-MigratingA)
Θ `a P Θ ` s ∈ Site

Θ `a MtingA(s P ) ok

(Sys-T-MigratedA)
Θ `a P Θ ` s ∈ Site

Θ `a MrdyA(s P ) ok

(Sys-T-AState)
∀a ∈ dom(A) ∃P,E . A(a) = [P E] ∧ Θ `a P ∧ Θ `a E ok

∃61a ∈ dom(A) . ∃Q, s,R . A(a) = [Q MrdyA(s R)]

Θ ` A ok

(Sys-T-EProg)
Φ, ∆ ` map ok Φ, ∆ ` mesgQ ok Φ, ∆ ` A ok ` Φ ok dom(A) = dom(map)

Φ ` eProg(∆; [map mesgQ]; A) ok

Figure 7.3: System formation rules
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Definition 7.2.2 (Valid System Context)

A located context Φ is a valid system context, written ` Φ ok, if the following hold:

• Φ is closed, well-formed and does not clash with Φaux, ie. `L Φ, Φaux;

• For any x ∈ dom(Φ), Φ ` x ∈ AgentZ implies Φ(x) = Agents; and

• For any x ∈ dom(Φ), Φ ` x ∈ ^̂̂IT implies containNoAgent(T ) .

where containNoAgent(T ) checks whether a type T contains occurrences of AgentZ , and is
defined recursively as follows:

containNoAgent(AgentZ) def= falsefalsefalse

containNoAgent(X) def= truetruetrue

containNoAgent(B) def= truetruetrue

containNoAgent(Site) def= truetruetrue

containNoAgent(^̂̂IT ) def= containNoAgent(T )

containNoAgent({|X|}T ) def= falsefalsefalse

containNoAgent([T1 . . . Tn]) def= containNoAgent(T1) ∧ . . . ∧ containNoAgent(Tn)

These valid system contexts regulate the interactions between programs and their environ-
ment. As discussed in Section 5.4.2, observable agents are required to be static so that the
standard definition of coupled simulation can be used (adding located type context indices).
External channels (ie. channels on which input and output actions are observable) are pre-
vented from sending or receiving agent names. This ensures that the daemon has a record of
all agents in the system, as well as preventing programs from extruding mobile agent names
to the environment (which would subsequently be able to observe their migration). This is
not a severe restriction, as dynamically created new-bound agents and channels may have
any type; moreover, we do not need to extrude the names of such agents. Additionally, since
the interface context Φaux is binding in the top-level translation, we ensure that names of
the system context do not clash with those in Φaux.

The typing rules for other forms of typing judgements are given in Figure 7.3. A brief informal
description of the system formation rules follows. (Sys-T-Map) ensures the accuracy of the
site map maintained by the daemon, and that it has a record of all agents, both those
which are in the system context and those which are dynamically created and have been
registered. Since the site map is represented as a list of pairs — possibly with duplicated
entries — we require the accuracy of the consolidated list, with out-of-date entries removed.
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(Sys-T-Mesg) ensures all messages requested to be forwarded are well-typed. The rules
(Sys-T-RegA), (Sys-T-MigratingA) and (Sys-T-MigratedA) check the typability of
the pending process. The accuracy of current site, internally recorded by the agent, is
ensured by (Sys-T-FreeA) and (Sys-T-RegA). (Sys-T-AState) ensures typability of the
process in the main body of each agent, as well as their pending state. Moreover, since the
daemon is single-threaded, it ensures that the daemon is pending with at most one request.
This means that there exists at most one agent whose pending state is MrdyA(s P ), for some
s, P . (Sys-T-EProg) makes sure that each agent is well-formed, and that the domain of A

is that of all declared agents in the system (so that, in sending inter-agent messages, target
agents are always available).

Note that in a system eProg(∆; [map mesgQ]; A) which is well-formed w.r.t. Φ, there is much
redundant location information: the site map map can be obtained from Φ, ∆, and also from
the current site information locally recorded by each agent in A. This allows the subject
reduction result (Lemma 7.2.1) to state properties of the location information introduced by
the encoding, eg. that the site map map is always accurate. Note further that, due to the
implementation of finite map given in Section 6.5, when the site map map is updated, it will
be appended with a new entry. This means that we need to maintain map as a list (with
some duplicated entries) rather than a consolidated list, so that the subject reduction result
(Lemma 7.2.1) can be stated.

7.2.2 Labelled Transition Rules

The labelled transitions of the intermediate language are of the form Φ 
 Sys
β−→
∆

Sys′; their
rules are given in Figures 7.5 to 7.8. The syntax of an IL label β is as that of nπLD,LI.
This means that the definitions of operational relations extend naturally to the intermediate
language.

The semantics of IL uses structural congruence (in (Sys-Equiv) in Figure 7.5). We define a
structural congruence, indexed by a located type context Φ, ≡Φ, to be the smallest relation
between {Sys | Φ ` Sys ok}, closed under the rules given in Figure 7.4 together with
alpha-conversion of bound names. These rules allow extension of local scopes (Sys-Str-

Local-Dec), and rearrangement of top-level bindings, message queues and agent bodies
((Sys-Str-Top-Dec), (Sys-Str-MesgQ-Equiv) and (Sys-Str-Local-Equiv)).

The transition rules for the intermediate language are organised into three main categories,
as given in the informal descriptions of the syntax, below.
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(Sys-Str-Local-Dec)
a 6∈ dom(A) dom(Θ) ∩ dom(Φ, ∆) = ∅
eProg(∆; D; A, a 7→ [newnewnew Θ ininin P E]) ≡Φ eProg(∆, Θ; D; A, a 7→ [P E])

(Sys-Str-Top-Dec)
∆ ≡ Θ

eProg(∆; D; A) ≡Φ eProg(Θ; D; A)

(Sys-Str-MesgQ-Equiv)
mesgQ ≡ mesgQ′

eProg(∆; [map mesgQ]; A) ≡Φ eProg(∆; [map mesgQ′]; A)

(Sys-Str-Local-Equiv)
A(a) = [P E] P ≡ Q

eProg(∆; D; A) ≡Φ eProg(∆; D; A⊕ a 7→ [Q E])

Figure 7.4: System structural congruence

(Sys-Equiv)

Sys1 ≡Φ Sys2 Φ 
 Sys1
β−→
Ξ

Sys′1 Sys′1 ≡Φ,Ξ Sys′2

Φ 
 Sys2
β−→
Ξ

Sys′2

Figure 7.5: System LTS: Closure
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(Sys-Loc-Tau)
A(a) = [P |Q E] Φ, ∆ 
a P

τ−→ @aP
′

P ≡ ififif v thenthenthen P1 elseelseelse P2 ∨ P ≡ letletlet p = ev ininin P1 ∨
P ≡ (c!!!v | c???p→R) ∨ P ≡ (c!!!v | ***c???p→R)

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [P ′|Q E])

(Sys-Loc-Input)
{a, c} ⊆ dom(Φ) A(a) = [(R | c???p→Q) E] dom(Ξ) ∩ dom(∆) = ∅
Φ ` c ∈ ^̂̂rT Φ, Ξ ` v ∈ T dom(Ξ) ⊆ fv(v) Ξ extensible

Φ 
 eProg(∆; D; A) @ac???v−−−−→
Ξ

eProg(∆; D; A⊕ a 7→ [(P |match(p, v)Q) E])

(Sys-Loc-Replic)
{a, c} ⊆ dom(Φ) A(a) = [(R | ***c???p→Q) E] dom(Ξ) ∩ dom(∆) = ∅
Φ ` c ∈ ^̂̂rT Φ, Ξ ` v ∈ T dom(Ξ) ⊆ fv(v) Ξ extensible

Φ 
 eProg(∆; D; A)
@ac???v−−−−→

Ξ
eProg(∆; D; A⊕ a 7→ [(P | match(p, v)Q | ***c???p→Q) E])

(Sys-Loc-Output)
{a, c} ⊆ dom(Φ) A(a) = [(P |c!!!v) E]
∆ ≡ ∆1, ∆2 dom(∆) ∩ fv(v) = dom(∆1)

Φ 
 eProg(∆; D; A) @ac!!!v−−−−→
∆1

eProg(∆2; D; A⊕ a 7→ [P E])

(Sys-Loc-IfLocal-T)
A(a) = [P |Q E] A(b) = [R E′] P = iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P1 elseelseelse P2

Φ, ∆ ` a@s Φ, ∆ ` b@s a 6= b

Φ 
 eProg(∆; D; A)
τ−→ eProg(∆; D; A⊕ a 7→ [P1|Q E]⊕ b 7→ [c!!!v|R E′])

(Sys-Loc-IfLocal-Same)
A(a) = [P |Q E] P = iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P1 elseelseelse P2

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [c!!!v|P1|Q E])

(Sys-Loc-IfLocal-F)
A(a) = [P |Q E] P = iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P1 elseelseelse P2

Φ, ∆ ` a@s Φ, ∆ ` b@s′ s 6= s′

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [P2|Q E])

Figure 7.6: System LTS: Local computation
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• Local Computation (Sys-Loc-*): The rules in this category are given in Figure 7.6. In
(Sys-Loc-Tau), an agent performs an internal computation (including channel com-
munication). In (Sys-Loc-Input), (Sys-Loc-Replic) and (Sys-Loc-Output), an
agent interacts with the environment via an input or output action, extruding pri-
vate names if necessary. LD messaging using iflocaliflocaliflocal may move an output to an-
other agent. This is dealt with by (Sys-IfLocal-T) when LD messaging succeeds,
by (Sys-IfLocal-Same) if the target agent is the same as the executing agent, and
(Sys-IfLocal-F) otherwise.

(Sys-Req-Reg)
A(a) = [((createcreatecreateZ b = P ininin Q) | R) FreeA(s)] b 6∈ dom(Φ, ∆)

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [R RegA(b Z s P Q)])

(Sys-Req-Mig)
A(a) = [((migrate tomigrate tomigrate to s→P ) | Q) FreeA(s′)]

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [Q MtingA(s P )])

(Sys-Req-Mesg)
A(a) = [(〈b@?〉c!!!v | P ) E] (Φ, ∆)(c) = ^̂̂IT

Φ 
 eProg(∆; [map mesgQ]; A)
τ−→ eProg(∆; [map mesgQ|mesgReq({|T |} [b c v])]; A⊕ a 7→ [P E])

Figure 7.7: System LTS: Initialising request

• Initialising Requests (Sys-Req-*): The rules in this category are given in Figure 7.7.
Creations and migrations may initialise if the local lock of the agent is free, ie. if the
agent is in a FreeA(s) state ((Sys-Req-Reg) and (Sys-Req-Mig)). (Sys-Req-Mesg),
however, allows initialisation of LI messaging regardless of the local lock’s state.

• Request Processing (Sys-Proc-*) and (Sys-Comm-Mig): if the daemon is idle, one
of the daemon requests may proceed (Sys-Proc-*). The rules in this category are
given in Figure 7.8. If the daemon is busy, it may finish its pending request and return
to an idle state (Sys-Comm-Mig). The operational semantics precisely captures the
informal description given previously.

As in the operational semantics of Nomadic π, the semantics is typed, ie.
β−→
∆

is the smallest

relation from {Φ 
 Sys | Φ ` Sys ok ∧ ` Φ, ∆ ok} to {Φ′ 
 Sys′ | Sys′ ∈ IL}. This
avoids having to deal with systems containing ill-typed processes. More specifically to the



134 CHAPTER 7. THE CORRECTNESS PROOF

(Sys-Proc-Reg)
A(a) = [R RegA(b Z s P Q)] b 6∈ dom(Φ, ∆)
eProg(∆; [map mesgQ]; A) idle

Φ 
 eProg(∆; [map mesgQ]; A)
τ−→ eProg(∆, b : AgentZ@s; [[b s]::::::map mesgQ];

A⊕ a 7→ [Q|R FreeA(s)]⊕ b 7→ [P FreeA(s)])

(Sys-Proc-Mig)
A(a) = [R MtingA(s P )] eProg(∆; D; A) idle

Φ 
 eProg(∆; D; A) τ−→ eProg(∆; D; A⊕ a 7→ [R MrdyA(s P )])

(Sys-Comm-Mig)
A(a) = [R MrdyA(s P )]

Φ 
 eProg(∆; [map mesgQ]; A)
τ−→ eProg(∆⊕ a 7→ s; [[a s]::::::map mesgQ]; A⊕ a 7→ [P |R FreeA(s)])

(Sys-Proc-Mesg)
eProg(∆; D; A) idle A(a) = [P E]

Φ 
 eProg(∆; [map mesgQ|mesgReq({|T |} [a c v])]; A)
τ−→ eProg(∆; [map mesgQ]; A⊕ a 7→ [c!!!v|P E])

Figure 7.8: System LTS: Request processing
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intermediate language, the typed semantics ensures that migrating agents are always bound
at top-level, and that target agents are always available in inter-agent messaging. The type
system also ensures certain invariants (eg. correctness of the site map and of each agent’s
internally recorded current site), and therefore situations such as a “halting” daemon (due
to a failed agent look up) never occur. A subject reduction result, stated below, ensures
well-formedness of systems is indeed preserved by transitions.

Lemma 7.2.1 (Subject reduction for IL)

Given a valid system context Φ, if Φ 
 Sys
β−→
Ξ

Sys′ with dom(Ξ) ∩ dom(Φaux) = ∅ then

Φ, Ξ ` Sys′ ok.

Proof: An induction on the transition derivation. See Appendix D.1 on page 245 for details.
�

Note that we exclude cases where the extruded type context clashes with names in the
interface context Φaux, which defines the names used in the C-translation. Since Φaux is
non-sendable in C [[LP ]], no part of Φaux will be extruded by an output action. The next
lemma shows that the restrictions on interactions between the program and its environment,
regulated by valid system contexts, are respected.

Lemma 7.2.2 (Extrusion/intrusion of names)

Given that Φ ` Sys ok and Φ 
 Sys
β−→
Ξ

Sys′, the following hold:

• Ξ only contains channel names;

• β 6= @amigrate to s for any a, s; and

• dom(Ξ) ∩ dom(Φaux) = ∅ implies ` Φ, Ξ ok.

Proof: We prove that Ξ only contains channel names by an induction on the transition
derivation. Proving that β is never a migration action is easy — there is no rule that permits
such an action. To prove the last statement, we observe that if x ∈ dom(Ξ) and Ξ(x) = T

then containNoAgent(T ) is valid. �

7.3 Factorisation of C-Encoding

In this section we factorise the C-translation into the composition of two maps: a loading
encoding L and a flattening encoding F . For clarity, we repeat the diagram below, which
outlines the relationship between the encodings and the languages.
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nπLD,LI

C[[·]]

L[[·]]
IL

F [[·]]

nπLD

We prove properties of these encodings and, in particular, investigate the behavioural rela-
tionship between the intermediate language and the target language. The major result shown
is the correctness of the intermediate language, ie. that F is an expansion (Lemma 7.3.5).

7.3.1 Loading

The loading encoding L : nπLD,LI → IL is defined for any LP well-typed w.r.t. a valid system
context Φ. It uses the compositional encoding [[·]] for located process, defined in Section 2.3
on page 32, for rearranging a located process LP into the form

newnewnew ∆ ininin
∏

i

@aiPi

where all ai are distinct. Such a located process is mapped to a system

eProg(∆; [Enlist(Φ, ∆) •]; A)

where each agent ai of A is initialised with state [Pi FreeA(si)] (si is the current site of
ai in the context). If an agent a is declared in the external context Φ or ∆, yet does not
locate any process in LP , it has to be initialised with 000 as its main body (this is required by
(Sys-T-EProg)). The definition of the loading encoding is given below.

LΦ [[LP ]] def= eProg(∆; [Enlist(Φ, ∆) •]; A)

where A = loadLPΦ,∆(A) ∧ [[LP ]] = (∆; A)

loadLPΦ,∆(A)(a) def=

[A(a) FreeA(s)] Φ, ∆ ` a@s ∧ a ∈ dom(A)

[000 FreeA(s)] Φ, ∆ ` a@s ∧ a 6∈ dom(A)

We have proved that this loading encoding results in a well-formed system.

Lemma 7.3.1 (Loading preserves typing)

If Γ ` LP and Γ is a valid system context then Γ ` L [[LP ]] ok.

Proof: Assume, without lost of generality, that

LP ≡ newnewnew ∆ ininin (@a1P1 | . . . | @anPn)
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where a1 . . . an are distinct; moreover Γ ` ai@si, for each i. By definition, we have:

LΓ [[LP ]] = eProg(∆; [Enlist(Γ, ∆) •]; A)

where A is defined in such a way that A(ai) = [Pi FreeA(si)].

Since Γ ` LP and ` Γ ok, we have the following.

• Γ, ∆ `ai Pi for all i, by (New) and (Prl). This means that Γ ` A ok, by (Sys-T-

AState).

• Γ, ∆ ` Enlist(Γ, ∆) ok and dom(Enlist(Γ, ∆)) = dom(Γ, ∆), by construction.

Hence Γ ` eProg(∆; [Enlist(Γ, ∆) •]; A), by (Sys-T-EProg). �

7.3.2 Flattening

The flattening function F : IL → nπLD maps well-formed systems to corresponding processes
in the target language. Basically a flattened system consists of two parts: the flattened state
of the daemon, and that of agents. Flattening the daemon involves installing a Daemon

process and its message queue mesgQ, a parallel composition of mesgReq processes, at D.
Moreover, we need to restore the daemon lock according to the status of the system. If the
system is idle, lock is simply outputting the site map m (constructed from the list map

using makeMap(m; map)). Otherwise, if the daemon is serving a migration request of an
agent a, it is actually waiting for an acknowledgement on a fresh migrated channel. In
this case, the target-level status of the daemon and the agent are migProc(a m migrated)
and migReady(s migrated Q) respectively (see Figures 2.3 and 2.4 for their definitions).
Restoring the state involving the daemon lock is done by the site map flattening function
mapS(·), formally defined below. Note that the scope of migrated is over the daemon as well
as a, and therefore the state of agent a must be included as an argument of such a function.

mapS•(map) def= @Dnewnewnew m : Map[Agents Site] ininin
(lock!!!m | makeMap(m; map))

mapS(a, [P MrdyA(s Q)])(map) def= newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(a m migrated))
| @a(migReady(s migrated Q) | [[P ]]a | Deliverer)

Flattening the state A of the agents results in a parallel composition of flattened agents. To
flatten an agent a, its main body is put in a normal form by the compositional encoding [[]] of
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the example infrastructure. Such an agent is located at a, together with a Deliverer and a
flattened pending state. If the pending state is FreeA(s) (ie. there is no pending process), flat-
tening introduces an output currentloc!!!s. In case RegA(b Z s P Q), the new agent b has
already been created, together with fresh channels pack and rack, used for acknowledgements
from the daemon to the new agent and from the new agent to its parent respectively. Further-
more, the Daemon process at D has already reacted to the registration message, spawning
regReq(b s rack). Meanwhile b and its parent are waiting for an acknowledgement before
resuming execution. Their target-level status are therefore regBlockC(s pack rack P ) and
regBlockP(s pack Q) respectively. Similarly for MtingA(s P ), the migrating message reacts
with Daemon, producing migReq(a mack), with mack being a fresh channel. The migrating
agent itself waits for a go-ahead signal from the daemon via mack, hence its target-level status
is migBlock(s mack P ).

F [[A]] def=
∏

a∈dom(A)

F [[A(a)]]a

F [[[P E]]]a
def= F [[E]]a | @a([[P ]]a | Deliverer)

F [[FreeA(s)]]a
def= @acurrentloc!!!s

F [[RegA(b Z s P Q)]]a
def= newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin

@DregReq(b s rack)
| @aregBlockP(s pack Q)
| @bregBlockC(s pack rack P )

F [[MtingA(s P )]]a
def= newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin

@DmigReq(a mack) | @amigBlock(s mack P )

Flattening a system Sys = eProg(∆; [map mesgQ]; A) is defined below. We implicitly use
alpha-conversion so that dom(∆) ∩ dom(Φaux) = ∅.

F [[Sys]] def=



newnewnew ∆, Φaux ininin (@D(Daemon | mesgQ)

| mapS•(map) | F [[A]])
Sys is idle

newnewnew ∆, Φaux ininin (@D(Daemon | mesgQ)

| mapS(a, [P MrdyA(s Q)])(map) | F
[[
A′]]) A(a) = [P MrdyA(s Q)] ∧

A′ = A/{a}

Unless the pending state is FreeA(s), an agent is partially committed. Its translation therefore
does not correspond to any agent in the image of the C-translation. Only the translation of
a fully-committed system (ie. one with each agent in a FreeA(s) state, such as that obtained
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from loading) corresponds to C [[LP ]] for some LP . If we load and then flatten a (high-level)
located process LP , we obtain its translation C [[LP ]].

Lemma 7.3.2 (Factorisation)

If Φ ` LP then F [[LΦ [[LP ]]]] ≡ CΦ [[LP ]].

Proof: Assume, without lost of generality, that

LP ≡ newnewnew ∆ ininin (@a1P1 | . . . | @anPn)

where a1 . . . an are distinct; moreover, Φ ` ai@si for all i. By definition, we have:

LΦ [[LP ]] = eProg(∆; [Enlist(Φ, ∆) •]; A)

where A is defined so that A(ai) = [Pi FreeA(si)]. We have the following.

• Since LΦ [[LP ]] is idle, we have:

F [[LΦ [[LP ]]]] = newnewnew ∆, Φaux ininin (@DDaemon | mapS•(Enlist(Φ, ∆)) | F [[A]]).

• F [[A]] ≡
∏

i∈1...n (@ai([[Pi]]ai
| currentloc!!!si | Deliverer)), by definition.

• mapS•(Enlist(Φ, ∆)) = @Dnewnewnew m : Map[Agents Site] ininin
(lock!!!m | makeMap(m; Enlist(Φ, ∆)))

.

Clearly F [[LΦ [[LP ]]]] ≡ CΦ [[LP ]]. Hence the lemma. �

7.3.3 Behavioural Properties

We wish to show the correctness of our intermediate language, ie. that each of its terms is
behaviourally equivalent to some target-level term. To prove such a result, we first need to
establish operational correspondence results between a system in IL and its flattened target
term. If an action is observable, the transition of an intermediate language term corresponds
exactly with that of its flattened image in the target language. This is also true in the
cases where the action is caused by local computation. Cases involving house-keeping steps,
however, are more complex. Each flattened IL term (which is in nπLD) is stable in the sense
that it cannot perform any house-keeping τ -step introduced by the C-encoding (although
it may perform some partial-commitment steps). Supposing a flattened system F [[Sys]]
reduces to a located process LP , where such a reduction is introduced by the C-encoding.
This process does not correspond to any flatten of system, since LP is capable of performing
some house-keeping steps. However, Lemma 7.3.4 ensures that such house-keeping steps
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induce expansions, and therefore LP can be related by an expansion to a flattened system
F [[Sys′]], where Sys′ is the result of the corresponding reduction of Sys, matching that of
F [[Sys]] to LP .

Lemma 7.3.3 (Completeness of IL)

Given a valid system context Φ, if Φ 
 Sys
β−→
Ξ

Sys′ and dom(Ξ)∩ dom(Φaux) = ∅ then there

exists LP ′ such that Φ 
 F [[Sys]]
β−→
Ξ

LP ′, and LP ′�̇∅
Φ,ΞF [[Sys′]].

Lemma 7.3.4 (Soundness of IL)

Given a valid system context Φ, if Φ 
 F [[Sys]]
β−→
Ξ

LP and dom(Ξ) ∩ dom(Φaux) = ∅ then

there exists Sys′ such that Φ 
 Sys
β−→
Ξ

Sys′, and LP �̇∅
Φ,ΞF [[Sys′]].

The proofs of the lemmas above use induction on the transition derivation. As in the subject
reduction result (Lemma 7.2.1), we exclude cases where extruded type context clashes with
Φaux. The congruence properties of translocating expansion are heavily used, for factoring
out program contexts which are not involved in house-keeping reductions of the target terms.
Temporary immobility is used whenever we need to guarantee that LD messages to partially
committed agents are safely delivered. We give a proof sketch for Lemma 7.3.3 below. The
details are in Appendix D.2 on page 249.

Proof Sketch: Consider Sys = eProg(∆′; D′; A′) well-formed wrt Φ. Since F is only
defined if dom(∆′) ∩ dom(Φaux) = ∅, we pick an injective substitution σ : dom(∆′) →
X/dom(Φ, Φaux) and denote ∆ = σ∆′, D = σD and A′ = σA. Clearly we have Sys

α=
eProg(∆; D; A) and, by (L-C-Var), ` Φ, Φaux, ∆. By this alpha-conversion, F [[Sys]] is de-
fined. We demonstrate the case where Φ 
 Sys

τ−→ Sys′ and (Sys-Proc-Mig) is the only
rule used for deriving this transition.

Case (Sys-Proc-Mig): Supposing eProg(∆; D; A) is idle and A(ae) = [Q MtingA(s P )].
By (Sys-Proc-Mig), we have Φ 
 Sys

τ−→ Sys′, where

Sys′ = eProg(∆; D; A⊕ ae 7→ [Q MrdyA(s P )])

Let A′ is obtained by excluding ae from the domain of A and E [·], LQ be defined as follows:

E [·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | [·] | F
[[
A′]])

LQ = mapS•(map) | F [[A(ae)]]ae

= @D(newnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map)))
| @ae([[Q]]ae

| Deliverer)
| newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (@DmigReq(ae mack) | @aemigBlock(s mack P ))
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≡ newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
(@D(migReq(ae mack)
| newnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map)))

| @ae(migBlock(s mack P ) | [[Q]]ae
| Deliverer))

Clearly, F [[Sys]] ≡ E [LQ]. In this case, we have:

• E [Φ] 
 LQ
τ−→ LQ′, by (Lts-L-Out), (Lts-L-In) and (Lts-L-Comm), (Lts-Prl) and

(Lts-New), where

LQ′ ≡ newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
(LR | @ae(migBlock(s mack P ) | [[Q]]ae

| Deliverer))

LR = @Dnewnewnew m : Map[Agents Site] ininin (makeMap(m; map)
| lookuplookuplookup[Agents Site] ae ininin m withwithwith

foundfoundfound(s′)→newnewnew migrated : ^̂̂rw[Site ^̂̂rw[]] ininin
(〈ae@s′〉mack!!![migrated] | migProc(ae migrated))

notfoundnotfoundnotfound→000)

• Φ 
 F [[Sys]] τ−→ LP ′, by (Lts-Prl) and (Lts-New), where LP ′ = E [LQ′].

We now need to verify that LP ′�̇∅
ΦF [[Sys′]]. Let M = mov(E [Φ])/{ae}.

• LR may look up ae in the site map; this step yields an expansion. By Lemma 6.5.3,
let lookupL(ae; map) = se, we have: LR �E[Φ] LR1 where

LR1 ≡ @Dnewnewnew m : Map[Agents Site] ininin (makeMap(m; map)
| newnewnew migrated : ^̂̂rw[Site ^̂̂rw[]] ininin

(〈ae@se〉mack!!![migrated] | migProc(ae m migrated)))

This means, by Theorem 5.4.3, LQ′�̇M
E[Φ]LQ1 where

LQ1 ≡ newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
(LR1 | @ae(migBlock(s mack P ) | [[Q]]ae

| Deliverer))

• We now need to redefine the scope of currentloc to use the temporary immobility
result to show that 〈ae@se〉mack!!![migrated] will be safely delivered to ae. We define
the following.

E ′[·] = newnewnew Φ−
aux, ∆ ininin @D(Daemon | mesgQ) | [·]

| newnewnew currentloc : ^̂̂rwSite ininin F
[[
A′]]

Φ−
aux

def= Φaux/currentloc : ^̂̂rwSite
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Since currentloc is a local channel, applying Lemma 6.2.7, we have:

E [LQ1] ∼̇∅
Φ E ′[newnewnew currentloc : ^̂̂rwSite ininin LQ1]

• By (Sys-T-Map), ae ∈ dom(map), this means there exists se such that

lookupL(ae; map) = se

moreover, Φ, ∆ ` ae@se, by Lemma D.1.4. This implies

E [Φ], mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] 
 LR1
det−−→
M

LR2 where

LR2 = newnewnew migrated : ^̂̂rw[Site ^̂̂rw[]] ininin
(@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| @aemack!!![migrated])

• By Lemma 6.4.5, the process below (which shall be denoted by LR′) is temporary
immobile blocked by mack w.r.t. (E [Φ], mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]]),M .

newnewnew currentloc : ^̂̂rwSite ininin @ae(migBlock(s mack P ) | [[Q]]ae
| Deliverer)

Applying Lemma 6.4.2, we have

newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (LR1 | LR′)

�̇M
E ′[Φ] newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (LR2 | LR′)

• Since ae 6∈ mayMove(F
[[
A′]], @D . . .), by Theorem 5.4.3,

E ′[newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin LR1 | LR′]

�̇∅
Φ E ′[newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin LR2 | LR′]

Moreover, since

newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (LR1 | LR′)
≡ newnewnew currentloc : ^̂̂rwSite ininin LQ1 and

newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (LR2 | LR′)
≡ newnewnew currentloc : ^̂̂rwSite, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin

(LR2 | @ae(migBlock(s mack P ) | [[Q]]ae
| Deliverer))

≡ newnewnew currentloc : ^̂̂rwSite ininin LQ2 where
LQ2 = newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin

(LR2 | @ae(migBlock(s mack P ) | [[Q]]ae
| Deliverer))

Since currentloc is a local channel, applying Lemma 6.2.7, we have: E [LQ1]�̇∅
ΦE [LQ2].
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• Since migrated is a linear channel, a communication on such a channel yields an
expansion. By Fact 6.3.7, we have: LQ2�̇

M
E[Φ]LQ3 where

LQ3 ≡ newnewnew migrated : ^̂̂rw[Site ^̂̂rw[]] ininin
(@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| @ae(migReady(s migrated P ) | [[Q]]ae

| Deliverer))

= mapS(ae, [Q MrdyA(s P )])(map)

• By transitivity of expansion, LQ′�̇M
E[Φ]LQ3. By Lemma D.1.3, we have:

a 6∈ mayMove(@D . . . ,F
[[
A′]]). Applying Theorem 5.4.3, we have: LP ′�̇∅

ΦE [LQ3].

Clearly, E [LQ3] ≡ F [[Sys′]], thus the lemma is true for this case.

Other cases are given in Appendix D.2 on page 249. �

Having obtained such operational correspondence results, we may now show that F is an
expansion up to expansion (and therefore an expansion, by Lemma 6.1.1). This involves
validating the diagrams below. Note that, since the type system of the intermediate language
ensures that all observable agents in a well-formed system are static, translocation of such
agents never occur; we therefore omit all translocating indices.

Φ 
 F [[Sys]]

RΦ

β

Ξ
Φ, Ξ 
 LP

�̇Φ,Ξ RΦ,Ξ

Φ 
 Sys
β

Ξ
Φ, Ξ 
 Sys′

Φ 
 F [[Sys]]
β

Ξ
�̇Φ,Ξ Φ, Ξ 
 F [[Sys′]]

Φ 
 Sys

RΦ

β

Ξ
Φ, Ξ 
 Sys′

RΦ,Ξ

Lemma 7.3.5 (Semantic correctness)

For any Sys, with Φ ` Sys ok, F [[Sys]] �̇∅
ΦSys.

Proof: Construct a translocating indexed relation R by

RΦ
def= {(F [[Sys]] , Sys) | Φ ` Sys ok }.

We then use Lemmas 7.3.3 and 7.3.4 for proving that R is an expansion up to expansion.
Explicit name substitution and alpha-conversion are used for ensuring that the names in
Φaux are never extruded by an input or output action by Sys or F [[Sys]]. Once the claim is
established, we apply Lemma 6.1.1 to obtain the lemma in its exact form. �
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7.4 Decoding Systems into Source Programs

This section turns to the relationship between the intermediate language and the source
language. Since systems in the intermediate language may be in partially committed states,
we define undo and commit decoding functions, D[ and D], for mapping systems to source-
level terms. We repeat a diagram given at the beginning of this chapter below.

nπLD,LI IL
D][[·]]

D[[[·]]

The functions undo and complete partially committed migrations. It suffices to have both
functions commit creations and LI messages, as these are confluent. In fact, a create action
does not commute with migrate actions by the same agent (since the latter will place the new
agent at different site). However, an agent in a partially committed creation state cannot
migrate until the creation is fully-committed and subsequently releases the local lock, and so
such a situation will never occur.

By being confluent, no processes can distinguish whether such actions have been committed;
therefore they can be considered committed once they are initiated (by (Sys-Req-Reg) or
(Sys-Req-Mesg)). This is not true for partially committed migrations, for a LD inter-agent
communication can easily detect whether an agent has migrated away.

The definitions of D-decoding of pending migration are as follows.

D[ [[MtingA(s P )]]a
def= @amigrate tomigrate tomigrate to s → P

D[ [[MrdyA(s P )]]a
def= @amigrate tomigrate tomigrate to s → P

D] [[MtingA(s P )]]a
def= @aP

D] [[MrdyA(s P )]]a
def= @aP

Committing a pending migration of an agent a has the effect of updating the site annotation
of a in the top-level binding (we recall that mobile agents are always bound in well-formed
systems). The definitions of the undo and commit decodings on systems are therefore slightly
different.

D[ [[eProg(∆; D; A)]] def= newnewnew ∆ ininin D[ [[D]] | D[ [[A]]

D] [[eProg(∆; D; A)]] def= newnewnew ∆commEff(A) ininin D] [[D]] | D] [[A]]

The effect of committing pending migrations in the state A of agent, written commEff(A),



7.4. DECODING SYSTEMS INTO SOURCE PROGRAMS 145

is a relocator defined as follows.

commEff(A) def= commEffa1(A(a1)) . . . commEffan(A(an))

dom(A) = {a1, . . . , an}

commEffa([P E]) def=


a 7→ s E = MtingA(s P )

a 7→ s E = MrdyA(s P )

• otherwise

The rest of the definition, which concerns non-partial processes, is the same for both decoding
functions (read D as either D[ or D]).

D [[[map mesgQ]]] def= D [[mesgQ]]

D
[[∏

i∈I mesgReq({|Ti|} [ai ci vi])
]] def=

∏
i∈I @aici!!!vi

D [[A]] def=
∏

a∈dom(A)D [[A(a)]]a
D [[[P E]]]a

def= @a(P ) | D [[E]]a

D [[FreeA(s)]]a
def= @a000

D [[RegA(b Z s P Q)]]a
def= newnewnew b : AgentZ@s ininin (@bP | @aQ)

Decoding the state of the daemon commits all the message forwarding requests; the site map
is ignored. Decoding the state of agents combines all decoded agents by parallel composition.
Decoding the state of an agent places the main body and the undone/committed pending
process in parallel. Note that although a pending creation is always committed, the daemon
has not yet updated its site map, and therefore the new agent binding is not placed in the
top-level declaration.

The following lemma makes sure that decoding a newly-loaded process LP results in LP

itself. This is essential for Theorem 7.5.1.

Lemma 7.4.1 (Decoding loaded system)

If ` Φ ok and Φ ` LP then D[ [[LΦ [[LP ]]]] ≡ D] [[LΦ [[LP ]]]] ≡ LP .

Proof: Assume, without lost of generality, that

LP ≡ newnewnew ∆ ininin (@a1P1 | . . . | @anPn)

where a1 . . . an are distinct; moreover, Φ ` ai@si for all i. By definition, we have:

LΦ [[LP ]] = eProg(∆; [Enlist(Φ, ∆) •]; A)
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where A is defined so that A(ai) = [Pi FreeA(si)].

This means that the daemon is idle, and

D [[LΦ [[LP ]]]] = newnewnew ∆ ininin D [[[Enlist(Φ, ∆) •]]] | D [[A]]

= newnewnew ∆ ininin D [[•]] |
∏

i∈1...n

D [[[Pi FreeA(si)]]]ai

= newnewnew ∆ ininin
∏

i∈1...n

@aiPi

�

7.4.1 Behavioural Properties

The following two lemmas give operational correspondences between terms in the interme-
diate language and their decoded images. We prove that a system is strictly simulated by
its undo-decoded image, and that a system progressing simulates its commit-decoded image.
The results can be summarised in the diagrams below.

Φ 
 Sys

RΦ

β

Ξ
Φ, Ξ 
 Sys′

RΦ,Ξ

Φ 
 D[ [[Sys]]
β̂

Ξ
Φ, Ξ 
 D[ [[Sys′]]

Φ 
 D] [[Sys]]

RΦ

β

Ξ
Φ, Ξ 
 LP

≡RΦ,Ξ

Φ 
 Sys
β

Ξ
Φ, Ξ 
 Sys′

Lemma 7.4.2 (D[ is a strict simulation )

For any Sys with Φ ` Sys ok, if Φ 
 Sys
β−→
Ξ

Sys′ then Φ 
 D[ [[Sys]]
β̂−→
Ξ
D[

[[
Sys′

]]
.

Lemma 7.4.3 (D]−1 is a progressing simulation)

For any Sys, with Φ ` Sys ok, if Φ 
 D] [[Sys]]
β−→
Ξ

LP then there exists Sys′ such that

LP ≡ D] [[Sys′]] and Φ 
 Sys
β

=⇒
Ξ

Sys′.

The details of the proofs of these lemmas are given in Appendix D.3 on page 265; we shall
outline them here. The proof of Lemma 7.4.2 is relatively straightforward, using an induction
on transition derivation. To prove Lemma 7.4.3, however, it is more convenient to analyse
transitions of fully-committed system, where all local locks and the daemon lock are free. In a
fully committed system, whenever its commit-decoding image perform an action, the system
can immediately performs the same action (or initiate it, if the action is daemon-dependent),
since an agent does not have to wait for the completion of a pending process. For each
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system Sys, well-typed w.r.t. Φ, there exists a corresponding fully-committed state, denoted
NormΦ(Sys), defined below.

NormΦ(eProg(∆; D; A)) def= eProg(∆; D; A)
if ∀ a ∈ dom(A) . ∃P, s . A(a) = [P FreeA(s)]

NormΦ(eProg(∆; [map mesgQ]; A)) def=

NormΦ

(
eProg

( ∆, b : AgentZ@s; [[b s]::::::map mesgQ];

A⊕ a 7→ [P | R FreeA(s)]⊕ b 7→ [Q FreeA(s)]

))
if A(a) = [P RegA(b Z s Q R)] and b 6∈ dom(Φ, ∆)

NormΦ(eProg(∆; [[a s]::::::map mesgQ]; A⊕ a 7→ [P FreeA(s)]))

if A(a) = [P MtingA(s Q)]

NormΦ(eProg(∆; [[a s]::::::map mesgQ]; A⊕ a 7→ [P FreeA(s)]))

if A(a) = [P MrdyA(s Q)]

Full-commitment preserves the committing decoding. Moreover, any system can always reach
a fully-committed state by a sequence of silent actions.

Lemma 7.4.4 (Fully-committed system)

For any Sys with Φ ` Sys ok, we have:

1. D] [[Sys]] ≡ D] [[NormΦ(Sys)]]; and

2. Φ 
 Sys =⇒ NormΦ(Sys).

Proof: First we define two functions, agentN(·) and uncommitN(·): they give the number of
all agents in the system, and of agents which are not in a partially committed state. The
formal definition is given below.

agentN(eProg(∆; D; A)) = sizeof(A)

uncommitN(eProg(∆; D; A)) = sizeof({a | ∃s, P . A(a) = [P FreeA(s)]})

We prove the lemma by an induction on agentN(Sys) − uncommitN(Sys). The base case
(ie. agentN(Sys) = uncommitN(Sys)) is trivial, we shall only demonstrate an induction case
here.

Assume the lemma is true for any Sysk = eProg(∆k; Dk; Ak) with

agentN(Sysk)− uncommitN(Sysk) ≤ k.
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Suppose Sys, with Φ ` Sys ok, is such that agentN(Sys) − uncommitN(Sys) = k + 1. Let
Sys = eProg(∆; [map mesgQ]; A) and a ∈ dom(A). Suppose, without loss of generality, that
A(a) = [P MrdyA(s Q)]. In this case, we have NormΦ(Sys) = NormΦ(Sys′) where

Sys′ = eProg(∆⊕ a 7→ s; [[a s]::::::map mesgQ]; A′)

A′ = A⊕ a 7→ [P FreeA(s)]

To obtain the first property, we derive the following.

D] [[Sys]] = newnewnew ∆commEff(A) ininin D] [[[map mesgQ]]] | D] [[A]]

= newnewnew (∆⊕ a 7→ s)commEff(A′) ininin D] [[[[a s]::::::map mesgQ]]] | D]
[[
A′]]

= D]
[[
Sys′

]]
Since D] [[Sys′]] ≡ D] [[NormΦ(Sys′)]], by the induction hypothesis. We have D] [[Sys]] ≡
D] [[NormΦ(Sys)]]. Thus true for this case.

To obtain the second property, we derive the following.

• By (Sys-Comm-Mig), Φ 
 Sys
τ−→ Sys′.

• Φ 
 Sys′ =⇒ NormΦ(Sys′), by the induction hypothesis.

• Φ 
 Sys =⇒ NormΦ(Sys), since NormΦ(Sys) = NormΦ(Sys′).

Thus true for this case. Cases where a is in the state RegA(b Z s Q R) and MtingA(s Q) are
similar. �

We also show that these two decodings form a coupled simulation. To prove this, we need to
show that decodings are coupled by validating the following diagrams:

Φ 
 Sys

D[
D]

Φ 
 D[ [[Sys]] τ Φ 
 D] [[Sys]]

Φ 
 Sys

D]

τ̂ Φ 
 Sys′

D[

Φ 
 D] [[Sys]]

In fact the diagram on the right is a direct consequence of Lemma 7.4.4 (i.e. picking Sys′ =
Norm(Sys)). We are thus only required to validate the diagram on the left.

Lemma 7.4.5 (Coupling of commit and undo decodings)

For any Sys with Φ ` Sys ok, Φ 
 D[ [[Sys]] =⇒ D] [[Sys]].

Proof: If Sys contains k agents which have pending migrations, then D[ [[Sys]] can perform
(bound) migration k times to become D] [[Sys]]. �
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Lemma 7.4.6 (Decodings form a coupled simulation)

(D[,D]) is a coupled simulation, ie. if Φ ` Sys ok then Sys �Φ D [[Sys]].

Proof: By Lemma 7.4.2 and Lemma 7.4.3, we know that D[ and (D])−1 are weak sim-
ulations. By Lemma 7.4.5 and Lemma 7.4.4, we have the necessary coupling between the
decoding for (D[,D]) to be a coupled simulation. �

7.5 The Main Result

The results from the previous two sections are combined to give a direct relation between the
source and the target terms, proving that the source term LP , well-typed w.r.t. valid system
context Φ, and its translation CΦ [[LP ]] are related by a coupled simulation.

Theorem 7.5.1 (Coupled simulation)

For any LP well-formed w.r.t. a valid system context Φ, LP �Φ CΦ [[LP ]].

Proof: The proof puts together the operational correspondence results developed, as can
be summarised in the diagram below.

nπLD,LI LP
≡

(7.4.1)

�Φ (5.4.6,5.4.5)

D [[LΦ [[LP ]]]]

�Φ (7.4.6)

IL LΦ [[LP ]]

�̇∅
Φ

(7.3.5)

nπLD CΦ [[LP ]] F [[LΦ [[LP ]]]]≡
(7.3.2)

More precisely, we pick Sys = LΦ [[LP ]] and derive the following.

• Φ ` Sys ok, by Lemma 7.3.1.

• D [[Sys]] ≡ LP , by Lemma 7.4.1.

• Sys �Φ D [[Sys]], by Lemma 7.4.6.

• F [[Sys]] �̇∅
ΦSys, by Lemma 7.3.5.

• F [[Sys]] �Φ D [[Sys]], by Lemma 5.4.6 and Lemma 5.4.5.

• F [[Sys]] ≡ CΦ [[LP ]], by Lemma 7.3.2.

Hence the theorem. �
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Chapter 8

Related Models

There exists a vast number of works on verification of distributed and mobile computations.
They can be roughly divided into the following.

• Protocol analysis This involves formalising an informal description of a particular
protocol, abstracting away irrelevant aspects, and apply mathematical techniques to
discover the system structure and its behavioural properties. The works in this class
include analysis of various protocols using the I/O automata, of Mobile IP [AP98,
JNW99], of an active network algorithm [WMG00], and the verification of a distributed
directory service and message routing algorithm for mobile agents [Mor99].

• Modelling language This involves defining a formal language intended for describing
a wide range of distributed and mobile computations. The existing modelling languages
includes Mobile UNITY and variants of distributed process calculi.

In this chapter, we shall explore some of these works, focusing our attention on those which
are:

• equipped with precise semantic definitions;

• flexible, allowing a wide range of distributed and mobile computations to be precisely
expressed; and

• equipped with notions of correctness and proof methods, allowing programs to be ver-
ified and reasoned about.

With these criteria, we select three models for extensive reviewing: variants of distributed
process calculi, the I/O automata and the Mobile UNITY model. The next three sections
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discuss these models: their basic constructs, their informal semantics, and some of their
verification techniques.

There exist many other modelling languages, which are generally based on well-established
models of concurrency such as Petri nets [Rei85] and Linda [Gel85]. We omit discussions
of models based on Petri nets for they remain somewhat too static to be directly used for
mobile computation. Some effort has been made to increase the degree of dynamism, eg.
Mobile Petri Nets [AB96], but its only success is to add π-style dynamics of name scoping to
the model. Also omitted are discussions of models and languages based on Linda paradigm,
such as LLinda [dNFP97b], Bauhaus [CGZ95], Klaim [dNFP97a] and MobilS [Mas99]. These
languages are intended as specification languages and come somewhat under-equipped as far
as proof and verification techniques are concerned (eg. no behavioural equivalence is given).

The choice of which model to adopt can be difficult to make. Three factors are perhaps most
prominent: expressiveness of a model, the level of abstraction required, and the preferred
proof methods. Expressiveness is the most important factor when it is clear that certain
features are expressible by one model and not the others. For example, since Mobile UNITY
can be used for expressing node mobility and disconnected operations, it is more suitable for
modelling mobile-device networks than the I/O automata model (which cannot directly ex-
press mobility) or process calculi (which cannot directly express transient resource sharing).
In most cases, however, the same algorithm or protocol can be expressed in many different
models — in such cases the other two factors become more important. Works on protocol
analysis are idealised in the sense that a verified protocol cannot directly be used for pro-
ducing an executable version (see also Section 1.3). The process of formalising the informal
description of the protocol can abstract away too many details, making the model somewhat
less convincing. To one’s intuition of program execution, models which use operational se-
mantics (eg. the process calculi) are often closer and less abstract than those which uses
axiomatic semantics (eg. the Mobile UNITY model). However, usage of axiomatic semantics
often means that the statements of program properties are more concise and easier to prove
correct.

Here it is probably worth quoting a passage from Milner’s Turing Award lecture [Mil93a]: “I
reject the idea that there can be a unique conceptual model, or one preferred formalism, for
all aspects of something as large as concurrent computation, which is in a sense the whole of
our subject—containing sequential computing as well as a well-behaved special area. We need
many levels of explanation: many different languages, calculi, and theories for the different
specialisms.”
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8.1 Process calculi-based models

The π-calculus (see an introduction in Section 2.1), along with its variations, is a prominent
model of concurrency. The attraction comes from its clear treatment of concurrency, the
flexible treatment of names in the π-calculus, and the similarity between π asynchronous
message passing and reliable datagram communication. Furthermore, process calculi have
a well-established semantics, providing a tractable theory and convenient proof techniques
for reasoning about process behaviour. Nevertheless many important issues in distributed
computing remain unaddressed by the π-calculus. Most crucial of all is the lack of notions
of distribution, locality, mobility and security.

To address such issues, many π-based calculi have been proposed. They are often specific,
tailored to studied particular problems in distributed and mobile computations. The number
of such calculi increases rapidly, so instead of describing each of them in turn, we review some
of the common design choices, focusing on the notions of distribution, locality and mobility
— omitting any discursive details. This review is based on the design of the following calculi,
with brief descriptions summarising the abstracts of the original papers.

• The πl calculus of Amadio and Prasad [AP94], used for modelling the notions of locality
and failure presented in the programming language Facile [TLK96].

• The π1l calculus of Amadio [Ama97], used for studying the distribution of processes to
locations, the failures of locations and their detection.

• The Distributed Join Calculus of Fournet et al. [FGL+96], intended for providing a
foundation of a programming language for distributed and mobile applications.

• The Seal calculus of Vitek and Castagna [VC98, VC99], intended as a framework for
writing secure distributed applications over large scale open networks such as the In-
ternet.

• A distributed CCS of Riely and Hennessy [RH97], used for studying characterisation
of barbed congruences for a calculus with locations and failures.

• The Dπ calculus of Riely and Hennessy [RH98, RH99], used for studying partially-typed
semantics, designed for mobile agents in open distributed systems in which some sites
may harbor malicious intentions.

• The Dπλ calculus of Yoshida and Hennessy [YH99a, YH99b], used for studying locality
using a calculus of distributed higher-order processes in which not only basic values or
channels, but also parameterised processes can be transferred across distinct locations.
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• The dpi of Sewell [Sew98], used for studying a type system in which the input and
output capabilities of channels may be either global or local.

• The Ambient calculus of Cardelli and Gordon [CG98], a calculus for describing the
movement of processes and devices, including movement through administrative do-
mains.

• The Dπr
1 of Amadio and Boudol [ABL99], used for showing how a static analysis en-

sures the receptiveness of channel names, which, together with a simple type system,
guarantees a local deadlock-freedom property.

• The Box-π-calculus of Sewell and Vitek [SV99, SV00], used for studying wrappers:
secure environments that provide fine-grain control of the allowable interaction between
them, and between components and other system resources.

• The extension of TyCO with distribution and code mobility [VLS98], which is referred
to in this overview as distributed TyCO. TyCO (Typed Concurrent Object) [Vas94] is
a name-passing process calculus, which allows asynchronous communication between
concurrent objects via labelled messages carrying names.

• Nomadic π-calculi, addressed in this thesis.

For other discussion, the reader may refer to “related work” sections of the works cited above,
as well as to [Sew00, Car99].

Distribution and Locality Here we are concerned about how processes are grouped and
collectively named. The π-calculus does not have any notion of the identity of processes,
yet grouping process terms is essentially for describing units of migration, channel synchro-
nisation, sites of failures, and administrative domains (for security). Grouped identity can
be anonymous, for example in Dπλ, where distinct groups are separated by ‖. It is more
common, however, to name grouped identities, giving a sense of shared locality. Names of
units of grouped processes are often referred to as locations, and a process P running at
location l is often denoted by @lP or l[P ]. The terms agents and sites are also widely used,
although they are preserved for movable units of code and static runtime instances (subject
to failures) respectively. The terminology for units of trust (or administrative domains) is less
established; the existing terms include ambient, seal and box, adopted by the Ambient, Seal
and Box π-calculus respectively. Like channel names, location names are first class values
(and hence can be transmitted by communication) and can generally be dynamically created.

Unique Naming: Location names are not necessary distinct. The Ambient and Box π-calculi
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allow the existence of two or more locations with the same name. This approach is adopted for
studying security in distributed system, where an administrative domain may not have control
of the name generation outside its control. Non-unique naming, however, implies that all co-
located processes must be grouped together so that groups sharing the same name can be
distinguished. This style of “united-grouping” can make operational semantics complicated
(see eg. [CV99, GC99]), since the structural congruence rule l[P ] | l[Q] ≡ l[P |Q] is excluded.
Such a rule allows location information to be projected to atomic processes, and is undesirable
for reasoning about security domains, since l[P ] may come from an insecure source and must
not be mixed with the secured l[Q]. For simplicity, unique naming is adopted by most calculi,
and is usually enforced by the design of the calculus syntax or typing conditions.

Structure of Locations: Locations can be given a flat structure — a distributed system
then simply consists of a set of locations. This approach is adopted by the πl, distributed
CCS, Dπλ, Dπr

1 and distributed TyCO. To support migrations (see later), locations need
to be organised into some form of hierarchy: Nomadic π supports a two-level hierarchy,
whereas the Dπ, Ambient, Distributed Join, dpi, Seal and Box π-calculi support arbitrary
tree-structured hierarchy. When a new location is created in a calculus with arbitrary tree-
structured locations, the new location becomes a sublocation of the creating location. The
tree of locations may be deduced from the process term syntax, as is the case for the Ambient,
Seal and Box π-calculi; for example, the term n[P | n′[Q]] | m[R] induces a location tree with
m,n as children of a root node and n′ as that of n. In some calculi, the location tree is
not maintained in the process syntax, but, for example, in the operational semantics for the
Distributed Join, and in the binding located type context for the Nomadic π-calculi.

Mobility The π-calculus is a calculus of mobile processes only as far as scopes of names
are concerned; π-processes never actually move. With a notion of distribution, mobility of
processes (in the sense of moving an executing process from one location to another) can be
modelled precisely.

There are two common semantics of process mobility in distributed calculi, closely corre-
sponding to the mobile code and mobile agent paradigms of mobile code languages (cf.
Section 1.1).

1. Spawning In calculi with flat location structure, a spawning primitive eg. spawn(l, P )
allows the process P to be executed at location l. This closely corresponds to the
mobile code paradigm, where only code move between nodes. Note that, in addition
to spawning, distributed TyCO also allows definition of template processes defdefdef D

to be downloaded from one site to another, where a template process is similar to a
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parametric process definition and join patterns (see more in “variants of communication
primitives” in this section).

2. Migration With hierarchical locations, process mobility can be modelled by changes
of location-tree structure. Migration closely corresponds to the mobile agent paradigm,
where states of execution as well as codes can move between nodes. As an example,
in case of Nomadic π-calculi (with two-level hierarchy of agents located on sites) an
agent a may migrate between sites, moving all the processes located at a with it. More
generally, the calculi with an arbitrary location-tree structure offer structured migration,
where executing a migration primitive has an effect of moving a location and all its
descendents to be a sublocation of another location. This style of migration is similar to
the fine-grained mobility supported by the programming language Emerald [JLHB88].

There exists other paradigms of process mobility in distributed computing, an example of
which is that of Obliq [Car95], where objects are never moved, but rather cloned to different
sites. It is claimed that the migration, if necessary, can be implemented by means of cloning
and aliasing. Sekiguchi and Yonezawa formulated λdist [SY97] for studying various code
moving mechanisms, giving them precise semantics. We omit further discussion here.

Interaction Channel communication remains the main means of computation in distributed
process calculi. With a precise notion of distribution, it is now possible to describe how chan-
nel communication across location boundaries occurs. We distinguish two major semantics
of interaction.

1. Location-transparent interaction In this semantics, locations play no role in chan-
nel communication (provided they are not failed) — the details of message routing are
hidden from the programmers. Location-transparent interaction can be non-local, ie.
an input and an output on the same channel may interact regardless of where they are
located. For example, the output x!!!v1 at a1 in the process

@a1x!!!v1 | @a2x!!!v2 | @a3x???p→P | @a4x???p→Q

may interact with an input on x at a3 or a4; the same also holds for the output x!!!v2 at
a2. Figure 8.1(a) shows an interaction of a pair of input and output on x at locations
a2 and a3. This style is adopted by the πl, dpi, and other calculi whose group identity
is anonymous.

Fournet and Gonthier [FG96] argued that non-local interaction is difficult to implement
efficiently in a distributed setting. They formulated the Distributed Join calculus, based
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on a chemical abstract machine [Bou94]. The calculus retains the location-transparent
interaction semantics since programmers need not specify where channel interaction
may take place. However, efficiency is gained by the restriction that each channel is
defined in at a unique location and only at its “defining” location can values be read
from a channel — outputs on such a channel have to travel to the defining location
in order to interact with an input. Figure 8.1(b) shows messages on x moving from
the locations a1 and a2 to the defining location of x, a3, where an input resides. As
there exists a unique defining location of each channel, transport is deterministic and
point-to-point — there is no need for handshaking before communicating on channels.

We shall refer to the latter style of interaction as join-style interaction. It has a great
influence on the design of many subsequent calculi, such as Dπr

1, Dπλ, dpi, Ambient,
as well as Nomadic π-calculi.

2. Location-aware interaction Another way of making channel interaction efficiently
implementable in a distributed setting is by making it location-aware. In this case,
an input and an output on the same channel may synchronise only if they are co-
located, or, in the case of the Seal and Box-π calculi, if they are in close vicinity
(eg. on the same physical machine). Interaction between arbitrary locations is also
possible. In most calculi, the programmers are required to explicitly specify the loca-
tion where an output is to be moved to in order to synchronise with an input on the
same channel. For example, @a1(@a4x!!!v1) | @a2(@a3x!!!v2) | @a3x???p→ P reduces to
@a1(@a4x!!!v1) | @a3match(p, v2)P , and never @a2(@a3x!!!v2) | @a3match(p, v1)P . Fig-
ure 8.1(c) illustrates the movement of messages occurs in the example process. This
semantics is adopted by the Dπ, Dπr

1, distributed TyCO, and the high-level Nomadic π-
calculus.

In a calculus with tree-structured locations, an agent a may communicate with another
agent b if a correctly specifies an explicit path from a to b, or a relative location
in the tree which is the parent of b. For the sake of later discussion, we shall refer
to this style of interaction as being location-path specific. We have two examples of
this. In low-level Nomadic π, an agent a may send a message to another agent b if
the two agents are at the same site; the path in this case is from a to its parent (ie.
its site) and then to b. The (sugared) primitive for inter-agent interaction, 〈b@s〉c!!!v,
specifies the relative location s which is the parent of b. In the Seal and Box π-calculi
communication between seals (or boxes) may occur only if they are parent and child.
Process expressions of the Seal calculus include xn(λy).P , which tries to read a value
along channel x located in the child named n, and x̄↑(y).P , which tries to output a
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value along channel x located in the parent. Local inputs and outputs are denoted by
x∗(λy).P and x̄∗(y).P respectively. For example, an expression n[x↑(λy).P ] | x̄∗(z).Q
reduces to n[{z/y} P ] | Q, as illustrated in Figure 8.1(d). Seal-style primitives keep
tight control over channel names, allowing local resources to be protected from malicious
components.

x!!!v2
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x!!!v2
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(b) Join-style(a) Location-transparent

(c) Location-aware (d) Location-aware (Seal)

x̄∗(z).Q

x↑(λy).P

Figure 8.1: Channel communication in distributed setting

Location dependency: We may classify the described interaction styles as being location
dependent or location independent. Location-transparent interaction is definitely location-
independent, since it allows agents to interact irrespective of their locations. Location-path-
specific interaction can be classified as location-dependent. If a calculus allows locations to
be structured as a tree, a location-aware interaction which is not location-path specific can be
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classified as location-independent; this is the case for the high-level primitive of Nomadic π-
calculi.

It is hard to classify location-aware interaction in a calculus with flat-structured locations,
since locations remain static and there is no need to track their movement. If locations cannot
be dynamically created by programs, we may consider them as physical sites. In this case, the
interaction style is location-dependent, and is supported by the standard network technology.
In most calculi, however, locations can be dynamically created by programs. The fact that
these locations actually reside in some physical machines must be abstracted away, which
means that some implicit mechanism is required for associating such locations to physical
machines. In this case, the interaction style can therefore be classified as location-dependent.

Variants of interaction primitives: Some of the cited calculi offer variants of com-
munication constructs. The join calculus [FG96] replaces inputs and replicated inputs by
join patterns, allowing many messages (from many sending processes) to synchronise in one
action. For example, a join pattern

defdefdef count〈n〉|inc〈〉� count〈n + 1〉 ininin P

allows messages count〈5〉 and inc〈〉 in P to simultaneously interact to produce count〈6〉; the
names count and inc are bound in P , preventing them from being input elsewhere. A join
pattern can therefore be thought of as a combination of π restriction and replicated input,
which also enforces linearity of the channels involved. In TyCO, asynchronous messages and
inputs are replaced by the following.

x!!!l[~v] message
x???{l1(~x1) = P1 . . . ln(~xn) = Pn} object

where ~v, ~x1, . . . , ~xn are sequences of names and l, l1, . . . , ln are labels. A message x!!!li[~v] selects
the method li in an object x???{l1(~x1) = P1 . . . ln(~xn) = Pn}; the result is the process Pi where
names in ~v replace those of ~xi. In comparison to a standard π-calculus, TyCO processes
are more like objects in the sense that communication are similar to method invocation,
consisting of a name tagged with a label. The expressive power of these variants are addressed
by Nestmann in [Nes98] (for join patterns), and, in collaboration with Ravara, [NR00] (for
TyCO objects).

Another style of interaction is offered by the Ambient calculus, where computation is based
solely on movement of ambients. Instead of sending or receiving along a channel, a process
in an ambient m is capable of three basic operations (called capabilities). The execution of
in n in an ambient m moves m into an adjacent ambient n (and becomes its descendant).
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The execution out n in an ambient m moves m out of its immediate enclosing parent n (and
becomes its sibling). The boundary of an ambient n can be dissolved by its immediate en-
closing ambient m (thereby “collapsing” a node in the location tree) by executing a primitive
open n in m. These operations would block if the relative location of the executing ambient
does not satisfy that required by the capabilities: for example, for an ambient m to perform
in n capability, m and n must be siblings. These three basic capabilities, along with π style
restriction, parallel composition and replication prove to be sufficiently expressive to express
Church’s numerals, Turing machines and an encoding of the π-calculus [CG98]. The calculus
is relatively simple, yet can be used for reasoning about mobility and security.

Failures In many cases a notion of locations alone may not be sufficient, since locations
could all really be in the “same place”. However, in presence of failures one could observe that
certain locations have failed and others have not, and deduce that those locations are truly
in different places; otherwise they would all have failed at the same time. The Distributed
Join calculus, for example, adds a notion of location failure, where if a location fails then
all processes located at such a location or its descendents are no longer active. Modelling
failures is beyond the scope of this thesis, and we omit further discussion.

Security Security in the Internet and the World-Wide-Web has been a subject of increas-
ing concern. We have discussed the primitives of the Ambient, Seal and Box π-calculi, which
allow interaction across administrative domains to be controlled. Alternatively, the spi cal-
culus of Abadi and Gordon [AG99] extends the π-calculus with cryptographic primitives,
allowing security protocols for authentication and electronic commerce to be described and
analysed. The calculus is not distributed, though. The problem of implementing authenti-
cation in distributed systems has been addressed by Abadi, Fournet and Gonthier [AFG00],
extending the Distributed Join calculus with some cryptographic primitives. Recently, Abadi
and Fournet introduced a simple, general extension of the π-calculus with value passing (not
merely names), primitive functions, and equations among terms [AF01]; they also showed
how security protocols can be expressed in this calculus. Again network security is beyond
the scope of this thesis, and we omit further discussion.

8.1.1 Verification and Proof Techniques

Roughly speaking, the verification and proof techniques of process calculi can be classified
as those based on types and those based on the dynamic behaviour of processes. A type
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system for the π-calculus was first proposed by Milner [Mil93b], giving the notions of sort
and sortings, which ensure uniformity of the kind of names that can be sent or receive by
channels. Many refinements on the type system have subsequently been proposed, including
polymorphism [Tur96, PS97], subtyping [PS96], linear types [KPT96], objects [Wal95], and
a generic type system [IK01]. Adding the notions of locality and distribution to the π-
calculus admits further refinements to be made. Sewell [Sew98] formulated dpi for studying
a type system where each channel is located at an agent and can be given global/local usage
capability as well as that for input/output. An approximation to the join-style of interaction,
for example, can be obtained by giving them global-output and local-input capabilities. This
type system retains the expressiveness of channel communication, yet admits optimisation
at compile time. Yoshida and Hennessy [YH99b] formulated a type system for Dπλ which
emulates the join-style of interaction using input/output subtyping. The presence of higher-
order processes makes this formulation challenging. The type system of Dπr

1 extends the
concept of uniform receptiveness [San99] to ensure that each output (perhaps an inter-agent
message) is guaranteed to react with a (unique) input process at its destination (cf. Section
6.2.3). The techniques of refining of channel types are also used in ensuring security-related
properties. For example, the partial typing of Riely and Hennessy [RH99] ensures that
resources of trusted sites are not abused by untrusted sites; Sewell and Vitek introduced
causality types [SV00] for reasoning about information flow between security domains; and
Cardelli, Ghelli and Gordon [CGG00] introduced a notion of groups which can be used
for ensuring that the boundary of an ambient may only be dissolved by trusted groups
of ambients. It is essential the properties ensured by a type system remain valid during
execution of a well-typed program. The proof of subject reduction is therefore an essential
part of the cited works.

The behavioural theories of these distributed variants of process calculi are generally adapted
from those of the π-calculus, which are based around operational semantics and operational
equivalences (see Section 5.1 for background). A reduction semantics is given for all of the
quoted calculi. This, together with some notions of barbs, allows a definition of barbed
bisimulation to be given, as is the case for the Distributed Join-calculus [FG96], the Seal
calculus [CV99], and the Ambient calculus [GC99]. A labelled transition semantics is also
given for the π1l, Dπ, Dπr

1, Ambient, Seal and Box π-calculi, allowing some notions of bisim-
ilarity to be given. These definitions of labelled transition semantics often involve refining
that of the standard π with location annotation (@l for Dπ1

r and “relative location” tags
for Seal and Box-π). The labelled transition semantics of Dπ [RH98] extends the standard
π input and output actions with labels that indicate movements and failures of locations.
The style of LTS of the Ambient calculus [GC99] is quite different from that of π-calculus
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for it involves relative locations of ambients. The definitions of labelled transition semantics
and operational equivalences of distributed CCS [RH97] and π1l [Ama97] also take location
failures into account.

Modal logic [HM85] is also useful in reasoning about temporal properties of processes. Log-
ical rules can be used for showing that a process P satisfies a logical formula A, written
P � A, where each logical formula can be constructed from sequences of actions, equality of
names, and boolean connectives ∧ and ¬. This allows various forms of behavioural properties
of processes to be stated, such as P always receives from a channel c before sending on d.
Milner et al. [MPW93] formulated various modal logics for the π-calculus, and showed that
two of them can be used for characterising the early and the late bisimulation equivalence.
Application of modal logic to distributed process calculi was pioneered by Cardelli and Gor-
don, who presented a modal logic for the Ambient calculus in [CG00] and later extended it
to include name restriction [CG01]. Their logic allows statement and verification of spatial-
modality properties which hold at certain locations, at some locations, or at every location.
Examples of such properties include “eventually the agent crosses the firewall,” “somewhere
there is a virus” and in their latter work, “a shared key is established between locations a

and b.”

There is also some work on mechanising verification of reactive systems’ properties, specified
by some process calculus. The Concurrency Workbench [CPS93, CS96, MS] and the Jack
(Just Another Concurrency Kit) environment [BGL94] are automated tools for verifying
behavioural and (modal) logical properties of finite-state CCS-like processes (which have no
name-passing ability). The Mobility Workbench [VM94, Vic94] is a tool designed specifically
for the π-calculus. It can be used for deciding the open π bisimulation equivalences [San96b].
The works described are tools which are specifically designed for process calculi; there are
also a number of works on embedding process calculi in existing theorem provers. Hirschkoff
[Hir97, Hir98] develops an implementation of the π-calculus in the Coq system [DFH+93],
allowing many “classical” results of the π-calculus theory to be proved using the up to
context technique [San95b]. Nesi [Nes92] used the HOL system [Gor87] for defining CCS and
its modal logic. This was a starting point for the work of Aı̈t-Mohamed, which consisted
in proving equivalences and building a system to prove bisimilarities between π-processes
interactively [Aı̈t95].
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8.1.2 Programming Languages

The design of many concurrent and distributed programming languages has been influenced
by the π-calculus. Pierce and Turner [PT00] used an asynchronous choice-free π-calculus as
the basis for the programming language Pict (cf. Section 2.1.2 on page 16). The language
is not distributed, though. Three of the distributed process calculi described in this section
have been used as the basis for a truly distributed programming language: the Join language
[FM97], based on the Join calculus, DiTyCO [LSFV99, LAFSV00], based on distributed
TyCO, and Nomadic Pict (cf. Section 1.4 on page 7). The implementation of the Join
language was developed in the Objective-Caml environment [LDG+00]. To its base calculus,
the language adds basic types and most Objective-Caml libraries as primitives, and gives a
simple interface to incorporate any other Objective-Caml module. A Join language program
can be distributed among on many heterogenous machines, and can contain mobile agents.
The language also supports an abstract model of failure and failure detection, although not
all runtime failures can be detected. According to [LAFSV00], the first DiTyCO prototype
is in the final stages of implementation; the authors also mentioned adding some mechanism
for failure detection in the future.

There are also some programming languages which combine concepts from functional lan-
guages and the π calculus. Two prominent examples of such languages are Facile [TLP+93]
and CML [Rep92], which add concurrency primitives and channel communication to Stan-
dard ML [MTH90]. The semantics of the (non-distributed) Facile was explored by Amadio
et al. [Ama94, ALT95]; they gave some notion of program equivalence and a translation of
Facile into the π-calculus. The distributed programming features of Facile [TLG92] provides
transparent access to distributed resources; its semantics was studied via πl calculus [AP94],
also discussed in this section. The reduction semantics of CML was originally proposed by
Reppy [Rep92] and Berry et al. [BMT92]. This semantics does not support a notion of pro-
gram equivalence, though. Two fragments of CML, µCML [FHJ98] and µνCML [JR00], are
given a labelled transition semantics and some notions of bisimulation equivalence, allowing
program rewrites (eg. in compiler optimizations) to be reasoned about. These semantics of
CML are non-distributed, although Jeffrey and Rathke [JR00] claimed that thread identi-
fiers of CML are similar to locations in distributed process calculi and that their treatment
of thread could be adapted to distributed setting.

JoCaml [Fes98] also provides a way of combine the benefits of functional programming with
concurrency, distribution and mobility. It is an extension of Objective Caml [LDG+00],
an implementation of ML, with the Join-calculus constructs (concurrency, synchronization,
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distribution and mobiles agents) provided as a library. This language provides total trans-
parency for migration, join-style interaction, mobile agents and failure detection. It has
been used in several applications, including a mobile editor, some distributed games and a
distributed implementation of Ambient calculus.

The design of the programming language Oz [Smo95b] (also known as Mozart [CP99] in
its latest release) is also somewhat related to process calculi. Oz offers multiparadigm pro-
gramming, designed to support many different programming paradigms (functional, logic,
object-oriented, sequential and concurrent programming); readers may refer to [MMvR95]
for more details. Its underlying formalism, the actor model [Smo95a], is an extension of the
γ-calculus [Smo94] with constraints and search. The γ-calculus shares many similarities with
the π-calculus: a composition of γ terms, written E1∧E2, and a declaration ∃uE, are similar
to the parallel composition and restriction of the π-calculus. The primitives of γ-calculus
include abstraction a : x̄/E (with x̄ is linear, ie. consist of pairwise distinct variables) and
application aū, with the following reduction.

aū ∧ a : x̄/E → E[ū/v̄] ∧ a : x̄/E if ū is free in E and |ū| = |v̄|

The reduction is obviously akin to a reduction rule for a replicated input (cf. (Pi-Replic) in
Figure 2.2). Victor and Parrow [VP96] gave an encoding of the γ-calculus into the π-calculus,
and established an operational correspondence between the reductions in the γ-calculus and
its encoding.

8.1.3 Discussion

First of all, we summarise the design choices of the reviewed calculi in Table 8.1. We use ab-
breviations LT, LA for location-transparent, location-aware interaction, NU for non-unique
(naming), and barbed for barbed bisimulation equivalences [MS92], bisim for standard bisim-
ulation and asyn bisim for asynchronous bisimulation [ACS98].

The design choices described provide different levels of abstraction, each of which is suitable
for modelling particular types of protocols or applications. However, we argue that in order
to use a calculus for expressing distributed applications over wide-area networks, and for such
applications to be implementable, the choices involved must be supported by the standard
network technology and not rely on a complex distributed infrastructure. Many of the design
choices discussed require infrastructure support. In location-transparent interaction, outputs
on a channel c on an agent must be able to interact with an input on c on any agent in a
fair manner. This requires a handshaking procedure whenever an agent wishes to input or
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distribution
naming loc. struct.

mobility interaction op. equivalence

πl unique flat spawning LT barbed
π1l unique flat spawning LT barbed & bisim
Dπr

1 unique flat spawning LA (LI) asyn bisim
distr. CCS unique flat spawning LT LF
Dπ unique tree migration LA (LI) barbed
Dπλ unique flat spawning LT none
dpi unique tree migration LT none
D-Join unique tree migration LT barbed
Seal NU tree migration LA (LD) barbed
Ambient NU tree migration LA (LD) barbed
Box-π NU tree none LA (LD) asyn bisim
distr. TyCO unique flat spawning LA (LI) none
Nomadic π unique two-level migration LA (LD & LI) bisim

Table 8.1: Design choices of distributed process calculi
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output on a channel. Since agents are capable of moving between sites, the infrastructure
for supporting this can be highly complex — having to track movement of agents as well as
ready-to-interact inputs and outputs.

The join-style interaction, though location-transparent, is less costly since there exists a
unique location which is capable for receiving from each channel. Nevertheless, each output
needs to be moved to the location where it may react with inputs. An infrastructure is
required to support this, since a map of where each channel is defined must be maintained.
Moreover, since the Join language supports structured migration, the infrastructure must
ensure that, while an output is forwarded to its destination, neither the target location nor
any of its ancestors migration away. These requirements are likely to make infrastructure
complex and difficult to verify.

Location-dependent communication primitives, on the other hand, are supported by the
standard network technology. The Seal, Ambient, low-level Nomadic π and Box π-calculi,
which only employ LD primitives, can therefore be used as convincing bases for programming
languages for wide-area networks.

Nevertheless high-level primitives (those which require support from distributed infrastruc-
ture) are convenient for writing applications. Moreover, specifications can be given in a
language which supports both high- and low-level primitives. This allows implementations
(expressed purely using low-level primitives) to be verified by comparing their behaviour with
the specifications.

From a theoretical point of view, comparing the design choices of Nomadic π to other choices
reveals the following.

• Location-dependency makes congruences — operational equivalences which are pre-
served under parallel composition and newnewnew-binding — difficult to obtain. In distributed
process calculi which provide only location-independent primitives, an operational con-
gruence generally coincides with a standard notion of bisimulation, as has been shown
for the distributed join calculus (in absence of failure) in [BFL98], and for π1l calcu-
lus in [Ama97]. This is not the case for calculi offering location-dependent primitives.
Gordon and Cardelli gave a definition of an operational congruence for the Ambi-
ent calculus [GC99]. Such a definition, however, involves quantification over program
contexts, which can make proving congruence relationship between processes difficult.
Congruences offered by Nomadic π — strong, weak and expansion congruences (see
Chapter 5) — do not involve quantification over program contexts, but still require a
considerable extension to the standard notion of bisimulation.
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• The complex migration mechanism offered by structured migration could make the
definition of temporary immobility (see Section 6.4) complex, and subsequently make
proofs of temporary immobility properties difficult.

• It would be possible to adopt the join-style of channel definition, ie. ensuring that
there is a unique agent capable of reading from each channel, as in Dπr

1. This would
simplify many results in Section 6.2, since certain channel usage disciplines are re-
spected by processes using join patterns. However, restricting channels in this way can
make infrastructure translations more complex. For example, in the C-translation, the
Deliverer process must be specific for each agent, since the name deliver can now
be used for input at a single agent. This means that the daemon must explicitly keep
a map of what channel it must use for forwarding messages to each agent.

For these reasons, we did not adapt the high-level primitives of structured migration and
join-patterns.

8.2 I/O Automata

The input/output (I/O) automaton model [LT87, LT88] is one of labelled state transition
systems, intended for modelling reactive systems interacting with the environment. Origi-
nally developed for specifying and verifying theoretical distributed algorithms, I/O automata
have also been applied to practical communication services such as TCP, distributed shared
memory, and group communication (see [GLV97] for many references). It has helped in
resolving ambiguities and contributing proofs that such systems meet their specifications.
In this section, we shall briefly describe the model, some of its proof techniques, and make
some comparisons between the model and Nomadic π-calculi. Here we refrain from giving
examples, many of which can be found in [Lyn96].

An I/O automaton is a simple type of state machine in which the transitions are associ-
ated with named actions. Such actions can be classified as either input, output or internal.
The input and output actions are used for communicating with the automaton’s environ-
ment, whereas internal actions, like τ actions of the π-calculus, are discarded in defining
compositions. More formally, each automaton A consists of five components: a set of states
states(A), a non-empty set of start states start(A) ⊆ states(A), a set of actions acts(A), a
transition relation, and a set of tasks, each of which is a non-input action. The transition
relation of an I/O automaton is similar to that of the π-calculus in that it defines transitions
between states and actions which are committed as a result of such transitions. For example,



168 CHAPTER 8. RELATED MODELS

if states s, s′ can be related by a transition relation, written s
π−→ s′, then s can evolve to s′ by

committing the action π. One of the fundamental assumptions made in the model, however,
is that an automaton is unable to block its input. This comes from the intuition that input
actions are not under the control of the automata, but rather from the outside world. The
transition relations must therefore define transitions made by every input action from every
state — a condition which is not required by the transition relation of the π-calculus. An
execution of an automaton A is a (possibly infinite) sequence of alternating states and actions
s0π0, s1π1, . . . such that s0 is a start state in start(A) and, for all i ≥ 0, si

πi−→ si+1 belongs to
the transition relation of A. The set of tasks can be thought of as an abstract description of
“task” or “threads of control” within an automaton. It is used for defining fairness conditions
on execution of the automaton, ensuring that the tasks are given fair turns during execution.

A complex automaton can be obtained by combining simpler automata using a parallel com-
position operator. An action of a composite automaton is generated from one of its com-
ponents, and if several components may commit the same action, they may synchronise (ie.
simultaneously make transition under such an action). A pair of components A and A′ may
“interact” if they are able to commit an action π which is an input action for A and an output
action for A′ (or vice versa) — by performing π, the two components simultaneously undergo
a transition. In order that the composition operator will enjoy nice theoretical properties,
component automata must share no output actions, and their internal actions must not be
actions of any other automata. The hiding operation may be applied to an automaton to
hide some of its output actions by reclassifying them as internal actions.

Verification and Proof Techniques In addition to modelling reactive systems, I/O au-
tomata can be used for reasoning about their behaviour. A specification can be given in the
form of trace properties, ranged over by P , consisting of pairs of a set of external actions
(ie. input or output actions) and a set of sequences of such external actions. An automaton
A is said to satisfy a trace property P if its external actions and its traces (ie. observable
prefixes of executions of A) are included within those of P . Conditions can be imposed on
trace properties so that they satisfy safety or liveness conditions [Lam77], informally ensur-
ing that some “bad” thing never happens or that some “good” thing will eventually happen.
To prove that an automaton satisfies a trace safety property or a trace liveness property, the
following techniques can be employed.

• Simulation It can be proved that if an automaton A simulates another automaton
B then all the traces of B are traces of A. There exists several notions of simulation
[LV94]. Many of these share similarities with operational relations in the literature of
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process calculi.

• Modular decomposition The behaviour of a composite automaton can be reasoned
about via the behaviour of its components. It can be shown that if each component Ai

satisfies trace property Pi then the composite automaton
∏

i Ai satisfies the composite
trace property

∏
i Pi obtained by interleaving traces of Pi. Additional preconditions

are required to ensure that the composite trace satisfies eg. safety conditions.

• Hierarchical decomposition A system or an algorithm can be described by a hierar-
chy of automata, each at different levels of abstraction. For example, the highest level
may be a specification, whereas the lower-level automata may look more like actual
systems or algorithms that will be used in practice. The best way of proving properties
of the lower-level automata is often by relating them to automata at higher levels in
the hierarchy, rather than carrying out the proof from scratch.

These techniques have been successfully applied in proofs to practical algorithms such as
a shared memory service [FKL95], group communication [FLS98, Cho97] and a standard
communication service [Smi97]. Although most of the verification of quoted protocols have
been done by hand, it is claimed that much of such proofs (especially simulation proofs) is
sufficiently stylised to admit computer assistance using interactive theorem provers such as
the Larch Prover (LP) [GG91].

IOA Language One of the main problems of using I/O automata is, quoting Garland,
Lynch and Vaziri [GLV97], that “there exists no formal connection between verified designs
and the corresponding final code.” Following this, the IOA language [GLV97], a formal
language based on I/O automata, has been designed. The language is to be equipped with a
coordinated suite of tools to support the development and analysis of IOA programs. These
tools (will) include analysis tools, ranging from simulation to model-checking to theorem-
proving tools. They (will) also include tools for translating IOA programs into source code
in an existing programming language (eg. Java), thereby producing an executable code for
a distributed system. Much of the design and implementation of these tools is under current
research.

Discussion The style and syntax of I/O automata is very different to that of process calculi.
States of an automaton can be any arbitrary mathematical objects, whereas states of process
calculi are implicit in process terms, which are algebraic expressions rigorously constructed
from a small set of operators. The style of interaction of I/O automata model (via input,
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output and internal actions) is similar to that of process calculi. However, an I/O automaton
definition of a labelled transition relation is much more arbitrary than that of process calculi.
The arbitrariness of definitions of I/O automata provides flexibility, allowing a wide range of
programs, protocols and algorithms to be expressed; however, such definitions often require
further descriptions, commonly via natural language, which are not part of the model.

The proof techniques of I/O automata model are somewhat akin to those of the process
calculi, due to similarity in style of operational semantics. In process calculi, trace properties
can be expressed as process terms; to verify that a process satisfies a trace property, we may
prove that such process terms are related by some operational equivalence or preorder. Some
of these notions of equivalences ignore internal actions, which ensures that only observable
actions are compared between processes. The technique of modular decomposition can also
be applied to process calculi, provided that the operational equivalence used is preserved by
parallel composition. In fact, if such an equivalence is a congruence than decomposition is not
limited to parallel composition of restricted components (as in the I/O automata model) but
any parallel composition as well as other operators and prefixes. The technique of hierarchical
decomposition is also used in the context of process calculi, for example, to prove that two
calculi are equally expressive, an intermediate calculus might be introduced so as to reduce
the complexity of the proof (see eg. [NP96] and Chapter 7 of this thesis).

The I/O automata model lacks an inherent notion of types. This can be somewhat dis-
advantageous, since some types have been shown to provide powerful proof techniques (see
eg. [KPT96, San99, IK01]). The IOA language introduces some simple datatypes such as
boolean, integer, real number and string, as well as some type constructors such as array,
set, multiset and map together with associated operators. This type system, however, seems
to aim at preventing runtime errors rather than providing useful proof techniques.

Like the π-calculus, the I/O automata model has no clear notions of distribution nor locality.
Networks are modelled as a directed graph with an automaton CO(i) corresponding to each
node i and a channel channel(i, j) (also an automaton) corresponding to each edge from
node i to node j. Unlike the π-calculus, an I/O automaton cannot dynamically generate new
names or exchange names over channels. This makes its network model static and unable to
directly cope with dynamic reconfigurations without some explicit encoding. Furthermore,
since an automaton can neither move from one node to another nor transmit an automaton
to be executed at the other node, it is not possible to directly model mobile computation
using the I/O automata model.



8.3. MOBILE UNITY 171

8.3 Mobile UNITY

Mobile UNITY [RMP97] is an extension of UNITY [CM88] to address the problem of mod-
elling dynamically reconfiguring distributed systems and disconnections of their components.
Additionally, it attempts to address design issues raised by mobile computing (in particular,
device mobility — see Section 1.1), due to the characteristic of the wireless connection and
the nature of application and services that will be demanded by users of the new technologies.
Three such issues are decoupling, the ability of application to run while disconnected from
or weakly connected to servers; context dependencies, the fact that application behaviour
might depend on the totality of the concurrent context, including the current location and
the nearness of other components; and location transparency provided by some distributed
infrastructure such as Mobile IP. Mobile UNITY has been used in an exercise involving the
specification and verification of Mobile IP [MR99], and in modelling various forms of program
mobility [PRM97].

Chandy and Misra’s UNITY model [CM88] is based on automata that interact via shared
variables instead of shared actions. In UNITY, a system may consists of several programs
which share identically named variables. Each program consists of three sections: a declare,
an initially and an assign section. The declare and initially define variable types and
the initial program conditions (eg. the initial values of program variables). The assign sec-
tion is simply sets of assignment statements which execute atomically and are selected for
execution in a weakly fair manner, ie. in an infinite computation each statement is sched-
uled for execution infinitely often. Mobile UNITY model extends statement constructs with
transaction, inhibitor and reactive statements. A transaction provides a form of sequential
execution without intervention of any other statements from the same program. It is of the
form l :: 〈s1; . . . ; sn〉, where each si is an assignment statement, and l is the (optional) la-
bel of such a statement. An inhibitor inhibit n when p prevents the statement labelled n

from execution whenever the predicate p holds. Finally, a reactive statement s reacts−to p

behaves as a while statement (ie. if the predicate p holds, the statement s is repeatedly
executed until p is falsified). Additionally, a reactive statement has a higher priority than
other non-reactive statements in the program (ie. all the reactive statements must finish
their execution before any other statement may proceed).

To model concurrent systems that contain dynamically reconfiguring components, Mobile
UNITY considers each program a unit of mobility, which is accommodated by attaching a
distinguished location variable to each program. This location variable, conventionally λ,
provides both location awareness and location control to the individual program. There is
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no restriction on the type of location variable λ, it can therefore be discrete or continuous,
single- or multi-dimensional, or it might correspond to latitude and longitude for a physically
mobile platform, or it may be a network or memory address for a mobile agent. Movement
of a program between locations (under its own control or not), is modelled by assignment of
new values to the variable modelling its location. This can be interpreted as actual physical
movement in the systems where agents are capable of moving, or, in a system of mobile
agents, the execution of this assignment would have the effect of migrating an agent to a new
site. Note that λ may also appear on the right-hand side of some assignment statements if
there is any location-dependent behaviour internal to the program.

A Mobile UNITY system can be declared by giving the programs of its components (together
with their initial locations), and specifying how such programs interact in an Interactions

section. Programs may interact when they are in close proximity. In the most primitive form,
an “interaction” may happen if one program accesses variables of another program which is at
the same location. Sophisticated forms of interactions are achieved by two novel constructs:
transient variable sharing and transient action synchronisation, which can be expressed as
syntactic sugar of more primitive Mobile UNITY constructs. The former construct allows a
variable owned by one program to be shared in a transparent manner with different programs
at different times depending upon their relative locations in space. The latter construct allows
a statement owned by one program to be executed in parallel with statements owned by other
programs when certain spatial conditions are met.

Verification and Proof Methods Rather than dealing with execution sequences (as in
the process calculi and the I/O automata model), the formal semantics of UNITY is given
in terms of program properties that can be deduced from the text. Program properties may
be stated and may be verified using the Mobile UNITY proof logic. Basic safety (expressed
as unless or co) and liveness (expressed as ensures) properties are proven by quantifying
over the state predicates, each of which can be constructed from variable names, constants,
mathematical operators, and standard boolean connectives. Informally, p co q means that
if the program is in a state satisfying p then the next state after any assignment is executed
must satisfy q; transient p means that there exists any assignment whose execution falsifies
the predicate p. The formal definitions of these two constructs can be expressed in first order
logic and together with Hoare-triple notion {p}s{q} [Hoa69]; here we omit these definitions.
Using these notations and proof logic, the correctness of programs using mobile code can be
verified (see some examples in [PRM97]).

The proof rules of Mobile UNITY are developed from those of UNITY. The new constructs
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(reactive, inhibitor and transaction statements) requires redefinition of the basic notion of
transition. Proofs of properties of UNITY programs can be mechanised using tools such
as HOL-UNITY [FKJ93], Coq-UNITY [HC96] and Isabelle [Pau99]. The authors of Mobile
UNITY have not mentioned the possibility of using these tools to mechanise proofs of Mobile
UNITY program properties.

Lime Lime (Linda in a Mobile Environment) [PMR99] is a system designed to assist in the
rapid development of dependable mobile application over both wired and ad-hoc networks. It
is an extension of Linda [Gel85] to a mobile environment. In Linda, coordination is achieved
through a tuple space. Components can access the tuple space by inserting, reading, or with-
drawing tuples containing information — independently of their actual location, The model
intrinsically provides both spatial and temporal decoupling, making it a suitable candidate
for a programming language whose formal semantics can be based on Mobile UNITY.

In the model underlying Lime, mobile agents are programs that can move between mobile
hosts, which may also move in the network. Tuple spaces are permanently bound to mobile
agents and mobile hosts. These can be (transiently) shared when agents or hosts are co-
located. Operations on tuples are location-aware, allowing programmers to specify the tuple
space of an agent in which a tuple t shall be inserted into or removed from.

Since Lime deals both with movements of programs as well as of physical machines, the
technical issues involved in its development are highly complex. A prototype of Lime, building
upon IBM’s T-Space [WMLF98], remains under development.

Discussion It is difficult to compare the Mobile UNITY model with process calculi, for
their style and verification techniques differ greatly. Interaction between Mobile UNITY pro-
grams, for instance, is based on transient sharing of variables when “agents” are in proximity,
whereas in the π-calculus, interaction is based on message passing. The biggest differences
between the two models is perhaps the style of semantics: the axiomatic style of Mobile
UNITY model and the operational style of the process calculi. Owing to their axiomatic
semantics, properties of Mobile UNITY programs can be more concise than those for pro-
cess calculi; and therefore can be easier to grasp as well as to prove. In general, however,
axiomatic semantics, although easier to define mathematically, can abstract away too many
details, making it harder to confirm that such a definition corresponds to one’s intuition (eg.
it is not clear how Mobile UNITY systems interact with users via I/O devices). This is less
problematic for an operational semantics, since any of its rule obviously expresses a trans-
formation of a particular program state (or process). A drawback of working with program
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states is that it is harder to grasp high-level descriptions, eg. program invariants.

Comparing the expressiveness of the two models is also difficult, although we may note that
in Mobile UNITY the set of components making up a system is fixed, whereas in most
variants of distributed π-calculus, agents can be dynamically created. On the other hand,
the Mobile UNITY model takes into account disconnected operations and other aspects
relating to mobile-device networks, which remains largely unaddressed in the process calculi
community.



Chapter 9

Conclusions and Future Work

In this chapter we summarise the work done within this thesis and its contribution to com-
puter science. We conclude with some discussion of future work.

9.1 Summary

Wojciechowski and Sewell [WS99, Woj00a] have shown that Nomadic π-calculi can form a
basis for a distributed programming language design. Furthermore its two-level architecture
allows the distributed infrastructure algorithms to be expressed concisely and precisely as
translations from high-level to low-level Nomadic π-calculi. In this thesis, we turned to the
problem of how such infrastructures can be verified. We have rigorously developed the No-
madic π-calculi (starting from [SWP99] which gave only a preliminary syntax and reduction
semantics), giving it a type system, a labelled transition semantics, operational relations and
proof techniques. This development allowed us to state and prove the correctness of infras-
tructures — as a substantial example, we proved that a central-forwarding-server algorithm
is correct w.r.t. coupled simulation.

Many of the semantic theories and proof techniques developed are drawn from those of
process calculi, adapted to the distributed setting with mobile agents. The techniques we
adapted are: input/output subtyping [PS96], coupled simulation [PS92], uniform receptive-
ness [San99], techniques of bisimulation “up to” [SM92], and the strategies employed in Nest-
mann’s correctness proofs of choice encodings [Nes96, NP96]. Adapting these techniques was
non-trivial, for the new notions and primitives often introduced unexpected difficulties. For
example, as discussed in Sections 6.2.2-6.2.3, although in the π-calculus access restrictions
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are sufficient for deriving an expansion from a functional step (Lemma 6.2.3), to obtain
such a result in Nomadic π, we also needed uniform receptiveness. This is for dealing with
dynamically created agents, since they may introduce new function definitions.

We have also developed novel techniques for dealing with mobile agents, most notably translo-
cating equivalences and the technique of temporary immobility. The former extends the
standard definitions of operational equivalences so that they take into account spontaneous
movements of agents by the environment. This allows compositional reasoning to be applied
to proofs involving operational equivalences. The latter captures the intuition that while
an agent is waiting for an acknowledgement or a lock somewhere in the system, it may not
migrate. We made this precise and showed that a deterministic reduction, when placed in
parallel with a temporarily immobile process, gives rise to an expansion. Furthermore, we
developed a technique (akin to the technique of “up to” equivalence) for proving processes
temporarily immobile. We illustrated such a technique by showing the temporary immobility
of agents in various states of the C-encoding.

The actual proof of correctness of the example infrastructure was non-trivial. Despite the
simplicity of the algorithm employed, many τ -steps are introduced by the encoding, inducing
a large number of intermediate states. This makes it impossible to transcribe a direct oper-
ational equivalence relation between the source program and its encoding. Here we adopted
Nestmann’s strategy (cited above) of introducing an intermediate language which helps man-
age the additional τ -steps. The definition of such a language is more complex than that of
Nestmann, as our encoding is non-uniform; it therefore requires the states of all agents (as
well as that of the daemon) to be included in the syntax.

The current correctness statement does not take divergence into account, but we believe this
could be easily addressed.

9.2 Future Work

There are many directions in which the work done in this thesis can be developed and applied
further.

Proving other infrastructures Despite its simplicity, the example infrastructure employs
several programming techniques commonly used in designing distributed algorithms, such
as locking and synchronisation. In this thesis, we have devised some semantic and proof
techniques which are demonstrably capable of handling those programming techniques, at
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least in a simple algorithm. We believe that more sophisticated algorithms can be dealt with
using the same techniques, albeit with new intermediate languages (tailored to particular
algorithms).

To support this point, we have sketched an intermediate language for proving the correctness
of the forwarding-pointers infrastructure given in [SWP99]. The original encoding is first
modified, in the same way as our modified version of the central-forwarding server translation
in the cited work — adding types, using fresh channels for acknowledgements, and extending
the top-level translation to arbitrary located processes. The modified encoding and the sketch
of the intermediate language is given in Appendix A.

Types Although the type system given in Chapter 3 is sufficiently rich (with polymorphism
and subtyping) for expressing various distributed infrastructures, it can be improved further.
The Nomadic Pict language has a rich type system, inherited from Pict, which is useful
for programming distributed and mobile applications. To avoid meta-theoretic complexity
however, many typing features supported in Pict are not included in the type system of
this thesis — among features omitted are recursive types, dynamic types, variant types,
and extensible records. Recursive definitions requires recursive types — the omission of
such types therefore decreases the expressiveness of Nomadic π-calculi, for many algorithms
require recursive definitions. We deliberately avoided uses of recursion in the definition of
finite maps, given in Section 6.5, which results in an inefficient implementation in terms of
storage (for out-of-date entries are never garbage-collected). In general, however, uses of
recursion or recursive types are inevitable. Dynamic and variant types can also be useful
for programming, since they allow an agent to interact with another agent, even though the
type of the data exchanged cannot be determined at compile time.

Improvement of the existing type system could also provide some powerful proof techniques,
eg. by introducing typing features such as linear types [KPT96], uniform receptiveness
[San99], and sendability [YH99b]. Again to avoid meta-theoretic complexity, we replaced
these types by syntactic analysis (see Section 6.2). Inclusion of such features in the type
system would make the relevant lemmas simpler to state and prove. Furthermore, properties
such as “deliver is uniformly receptive in C [[LP ]]” could be obtained by typechecking alone.

Recently Igarashi and Kobayashi proposed a generic type system for the π-calculus [IK01],
where types and type environments are expressed as abstract processes. They also showed
that various non-trivial type systems (such as those for ensuring the absence of race conditions
and deadlock) can be obtained as instances of the generic type system by changing the
subtyping relation and the consistency condition. They also showed that several important
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properties (eg. the subject reduction) of these particular type systems can be obtained
independently of the instantiated conditions. Adapting the generic type system to Nomadic
π-calculi could offer many advantages. Firstly, such a system integrates many existing type
systems, including the typing features cited above, and is easy to extend. Secondly, expressing
types and type environments as abstract processes allows various properties of a process to
be checked by verifying the corresponding properties of its type environment. It would
be interesting to investigate whether, for example, the temporary immobility property of
processes can be verified in this way.

Proof techniques The semantic and proof techniques in this thesis can be developed fur-
ther so that properties are easier to state, prove, and reuse. Previously we suggest extending
the type system with linear types, uniform receptiveness and sendability. Another improve-
ment is extending the definition of operational equivalences and preorders to basic processes.
We naturally expect translocating equivalences for basic processes to be congruences, allowing
decomposition by other prefixes in addition to parallel composition and newnewnew-binders.

It is conceivable that modal logic [HM85] (see also brief description in Section 8.1.1 on
page 162) may play a major role in distributed infrastructure verification. Indeed the defini-
tion of temporary immobility could be given in terms of a modal logic, and proofs of processes
being temporarily immobile could be derived using logical rules. Modal logic may also be
required for stating robustness properties, for example, “provided that such and such ma-
chines do not fail simultaneously, this infrastructure correctly provides location-independent
communication”. There are several known difficulties though; most important of all is the
problem of compositionality: how can the temporal properties of a process P |Q be inferred,
automatically or manually from those of its components P and Q. Many solutions have been
proposed, although one of the most promising is the approach of Dam applied to the CCS
[Dam95], the π-calculus without restriction [AD94], and the finite state π-processes [Dam01].
Further research is required to fully apply this approach to Nomadic π-calculi.

Automated verification All the lemmas in this thesis have been verified by hand. This
is feasible since the verified algorithm is not too complex. Realistic algorithms, however, are
likely to be much more complex, with more states — to prove these algorithms correct, we
need some automated tools. Many such tools for process calculi exist (see an overview in
Section 8.1.1 on page 162), but most can only be used for verifying finite state processes
(ie. those which do not admit parallel composition within recursively defined processes or
replicated processes). Distributed infrastructures and applications, however, are unlikely to
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be finite state (since services in wide-area networks are generally persistent); this means that
these tools cannot be used for verifying infrastructures.

It is also perhaps impossible for a machine to decide what kind of intermediate language is
suitable for a particular algorithm, and to analyse (potentially infinite) transition sequences.
Our experience, however, shows that many part of the correctness proof — especially the
proof that an intermediate language term is related by an expansion to its image in the
source language — involves simplifying a complex process by series of conditional rewriting
(ie. by substituting its subprocesses by simpler subprocesses, which are related to them by
expansions whenever some conditions are met). An alternative is therefore to treat verified
results of our proof techniques as rewriting axioms. For example, a process @b〈b@s〉c!!!v can
be substituted with @bc!!!v whenever it is placed in the context where the agent b is located
at s, and b is temporarily immobile such a context — the result of this rewriting is expanded
by the original process (by Lemma 6.4.2). These “rewriting axioms” can be verified by hand
since their proofs are generally not too complex. By embedding such rewriting axioms in a
theorem-prover, the proofs of complex results (such as those similar to Lemma 7.3.5) could
be partly done automatically. Furthermore, the theorem-prover could help managing the
complex premises involved in such rewriting.

Observational characteristics The correctness result poses a problem: how can we be
sure that the operational relation chosen for the correctness statement is appropriate? In
[Sew97], Sewell considered an example application of the π-calculus, and investigated how
far it is possible to argue, from facts about the application, that some model of process
algebra is the most appropriate. This involved defining a notion of observation that can
be seen to be appropriate for the programming language Pict. Such a notion takes into
account the interactions between an actual Pict implementation and a user, together with
their relationship to the structured operational semantics.

Similar investigation could be conducted for applications of the Nomadic π-calculi. The
interactions between a Nomadic Pict implementation and users could be more complex, since
users as well as programs can be distributed over the network. We have briefly discussed
how users and agents interact in Section 5.4.2; such a discussion, however, did not address
many considerations such as termination, divergence, and fairness.

Security In this thesis, the high-level calculus supports location-independent communica-
tion between agents. We may also consider other high-level primitives such as group commu-
nication, multicast, join-style communication, structured migration and secured inter-agent
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communication. Security in particular has been a major concern for the use of mobile agents.
A number of research has emerged during the recent years on adding some notions of security
to process calculi [AG97, CG98, RH99, VC99, SV99, AF01]. Nomadic π contains no such
notions. To the low-level calculus, we may add cryptographic primitives (as in the Spi cal-
culus [AG97]), allowing definitions of infrastructures which provide secured communication
(see also [AFG98]); or we may add some notion of trust [RH99] to the type system, allowing
eg. uses of private resources to be prevented from malicious ’untrusted’ agents.

Failure semantics To express and reason about distributed infrastructures which are ro-
bust under some form of failure, or to support disconnected operations, new primitives for
detecting possible failure are required. Wojciechowski et al. [WS99, Woj00a] added a single
timed input primitive with timeout value n, written

waitwaitwait c???p→P, n→Q

to the low-level calculus. The informal semantics of this is that: if a message on channel c

is received within n seconds then P will be started as in a normal input, otherwise Q will
be. The timing is approximate as the runtime system may introduced some delays. The
operational semantics of this requires the existing configuration to be extended with a global
time UTC (Coordinated Universal Time) t, and a primitive waitwaitwaitt c???p→P,Q. We quote the
reduction rules (from [Woj00a]) below.

Γ, t, @awaitwaitwait c???p→P, n→Q → Γ, t + 1, @awaitwaitwaitt+n c???p→P,Q

Γ, t, @awaitwaitwaittn c???p→P,Q → Γ, t, @aQ if t ≥ tn

Γ, t, @ac!!!v | waitwaitwaittn c???p→P,Q → Γ, t + 1, @amatch(p, v)P

The use of timeout primitive requires no particular infrastructure and can therefore be (and
has been) implemented. Some other models, such as the π1l [AP94] and the distributed
join calculus [FGL+96], support reliable failure detectors, allowing programmers to detect
location or site failures and take some action. It has been shown [FLP85], however, that
distributed consensus (such as agreeing on which sites have failed) cannot be achieved in a
system consisting of a collection of asynchronous processes. In practice, a good approximation
can be achieved [CT96], but the algorithms required can be costly and hard to reason about.

Reasoning about failures and disconnected operations using this timeout primitive poses
many challenges: for example, how do we state robustness properties, how do we handle
time in the labelled transition semantics and operational equivalences, and how do we de-
fine operational equivalences which are congruences in this setting. The QSCD algorithm
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[Woj00a], which supports disconnected operations, may serve as a good starting point for
further research in this area.

9.3 Conclusion

We have demonstrated that expressing infrastructure algorithms in Nomadic π-calculi offers
three advantages. Firstly, the representations of the algorithms are concise, for concurrency,
asynchronous message passing and name generation are primitives of the calculi. Secondly,
the informal description of the calculi and of the algorithms are precisely captured by the
operational semantics of the calculi. Moreover, the operational semantics can be used for
formal reasoning. Finally, such algorithms, as well as applications written in Nomadic π, can
be rapidly prototyped using the Nomadic Pict language.

For many, the Internet (and wide-area networks in general) is becoming an indispensable part
of everyday life. Many technologies for wide-area distributed systems are emerging for coping
with the ever-increasing demand for novel network applications and services. Apart from
the mobile agent technology addressed in this thesis, other technologies, such as ubiquitous
computing [Wei93], ad-hoc wireless networks [Gro], and active networks [TSS+97], have been
recognised as promising. They have been widely studied and deployed. As demonstrated in
this thesis, formal semantics does not only enhance our understanding of complex network
technology, but can also give us some confidence in its correctness and reliability. We hope
this thesis contributes to the view that rich network technologies should be built upon strong
semantic foundations.
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Appendix A

A Forwarding-Pointers

Infrastructure Translation

In this appendix, we give a forwarding-pointers infrastructure based on the definition given
in [SWP99], slightly modified with exact types and fresh acknowledgements. These added
type annotations have been checked with the Nomadic Pict type checker (although this does
not check the static/mobile subtyping). This algorithm is more distributed than the central-
forwarding-server algorithm, since it employs daemons on each site for maintaining chains of
forwarding pointers for agents which have migrated. We describe a sketch of an intermediate
language which could be used for proving this infrastructure correct. The reader may refer
to [SWP99] for detailed explanation of the algorithm.

The daemons are implemented as static agents; the translation FPΦ [[LP ]] of a located process
LP = newnewnew ∆ ininin @a1P1 | . . . | @anPn, well-typed w.r.t. Φ, then consists roughly of the daemon
agent at each site in parallel with a compositional translation [[Pi]]ai

of each source agent.
Assuming distinct s1, . . . , sm are all the sites in Φ, we define FPΦ [[LP ]] as follows:

newnewnew register, migrating : ^̂̂rw[Agents ^̂̂w[]],
migrated : ^̂̂rw[Agents [Site Agents] ^̂̂w[]],
message : ^̂̂rw {|X|} [[Agents Site Agents] ^̂̂wX X],
currentloc : ^̂̂rw[Site Agents], lock : ^̂̂rwMap[Agents ^̂̂rw[Site Agents]]
D1 : Agents@s1, . . . , Dm : Agents@sm

ininin

@D1(Daemons1 | lock!!!map) | . . . | @Dm(Daemonsm | lock!!!map)
| @a1 [[P1]]a1

| . . . | @an [[Pn]]an

183
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Daemons
def= letletlet [S DS] = s ininin

***register???[B rack]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[ ]→
Bstate!!![S DS] | lock!!!m | 〈B〉rack!!![]

notfoundnotfoundnotfound→
newnewnew Bstate : ^̂̂rw[Site Agents] ininin
Bstate!!![S DS] | 〈B〉rack!!![]
| letletlet[Agents [Site Agents]] m′ = (m withwithwith B 7→ BState) ininin
lock!!!m′

| ***migrating???[B mack]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[ ]→(lock!!!m | 〈B〉mack!!![])

notfoundnotfoundnotfound→000
| ***migrated???[B [U DU ] ack]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[ ]→(lock!!!m | 〈B@U〉ack!!![] | Bstate!!![U DU ])

notfoundnotfoundnotfound→000
| ***message??? {|X|} [[B U DU ] c v]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[R DR]→lock!!!m

| iflocaliflocaliflocal 〈B〉c!!!v thenthenthen Bstate!!![R DR]
elseelseelse 〈DR@R〉message!!! {|X|} [[B U DU ] c v]
| Bstate!!![R DR]

notfoundnotfoundnotfound→lock!!!m

| 〈DU@U〉message!!! {|X|} [[B U DU ] c v]

Figure A.1: Forwarding-pointer: the local daemon
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[[〈b@?〉c!!!v]]a
def= currentloc???[S DS]→

〈D@SD〉message!!! {|T |} [b c v]
| currentloc!!![S DS]

[[
createcreatecreateZ b = P ininin Q

]]
a

def= currentloc???[S DS]→
newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
createcreatecreateZ B =
letletlet b = [B S DS] ininin
〈D@SD〉register!!![B rack]
| rack???[]→iflocaliflocaliflocal 〈a〉pack!!![] thenthenthen

currentloc!!![S DS] | [[P ]]b
ininin

letletlet b = [B S DS] ininin
pack???[]→currentloc!!![S DS] | [[Q]]a

[[migrate tomigrate tomigrate to s → P ]]a
def= currentloc???[S DS]→

letletlet [U DU ] = s ininin

ififif [S DS] = [U DU ] thenthenthen

currentloc!!![U DU ]
elseelseelse

newnewnew mack : ^̂̂rw[] ininin
〈D@SD〉migrating!!![a mack]
| mack???[migrated]→
migrate tomigrate tomigrate to s →
newnewnew ack : ^̂̂rw[] ininin
〈DU@U〉migrated!!![a [U DU ] ack]
| ack???[]→currentloc!!!s | [[P ]]a

[[iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q]]a
def= letletlet [B ] = b ininin

iflocaliflocaliflocal 〈B〉c!!!v thenthenthen [[P ]]a elseelseelse [[Q]]a

Figure A.2: Forwarding-pointer: the compositional encoding (selected clauses)
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where map is a map such that map(a) = [sj Dj ] if Φ, ∆ ` a@sj .1 The body of the daemon
and selected clauses of the compositional translations are shown in Figures A.1 and A.2.

A.1 Sketch of Intermediate Language

In this section, we sketch an intermediate language that could be used for proving the cor-
rectness of the above encoding.

In this encoding, the lock- and currentloc-acquisition steps remain partial commitment
steps, since they introduce internal choice. Acquisition of Bstate, the lock of an agent b at
the daemon, is also a partial commitment step since there can be many message-forwarding
requests to b (each of which first tries to acquire the lock Bstate). The syntax of the
intermediate of this encoding may be as follows:

Sys ::= eProg(∆; D; A)

As in the intermediate language of the C-encoding, ∆ is the top-level declarations. However,
the state of the daemons D is now a map, mapping each site s to a tuple [mesgQ fs],
where mesgQ is a queue of message-forwarding requests and fs corresponds to the site map
maintained by the daemon at s. The site map fs is a partial function, mapping each agent a

(that is or was at s) to a tuple [S DS] where DS, located at S, is the daemon where messages
to a should be forwarded to. The example below shows the state of two daemons, DS1 and
DS2. The daemon DS1 is at site S1, and contains message queue mesgQ1, similarly for DS2.
The site map of DS1 indicates that an agent a1 is at the same site as DS1, and that messages
for an agent a2 should be forwarded to the daemon DS2 at site S2. The site map of DS2

only have a record of a single agent, a2, which is indicated to be at the same site as DS2.

S1 7→ [mesgQ1 (a1 7→ [S1 DS1], a2 7→ [S2 DS2])], S2 7→ [mesgQ2 (a2 7→ [S2 DS2])]

The agent state A is also a map, mapping each agent a to its state [P E]. The pending
state E of each agent, however, is more complicated than in the C-encoding, since the FP -
encoding introduces many more partial-commitment steps to creation, migration and LI
outputs. Two partially-committed steps are introduced for each creation, corresponding in
the target level to the parent acquiring currentloc, and the registration request acquiring
lock at the local daemon. 2 ∗ n + 1 steps are introduced for each LI message, where n is the

1In fact the map of each daemon may take different value, provided that the total view of the maps satisfies

Eq. A.1.
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number of forwarding pointers the message has to follow, corresponding in the target level to
the sender acquiring currentloc, the message-forwarding request acquiring lock at the local
daemon, and the request acquiring Bstate of the target agent — the latter two operations
are repeated n times. Seven for each migration of an agent a, corresponding in the target
level to a acquiring currentloc, then the migrating-request acquiring lock at the local
daemon; such a request then acquires Bstate of a, a performs a migration, a (re)registers
to the daemon at the new site — acquiring lock and possibly Bstate at such a site; and
a leaves a forwarding pointer to the daemon of its previous site — acquiring lock). The
rest of the additional τ -steps are housekeeping steps, which can be abstracted away in the
intermediate language. The syntax of pending states is therefore as follows:

E ::= FreeA(s) | RegAreg(b Z s P Q) | MtingAmig(s P )

where reg and mig are integers ranging from 1 to 2 and to 4, respectively — such num-
bers denoting the partially committed step the agent is currently in w.r.t. registration, and
migration.

The message-forwarding operation in this case is clearly more complex than that of the C-
encoding. We denote a message-forwarding request as MesgAmes(b c v), with b being the
target agent for the output c!!!v. When following a chain of pointers, this request may move
from one daemon to another. The typing rule of this intermediate language must make sure
that the chain of pointers induced by D eventually terminates at the correct destination, ie.
if Φ, ∆ ` a@s then, for each site s′, the following holds

D(s′)(a) = [s1 D1] ⇒ ∃ distinct s2, . . . , sk . D(sk)(a) = [s D] ∧
∀1 ≤ j < k . D(sj)(a) = [sj+1 Dj+1]

(A.1)

The integer mes denotes the partially-committed state this request is currently in at the
daemon in which this request resides and may take a value of 1 or 2.

The exact syntax, typing rules and the labelled transition rules for this new intermediate
language remain future work.
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Appendix B

Meta-Theoretic Results

In this section, we may refer to an arbitrary name binding in a located type context as
x : T@z, where @z ranges over optional location annotations, which are of the form @s when
attached to agent type and empty otherwise.

B.1 Structural Congruence and the Type System

Lemma B.1.1 (Type context permutation)

If dom(∆)∩dom(Ξ) = ∅, range(∆)∩dom(Ξ) = ∅ and range(Ξ)∩dom(∆) = ∅ then Γ, ∆, Ξ, Θ ≡
Γ, Ξ, ∆, Θ.

Proof: An induction on the syntax of ∆ and Ξ. �

Lemma B.1.2 (Relocation preserves typing)

If Γ ` LP then, for any relocators δ valid for Γ, Γδ ` LP .

Lemma B.1.3 (Typing and free names)

1. If Γ ` T then fv(T ) ⊆ dom(Γ).

2. If Γ ` e ∈ T then fv(e) ⊆ dom(Γ).

3. If Γ ` p ∈ T . ∆ then fv(p) = dom(∆).

4. If Γ `a P then fv(P ) ∪ {a} ⊆ dom(Γ).

5. If Γ ` LP then fv(LP ) ⊆ dom(Γ).

189
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Proof: A routine induction on type derivation for each judgement form. The only inter-
esting case seems to be for patterns. The proof of the lemma for the pattern case is given
below.

Base Case (Pat-Var): In this case, Γ ` x ∈ T . x : T , we have: ` Γ and Γ ` T , by
(Pat-Var). fv(p) = x. dom(∆) = x. Thus true for this case.

Base Case (Pat-Wild): In this case, Γ ` ∈ T . •, we have: ` Γ and Γ ` T , by
(Pat-Wild). fv(p) = ∅. dom(∆) = ∅. Thus true for this case.

Inductive Case (Pat-Exist): In this case, Γ ` {|X|} p ∈ {|X|}T . X, ∆, we have: Γ, X `
p ∈ T . ∆ and X 6∈ dom(Γ), by (Pat-Exist). fv({|X|} p) = {X} ∪ fv(p). dom(X, ∆) =
{X} ∪ dom(∆). By the induction hypothesis, fv(p) = dom(∆). Thus true for this case.

Inductive Case (Pat-Tuple): In this case, Γ ` p = [p1 . . . pn] ∈ [T1 . . . Tn] . ∆1, . . . , ∆n,
we have: Γ ` pi ∈ Ti . ∆i for all 1 ≤ i ≤ n, by (Pat-Tuple). fv(p) = fv(p1) ∪ . . . ∪ fv(pn).
dom(∆) = dom(∆1)∪ . . .∪ dom(∆n). By the induction hypothesis, fv(pi) = dom(∆i). Thus
true for this case.

Therefore Lemma B.1.3(3) is proved by induction. �

Lemma B.1.4

Γ ` p ∈ T2 . Θ2 and Γ ` T1 ≤ T2 then there exists Θ1 such that Γ `∈ p ` T1 . Θ1.

Proof: An induction on the derivation of Γ ` p ∈ T2 . Θ2. �

Lemma B.1.5

Given that Γ ` p ∈ T1 . Θ1, Γ ` p ∈ T2 . Θ2, and Γ ` T1 ≤ T2, if σ : fv(p) → dom(Γ) is
type-preserving w.r.t. Γ, Θ1 then σ is type-preserving w.r.t. Γ, Θ2.

Proof: An induction on the derivation of Γ ` p ∈ T1 . Θ1. �

Lemma B.1.6

Given that Γ ` S, we have:

• ` Γ, X, Ξ implies ` Γ, {S/X}Ξ;

• Γ, X, Ξ ` e ∈ T implies Γ, {S/X}Ξ ` e ∈ {S/X}T ; and

• Γ, X ` p ∈ T . Ξ implies Γ ` p ∈ {S/X}T . {S/X}Ξ.

Proof: Routine inductions on typing derivation of ` (Γ, X, Ξ), of (Γ, X, Ξ) ` e ∈ T , and of
Γ, X ` p ∈ T . Ξ. �
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Lemma B.1.7

Given that X 6∈ dom(σ), if σ : dom(Ξ) → dom(Γ) is type-preserving w.r.t. Γ, {T/X}Ξ then
(σ + X 7→ T ) is type-preserving w.r.t. Γ, X, Ξ.

Proof: Supposing x ∈ dom(Γ, X, Ξ) and Γ, X, Ξ ` x ∈ S. By Lemma B.1.6, we have:
Γ, {T/X}Ξ ` x ∈ {T/X}S. σ is type-preserving w.r.t. Γ, {T/X}Ξ implies Γ, {T/X}Ξ `
(σ + X 7→ T )x ∈ (σ + X 7→ T )S. σ : dom(Ξ) → dom(Γ) implies Γ ` (σ + X 7→ T )x ∈
(σ + X 7→ T )S, by Lemma 3.7.2.

Similar derivation can be given for type variables in Γ, X, Ξ. Hence the lemma. �

Lemma B.1.8 (Ground type context ensures matching is type-preserving (3.8.3))

Given that Γ is a ground located type context, if Γ ` v ∈ S and Γ ` p ∈ S . Ξ then
match(p, v) is defined, and is a type-preserving substitution w.r.t. Γ, Ξ.

Proof: The proof of this result uses an induction on typing derivations of Γ ` v ∈ S. We
demonstrate three interesting cases below.

Case (Var-Id): Supposing Γ ` v ∈ S is derived using only the rule (Var-In). Γ is ground
implies v is not a tuple or an existential package. This means that Γ ` p ∈ S . Ξ must
be derived by either (Pat-Var) or (Pat-Wild). Case (Pat-Wild) is trivial. Supposing
p = z, we have Ξ = z : S, by (Pat-Var). In this case, match(p, v) = {v/z}, which is clearly
type-preserving w.r.t. Γ, Ξ. Thus the lemma is true for this case.

Case (Expr-Sub): Supposing (Expr-Sub) is used last in deriving Γ ` v ∈ S. There exists
T such that Γ ` v ∈ T and Γ ` T ≤ S. Γ ` p ∈ S . Ξ implies there exists Ξ′ such that
Γ ` p ∈ T . Ξ′, by Lemma B.1.4. By the induction hypothesis, we have match(p, v) is
defined and is type-preserving w.r.t. Γ, Ξ′. By Lemma B.1.5, match(p, v) is defined and is
type-preserving w.r.t. Γ, Ξ. Thus the lemma is true for this case.

Case (Expr-Exist): Supposing (Expr-Exist) is used last in deriving Γ ` v ∈ S. There
exists X, S′, T, v′ such that, v = {|T |} v′, S = {|X|}S′, Γ ` v′ ∈ {T/X}S′, Γ, X ` S′ and Γ ` T .

• There exists p′, Ξ′ such that p = {|X|} p′, Γ, X ` p′ ∈ S′ . Ξ′ and Ξ = X, Ξ′, by
(Pat-Exist).

• {T/X} is a type-preserving substitution w.r.t. Γ, X.

• Γ ` p′ ∈ {T/X}S′ . {T/X}Ξ′, by Lemma B.1.6, and Lemma 3.7.2.

• match(p′, v′) is defined and is type-preserving w.r.t. Γ, {T/X}Ξ′, by the induction hy-
pothesis.
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• match(p, v) is defined and is type-preserving w.r.t. Γ, X, Ξ′, by Lemma B.1.7.

Thus the lemma is true for this case. �

Lemma B.1.9 (Substitutions preserves typing)

Given a ground located type context Γ, if Γ ` p ∈ T . Θ, (Γ, Θ) `a P , Γ, ∆ ` v ∈ T , ∆ is
extensible, and a ∈ dom(Γ) then Γ, ∆ `a match(p, v) P .

Proof: Assuming that p is fresh (ie. dom(p) = fv(Θ) ∩ dom(∆) = ∅), and Γ, Θ `a P , we
have:

• Γ, ρΘ `a ρP , by Lemma 3.8.1, where ρ is an injection such that ρ : dom(Θ) →
X/dom(Γ, ∆).

• Γ, ∆, ρΘ `a ρP , by Lemma 3.7.2.

• match(ρp, v) is defined, and is type-preserving w.r.t. Γ, ∆, ρΘ, Lemma 3.8.3. We observe
that match(p, v) : dom(ρΘ) → dom(Γ, ∆).

• Γ, ∆, ρΘ `a match(ρp, v)(ρP ), by Lemma 3.8.2. Note that match(ρp, v)a = a, since
a ∈ dom(Γ).

• Γ, ∆ `a match(ρp, v)ρP , by Lemma 3.7.2.

• Applying the substitution ρ−1 to the previous result, we obtain Γ, ∆ `a match(p, v)P ,
by Lemma 3.8.1.

Hence the lemma. �

B.2 Operational Semantics

Lemma B.2.1 (Transitions preserve free names)

1. If Γ 
a P
α−→
∆

LP then either:

(a) α = c???v and {c} ⊆ fv(P ) with fv(LP ) ⊆ fv(P )∪fv(v)∪{a} and fv(v) ⊆ dom(Γ, ∆);
or

(b) fv(α) ⊆ fv(P ) and fv(LP ) ⊆ fv(P ) ∪ {a} ∪ dom(∆).

Moreover, range(∆) ∩ dom(Γ) = ∅.

2. If Γ 
 LP
β−→
∆

LQ then either:
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(a) β = @ac???v and {a, c} ⊆ fv(LP ) with fv(LQ) ⊆ fv(LP ) ∪ fv(v) and fv(v) ⊆
dom(Γ, ∆); or

(b) fv(β) ⊆ fv(LP ) and fv(LQ) ⊆ fv(LP ) ∪ dom(∆).

Moreover, range(∆) ∩ dom(Γ) = ∅.

Proof: Routine inductions on the derivation of Γ 
a P
α−→
∆

LP , and of Γ 
 LP
β−→
∆

LQ. �

Lemma B.2.2 (Type context permutation preserves transition)

If Γ 
 LP
β−→
Ξ

LQ and ∆ ≡ Γ then ∆ 
 LP
β−→
Ξ

LQ.

Proof: A routine induction on the derivation of Γ 
 LP
β−→
Ξ

LQ. �

Lemma B.2.3 (Transition analysis)

1. Γ 
a P |Q α−→
∆

LP iff one of the following (or symmetric cases) holds.

(a) There exists LP ′ such that Γ 
a P
α−→
∆

LP ′ and LP ≡ LP ′|@aQ.

(b) There exists c, v, ∆, LP ′, LQ′ such that Γ 
a P
c!!!v−−→
∆

LP ′, Γ 
a Q
c???v−−→
∆

LQ′ and

LP ≡ newnewnew ∆ ininin LP ′|LQ′.

2. Γ 
a newnewnew Θ ininin P
α−→
∆

LP iff one of the following (or symmetric cases) holds.

(a) There exists LP ′ and an injection σ : dom(Θ) → X/dom(Γ, ∆) such that
Γ, σΘ 
a P

α−→
∆

LP ′ and LP ≡ newnewnew σΘ ininin LP ′.

(b) There exists c, v, Θ1, Θ2, LP ′ such that α = c!!!v, Θ ≡ Θ1, Θ2, dom(Θ) ∩ fv(v) =
dom(Θ1), Γ, Θ 
a P

@ac!!!v−−−−→
∆/Θ1

LP ′ and LP ≡ newnewnew Θ2 ininin LP ′.

3. Γ 
 LP |LQ
β−→
∆

LR iff one of the following (or symmetric cases) holds.

(a) There exists LP ′ such that Γ 
 LP
β−→
∆

LP ′ and LR ≡ LP ′|LQ.

(b) There exists a, c, v, ∆, LP ′, LQ′ such that Γ 
 LP
@ac!!!v−−−−→

∆
LP ′, Γ 
 LQ

@ac???v−−−−→
∆

LQ′

and LR ≡ newnewnew ∆ ininin LP ′|LQ′.

4. Γ 
 newnewnew Θ ininin LP
β−→
∆

LQ iff one of the following (or symmetric cases) holds.

(a) There exists LP ′ and an injection σ : dom(Θ) → X/dom(Γ, ∆) such that
Γ, σΘ 
 LP

β−→
∆

LP ′ and LQ ≡ newnewnew σΘ ininin LP ′.
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(b) β = τ and there exists a ∈ dom(Θ), s such that Γ, Θ 
 LP
@amigrate to s−−−−−−−−−→ LP ′ and

LQ ≡ newnewnew Θ⊕ a 7→ s ininin LP ′.

(c) There exists a, c, v, Θ1, Θ2, LP ′ such that β = @ac!!!v, Θ ≡ Θ1, Θ2, dom(Θ) ∩
fv(v) = dom(Θ1), Γ, Θ 
 LP

@ac!!!v−−−−→
∆/Θ1

LP ′ and LQ ≡ newnewnew Θ2 ininin LP ′.

Proof: Routine inductions on the transition derivation. �

Lemma B.2.4 (Injection preserves transition (4.5.7))

Given that ρ : dom(Γ) → X is injective and σ : dom(∆) → X is injective and range(ρ) ∩
range(σ) = ∅, we have:

1. if Γ 
a P
α−→
∆

LP then ρΓ 
ρa ρP
(ρ+σ)α−−−−→

σ∆
(ρ + σ)LP ; and

2. if Γ 
 LP
β−→
∆

LQ then ρΓ 
 ρLP
(ρ+σ)β−−−−→

σ∆
(ρ + σ)LQ.

Proof: Routine inductions on the transition derivation. We shall demonstrate a few inter-
esting cases here.

Base Case (Lts-In): Supposing Γ 
a c???p→P
c???v−−→
∆

@amatch(p, v)P , and (Lts-In) is used
last for deriving this transition. We may derive the following.

• By (Lts-In), we have Γ ` c ∈ ^̂̂rT , (Γ, ∆) ` v ∈ T , dom(∆) ⊆ fv(v) and ∆ extensible.

• By Lemma 3.8.1 (Type Inj), we have ρΓ ` ρc ∈ ^̂̂r(ρT ), (ρΓ, σ∆) ` (ρ + σ)v ∈ ρT .
Moreover, dom(σ∆) ⊆ fv((ρ + σ)v) and σ∆ is extensible.

• Pick an injection σ′ : fv(p) → X/(dom(Γ, ∆) ∪ range(σ + ρ)), by (Lts-In), we have:

ρΓ 
ρa ρc???(σ′p)→(ρ + σ′)P
(ρ+σ)(c???v)−−−−−−−→

σ∆
@ρamatch(σ′p, (ρ + σ)v)(ρ + σ′)P

• ρc???(pσ′)→(ρ + σ′)P α= ρc???p→ρP = ρ(c???p→P ).

• match(σ′p, (ρ + σ)v)((ρ + σ′)P ) α= match(p, (ρ + σ)v)(ρP ) = (ρ + σ)(match(p, v)P ).

Thus true for this case.

Inductive Case (Lts-Comm): Supposing (Lts-Comm) is used last in deriving

Γ 
 LP |LQ
τ−→ newnewnew ∆ ininin (LP ′|LQ′)

In this case, σ is an empty substitution. We may derive the following.

• Γ 
 LP
@ac!!!v−−−−→

∆
LP ′ and Γ 
 LQ

@ac???v−−−−→
∆

LQ′, for some a, c, v, by (Lts-Comm).
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• Pick an injection σ′ : dom(∆) → X/(dom(Γ) ∪ range(ρ)), by the induction hypothesis,
we have:

ρΓ 
 ρLP
(ρ+σ′)(@ac!!!v)−−−−−−−−−→

σ′∆
(ρ + σ′)LP ′ and

ρΓ 
 ρLQ
(ρ+σ′)(@ac???v)−−−−−−−−−→

σ′∆
(ρ + σ′)LQ′

• ρΓ 
 (ρLP )|(ρLQ) τ−→ newnewnew σ′∆ ininin ((ρ + σ′)LP ′)|((ρ + σ′)LQ′), by (Lts-Comm).

• newnewnew σ′∆ ininin ((ρ + σ′)LP ′)|((ρ + σ′)LQ′) α= ρ(newnewnew ∆ ininin (LP ′|LQ′)) and (ρLP )|(ρLQ) =
ρ(LP |LQ).

Thus true for this case.

Inductive Case (Lts-New): Supposing (Lts-New) is used last in deriving

Γ 
 newnewnew x : T@z ininin LP
β−→
∆

LQ

We may derive the following.

• Γ, x : T@z 
 LP
β−→
∆

LQ′, LQ = newnewnew x : T@z ininin LQ′ and x 6∈ fv(β), by (Lts-New).

• Pick a substitution σ′ : {x} → X/(dom(Γ, ∆)∪range(ρ, σ)), by the induction hypothesis,
we have:

(ρ + σ′)(Γ, x : T@z) 
 (ρ + σ′)LP
(ρ+σ+σ′)β−−−−−−−→

σ∆
(ρ + σ + σ′)LQ′

• By (Lts-New), we have:

ρΓ 
 newnewnew (ρ + σ′)(x : T@z) ininin (ρ + σ′)LP
(ρ+σ+σ′)β−−−−−−−→

σ∆
newnewnew (ρ + σ′)(x : T@z) ininin (ρ + σ + σ′)LQ′

• newnewnew (ρ + σ′)(x : T@z) ininin (ρ + σ′)LP
α= ρ(newnewnew x : T@z ininin LP )

• newnewnew (ρ + σ′)(x : T@z) ininin (ρ + σ + σ′)LQ′ α= (ρ + σ)(newnewnew x : T@z ininin LQ′).

Thus true for this case.

Inductive Case (Lts-Open): Supposing (Lts-Open) is used last in deriving

Γ 
 newnewnew x : T@z ininin LP
@ac!!!v−−−−−→

∆,x:T@z
LQ

We may derive the following.
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• Γ, x : T@z 
 LP
@ac!!!v−−−−→

∆
LQ and x ∈ fv(v), by (Lts-Open).

• Let ρ′ = ρ + σ′′, where σ′′ = x 7→ σ(x) and σ′ = σ/{x}, by the induction hypothesis,
we have:

ρ′(Γ, x : T@z) 
 ρ′LP
(ρ′+σ′)(@ac!!!v)−−−−−−−−−→

σ′∆
(ρ′ + σ′)LQ′

• ρΓ′ 
 newnewnew ρ′(x : T@z) ininin ρ′LP
(ρ′+σ′)(@ac!!!v)−−−−−−−−−→
σ′∆,ρ′(x:T@z)

(ρ′ + σ′)LQ′, by (Lts-Open).

• ρ′Γ = ρΓ, newnewnew ρ′(x : T@z) ininin ρ′LP
α= ρ(newnewnew x : T@z ininin LP ) and (ρ′ + σ′) = (ρ + σ).

Thus true for this case.

�

Lemma B.2.5 (Weakening and strengthening Lts (unary name))

Given that `L Γ, x : T@z,

1. if Γ `a P and x 6∈ fv(∆) ∪ fv(α) then

Γ 
a P
α−→
∆

LP ⇔ (Γ, x : T@z) 
a P
α−→
∆

LP

2. if Γ ` LP and x 6∈ fv(∆) ∪ fv(β) then

Γ 
 LP
β−→
∆

LQ ⇔ (Γ, x : T@z) 
 LP
β−→
∆

LQ

Proof: We prove this by an induction on the transition derivation. We shall only demon-
strate interesting cases.

Base Case (Lts-L-Rep): From left-to-right direction, assuming ` Γ, x : T@z,

Γ 
a ***c???p→P
c???v−−→
∆

@a(match(v, p)P | ***c???p→P )

and x 6∈ fv(∆) ∪ fv(β), we may derive the following.

• Γ ` c ∈ ^̂̂rT , (Γ, ∆) ` v ∈ T and dom(∆) ⊆ fv(v), by (Lts-L-Rep).

• Since ` Γ, x : T@z, applying Lemma 3.7.2 (Type SW), we have: Γ, x : T@z ` c ∈ ^̂̂rT .
Moreover, x 6∈ fv(∆) ∪ fv(β) implies ` Γ, ∆, x : T@z, by (LC-Var). Applying Lemma
3.7.2 (Type SW), we have: Γ, ∆, x : T@z ` v ∈ T .

• z ∈ dom(Γ) implies z 6∈ dom(∆). Moreover, x 6∈ fv(∆)∪ fv(β), applying B.1.1, we have:
Γ, ∆, x : T@z ≡ Γ, x : T@z, ∆.

• Γ, x : T@z, ∆ ` v ∈ T , by Lemma 3.7.1 (Type Perm).
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• Γ, x : T@z 
a ***c???p→P
c???v−−→
∆

@amatch(p, v)P | ***c???p→P , by (Lts-L-Rep).

From right-to-left direction, assuming Γ `a ***c???p→P ,

Γ, x : T@z 
a ***c???p→P
c???v−−→
∆

@a(match(v, p)P | ***c???p→P )

and x 6∈ fv(∆) ∪ fv(β), we may derive the following.

• Γ, x : T@z ` c ∈ ^̂̂rT , (Γ, x : T@z, ∆) ` v ∈ T and dom(∆) ⊆ fv(v), by (Lts-L-Rep).

• Since x 6∈ fv(∆) ∪ fv(β) and z ∈ dom(Γ) (ie. z 6∈ dom(∆)), applying Lemma B.1.1, we
have: Γ, x : T@z, ∆ ≡ Γ, ∆, x : T@z. This implies Γ, ∆, x : T@z ` v ∈ T , by Lemma
3.7.1 (Type Perm).

• x 6∈ fv(c, v), implies Γ ` c ∈ ^̂̂rT and Γ, ∆ ` v ∈ T , by Lemma 3.7.2 (Type SW).

• Γ 
a ***c???p→P
c???v−−→
∆

@amatch(p, v)P | ***c???p→P , by (Lts-L-Rep).

Thus true for this case.

Base Case (Lts-Local): From left-to-right direction, supposing ` Γ, x : T@z,
Γ 
 @aP

β−→
∆

LP and x 6∈ fv(∆) ∪ fv(β), we may derive the following.

• Γ 
a P
α−→
∆

LP where β = τ = α or β = @aα, by (Lts-Local).

• Γ ` @aP implies x 6= a. This means Γ, x : T@z 
a P
α−→
∆

LP , by Lemma B.2.5 (basic

process).

• Γ, x : T@z 
 @aP
β−→
∆

LP , by (Lts-Local).

The right-to-left direction is similar. Thus true for this case.

Inductive Case (Lts-Open): From left-to-right direction, supposing ` Γ, x : T@z,

Γ 
 newnewnew y : T ′@z′ ininin LP
@ac!!!v−−−−−−→

∆,y:T ′@z′
LQ

x 6∈ fv(∆, y : T ′@z′)∪ fv(@ac!!!v) and (Lts-Open) is used last for deriving this, we may derive
the following.

• Γ, y : T ′@z′ 
 LP
@ac!!!v−−−−→

∆
LQ and y ∈ fv(v), by (Lts-Open).

• x 6∈ fv(∆, y : T ′@z′) ∪ fv(@ac!!!v) implies x 6∈ fv(∆). Γ ` newnewnew y : T ′@z′ ininin LP

implies Γ, y : T ′@z′ ` LP , by (NewChan/Agent); moreover, ` Γ, x : T@z implies
` Γ, y : T ′@z′, x : T@z.

• Γ, y : T ′@z′, x : T@z 
 LP
@ac!!!v−−−−→

∆
LQ, by the induction hypothesis.
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• x 6∈ fv(y : T ′@z′) ∪ fv(@ac!!!v) and y 6= x, z (as z ∈ dom(Γ)), Γ, y : T ′@z′, x : T@z ≡
Γ, x : T@z, y : T ′@z′, by Lemma B.1.1.

• Γ, x : T@z, y : T ′@z′ 
 LP
@ac!!!v−−−−→

∆
LQ, by Lemma B.2.2 (Lts Perm).

• Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
@ac!!!v−−−−−−→

∆,y:T ′@z′
LQ, by (Lts-L-Open)

From right-to-left direction, supposing Γ ` newnewnew y : T ′@z′ ininin LP ,

Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
@ac!!!v−−−−−−→

∆,y:T ′@z′
LQ

x 6∈ fv(∆, y : T ′@z′)∪ fv(@ac!!!v) and (Lts-Open) is used last for deriving this, we may derive
the following.

• Γ, x : T@z, y : T ′@z′ 
 LP
@ac!!!v−−−−→

∆
LQ and y ∈ fv(v), by (Lts-Open).

• x 6∈ fv(∆, y : T ′@z′) ∪ fv(@ac!!!v) and y 6= x, z implies Γ, y : T ′@z′, x : T@z ≡ Γ, x :
T@z, y : T ′@z′, by Lemma B.1.1.

• Γ, y : T ′@z′, x : T@z 
 LP
@ac!!!v−−−−→

∆
LQ, by Lemma B.2.2 (Lts Perm).

• Γ ` newnewnew y : T ′@z′ ininin LP implies Γ, y : T ′@z′ ` LP , by (NewChan/Agent).

• Γ, y : T ′@z′ 
 LP
@ac!!!v−−−−→

∆
LQ, by the induction hypothesis.

• Γ 
 newnewnew y : T ′@z′ ininin LP
@ac!!!v−−−−−−→

∆,y:T ′@z′
LQ, by (Lts-L-Open)

Thus true for this case.

Inductive Case (Lts-New): From left-to-right direction, supposing ` Γ, x : T@z,

Γ 
 newnewnew y : T ′@z′ ininin LP
β−→
∆

newnewnew y : T ′@z′ ininin LQ

x 6∈ fv(∆)∪ fv(β) and (Lts-New) is used last for deriving this, we may derive the following.

• Pick a σ : {y} → X/dom(Γ, ∆, x), we have newnewnew y : T ′@z′ ininin LP
α= newnewnew ŷ : T ′@z′ ininin L̂P ,

where ŷ = σy etc.

• Γ, ŷ : T ′@z′ 
 L̂P
β̂−→
∆

L̂Q, by (Lts-New).

• ` Γ, x : T@z and x 6= ŷ implies ` Γ, ŷ : T ′@z′, x : T@z, by (L-C-Var).

• Γ, ŷ : T ′@z′, x : T@z 
 L̂P
β̂−→
∆

L̂Q, by the induction hypothesis.

• Since x 6∈ fv(∆) ∪ fv(β) and ŷ 6= x, z, we have Γ, ŷ : T ′@z′, x : T@z ≡ Γ, x : T@z, ŷ :
T ′@z′, by Lemma B.1.1.
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• Γ, x : T@z, ŷ : T ′@z′ 
 L̂P
β̂−→
∆

L̂Q, by Lemma B.2.2 (Lts Perm).

• Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
β−→
∆

newnewnew y : T ′@z′ ininin LQ, by (Lts-L-New) and
alpha-conversion.

From right-to-left direction, supposing Γ ` newnewnew y : T ′@z′ ininin LP and

Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
β−→
∆

newnewnew y : T ′@z′ ininin LQ

x 6∈ fv(∆)∪ fv(β) and (Lts-New) is used last for deriving this, we may derive the following.

• Pick a σ : {y} → X/dom(Γ, ∆, x), we have newnewnew y : T ′@z′ ininin LP
α= newnewnew ŷ : T ′@z′ ininin L̂P ,

where ŷ = σy etc.

• Γ, x : T@z, ŷ : T ′@z′ 
 L̂P
β−→
∆

L̂Q, by (Lts-New) and alpha-conversion.

• x 6∈ fv(newnewnew ŷ : T ′@z′ ininin LP )∪fv(β) implies x 6= z′, z ∈ dom(Γ) implies ŷ 6= z. Applying
Lemma B.1.1, Γ, x : T@z, ŷ : T ′@z′ ≡ Γ, ŷ : T ′@z′, x : T@z.

• Γ, ŷ : T ′@z′, x : T@z 
 L̂P
β−→
∆

L̂Q, by Lemma B.2.2 (Lts Perm).

• Γ ` newnewnew ŷ : T ′@z′ ininin L̂P implies Γ, ŷ : T ′@z′ ` L̂P , by (NewChan/Agent). This
means Γ, ŷ : T ′@z′ 
 L̂P

β−→
∆

L̂Q, by the induction hypothesis.

• Γ 
 newnewnew y : T ′@z′ ininin LP
β−→
∆

newnewnew y : T ′@z′ ininin LQ, by (Lts-L-New) and alpha-conversion.

Thus true for this case.

Inductive Case (Lts-Bound-Mig): From left-to-right direction, supposing ` Γ, x : T@z,

Γ 
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ

and (Lts-Bound-Mig) is used last for deriving this, we may derive the following.

• Γ, a : Agentm@s 
 LP
@amigrate to s′−−−−−−−−−→ LQ, by (Lts-Bound-Mig).

• Pick a σ : {a} → X/dom(Γ, x), we have: Γ, â : Agentm@s 
 L̂P
@âmigrate to s′−−−−−−−−−→ L̂Q

where â = σa etc, by Lemma 4.5.7 (Lts Inj).

• ` Γ, x : T@z and x 6= â implies ` Γ, â : T ′@z′, x : T@z, by (L-C-Var).

• Γ, â : Agentm@s, x : T@z 
 L̂P
@âmigrate to s′−−−−−−−−−→ L̂Q, by the induction hypothesis.

• ` Γ, x : T@z implies z ∈ dom(Γ) (ie. â 6= x, z). Γ ` newnewnew a : Agentm@s ininin LP implies
s ∈ dom(Γ) (ie. x 6= â, s). Hence Γ, â : Agentm@s, x : T@z ≡ Γ, x : T@z, â : Agentm@s,
by Lemma B.1.1.
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• Γ, x : T@z, â : Agentm@s 
 L̂P
@âmigrate to s′−−−−−−−−−→ L̂Q, by Lemma B.2.2 (Lts Perm).

• Γ, x : T@z 
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ, by (Lts-L-New)

and alpha-conversion.

From right-to-left direction, supposing Γ ` newnewnew a : Agentm@s ininin LP and

Γ, x : T@z 
 newnewnew a : Agentm@s ininin LP
τ−→ LQ

and (Lts-Bound-Mig) is used last for deriving this, we may derive the following.

• Γ, x : T@z, a : Agentm@s 
 LP
@amigrate to s′−−−−−−−−−→ LQ, by (Lts-Bound-Mig).

• Since Γ ` newnewnew a : Agentm@s ininin LP implies s ∈ dom(Γ) (ie. x 6= s). a is of an agent
type hence a 6= z. This means Γ, x : T@z, a : Agentm@s ≡ Γ, a : Agentm@s, x : T@z, by
Lemma B.1.1.

• Γ, a : Agentm@s, x : T@z 
 LP
@amigrate to s′−−−−−−−−−→

∆
LQ, by Lemma B.2.2 (Lts Perm).

• Γ ` newnewnew a : Agentm@s ininin LP implies Γ, a : Agentm@s ` LP , by (NewAgent).

• Γ, a : Agentm@s 
 LP
@amigrate to s′−−−−−−−−−→

∆
LQ, by the induction hypothesis.

• Γ 
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ, by (Lts-L-New)

Thus true for this case.

Therefore the Lemma is proved by induction. �

Lemma B.2.6 (Weakening and strengthening Lts (unary type variable))

Given that `L Γ, X,

1. if Γ `a P and X 6∈ fv(∆) ∪ fv(α) then

Γ 
a P
α−→
∆

LP ⇔ (Γ, X) 
a P
α−→
∆

LP

2. if Γ ` LP and X 6∈ fv(∆) ∪ fv(β) then

Γ 
 LP
β−→
∆

LQ ⇔ (Γ, X) 
 LP
β−→
∆

LQ

Proof: Similar to the proof of Lemma B.2.5. �

Lemma B.2.7 (Weakening and strengthening transition (4.5.5))

Given that `L Γ, Θ,
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1. Γ `a P and dom(Θ) ∩ (fv(∆) ∪ fv(β)) = ∅ implies

Γ 
a P
α−→
∆

LP ⇔ (Γ, Θ) 
a P
α−→
∆

LP

2. Γ ` LP and dom(Θ) ∩ (fv(∆) ∪ fv(β)) = ∅ implies

Γ 
 LP
β−→
∆

LQ ⇔ (Γ, Θ) 
 LP
β−→
∆

LQ

Proof: An induction on the syntax of Θ, applying Lemma B.2.5 and Lemma B.2.6. �

Lemma B.2.8 ((Unary) input shifting)

Given that `L Γ, x : T@z, T is an extensible type and a, c 6= x ∈ fv(v), we have:

1. Γ `a P implies Γ 
a P
c???v−−−−−→

∆,x:T@z
LP ⇔ Γ, x : T@z 
a P

c???v−−→
∆

LP ; and

2. Γ ` LP implies Γ 
 LP
@ac???v−−−−−→

∆,x:T@z
LQ ⇔ Γ, x : T@z 
 LP

@ac???v−−−−→
∆

LQ.

Proof: We prove these by inductions on the transition derivation. Since the transition
undergoes an input action, the rules used for deriving this must be a combination of (Lts-L-

(Rep)In, Lts-(L)-New, Lts-(L)-Prl). We only demonstrate (Lts-L-In) and (Lts-New).

Base Case :(Lts-L-In) From left-to-right direction, supposing ` Γ, x : T@z,

Γ 
a ***c???p→P
c???v−−−−−→

∆,x:T@z
LP

and (Lts-L-In) is used last for deriving this. We may derive the following.

• By (Lts-L-In), we have: Γ ` c ∈ ^̂̂rT , (Γ, ∆, x : T@z) ` v ∈ T , (∆, x : T@z) is
extensible and dom(∆, x : T@z) ⊆ fv(v).

• Γ, x : T@z ` c ∈ ^̂̂rT , by Lemma 3.7.2 (Type SW).

• x 6∈ dom(∆); moreover as ∆, x : T@z is extensible, x 6∈ range(∆) and z 6∈ dom(∆). This
means Γ, ∆, x : T@z ≡ Γ, x : T@z, ∆, by Lemma B.1.1.

• Γ, x : T@z, ∆ ` v ∈ T , by Lemma 3.7.1 (Type Perm).

• Γ, x : T@z 
a ***c???p→P
c???v−−→
∆

LP , by (Lts-L-In).

From right-to-left direction, supposing Γ `a ***c???p→P ,

Γ, x : T@z 
a ***c???p→P
c???v−−→
∆

LP

T is extensible and x 6= a with x ∈ fv(v), we may derive the following.
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• By (Lts-L-In), we have: Γ, x : T@z ` c ∈ ^̂̂rT , (Γ, x : T@z, ∆) ` v ∈ T , ∆ is extensible
and dom(∆) ⊆ fv(v).

• Γ `a ***c???p→P implies c ∈ dom(Γ). Hence Γ ` c ∈ ^̂̂rT , by Lemma 3.7.2 (Type SW).

• x 6∈ dom(∆); moreover as ∆, x : T@z is extensible, x 6∈ range(∆) and z 6∈ dom(∆). This
means Γ, ∆, x : T@z ≡ Γ, x : T@z, ∆, by Lemma B.1.1.

• Γ, ∆, x : T@z ` v ∈ T , by Lemma 3.7.1 (Type Perm).

• Γ 
a ***c???p→P
c???v−−−−−→

∆,x:T@z
LP , by (Lts-L-In).

Thus true for the base case.

Inductive Case (Lts-New): From left-to-right direction, supposing ` Γ, x : T@z,

Γ 
 newnewnew y : T ′@z′ ininin LP
c???v−−−−−→

∆,x:T@z
newnewnew y : T ′@z′ ininin LQ

and (Lts-New) is used last for deriving this, we may derive the following.

• Pick a σ : y → X/dom(Γ, ∆, x : T@z), we have LP
α= newnewnew ŷ : T ′@z′ ininin L̂P , where

ŷ = σy etc.

• Γ, ŷ : T ′@z′ 
 L̂P
c???v−−−−−→

∆,x:T@z
L̂Q, by (Lts-New).

• Γ, ŷ : T ′@z′, x : T@z 
 L̂P
c???v−−→
∆

L̂Q, by the induction hypothesis.

• x 6= ŷ; moreover, as x, ŷ are of extensible types z, z′, x, ŷ are distinct. This means
Γ, ŷ : T ′@z′, x : T@z ≡ Γ, x : T@z, ŷ : T ′@z′, by Lemma B.1.1.

• Γ, x : T@z, ŷ : T ′@z′ 
 L̂P
c???v−−→
∆

L̂Q, by Lemma B.2.2 (Lts Perm).

• Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
c???v−−→
∆

newnewnew y : T ′@z′ ininin LQ, by (Lts-New) and alpha-
conversion.

From right-to-left direction, supposing Γ ` newnewnew y : T ′@z′ ininin LP ,

Γ, x : T@z 
 newnewnew y : T ′@z′ ininin LP
c???v−−→
∆

newnewnew y : T ′@z′ ininin LQ

T is extensible and x 6= a with x ∈ fv(v), and (Lts-New) is used last for deriving this, we
may derive the following.

• Pick a σ : y → X/dom(Γ, ∆, x : T@z), we have LP
α= newnewnew ŷ : T ′@z′ ininin L̂P , where

ŷ = σy etc.
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• Γ, x : T@z, ŷ : T ′@z′ 
 L̂P
c???v−−→
∆

L̂Q, by (Lts-New).

• x 6= ŷ; moreover, as x, ŷ are of extensible types z, z′, x, ŷ are distinct. This means
Γ, ŷ : T ′@z′, x : T@z ≡ Γ, x : T@z, ŷ : T ′@z′, by Lemma B.1.1.

• Γ, x : T@z, ŷ : T ′@z′ 
 L̂P
c???v−−→
∆

L̂Q, by Lemma B.2.2 (Lts Perm).

• Γ, ŷ : T ′@z′ 
 L̂P
c???v−−−−−→

∆,x:T@z
L̂Q, by the induction hypothesis.

• Γ 
 newnewnew y : T ′@z′ ininin LP
c???v−−−−−→

∆,x:T@z
newnewnew y : T ′@z′ ininin LQ, by (Lts-New) and alpha-

conversion.

Thus true for this case. �

Lemma B.2.9 (Shifting: input transitions (4.5.6))

Given that Θ is an extensible context with a, c 6∈ dom(Θ) and dom(Θ) ⊆ fv(v), we have:

1. Γ `a P and `L Γ, Θ implies Γ 
a P
c???v−−→
∆,Θ

LP ⇔ (Γ, Θ) 
a P
c???v−−→
∆

LP ; and

2. Γ ` LP and `L Γ, Θ implies Γ 
 LP
@ac???v−−−−→
∆,Θ

LQ ⇔ (Γ, Θ) 
 LP
@ac???v−−−−→

∆
LQ.

Proof: An induction on the size of Θ, applying Lemma B.2.8. �

Lemma B.2.10

If Γ ` LP then mayMove(LP ) ⊆ mov(Γ) and mayMove(LP ) ⊆ agents(LP ).

Lemma B.2.11

If Γ 
 LP
@amigrate to s−−−−−−−−−→

∆
LQ then a ∈ mayMove(LP ).

Lemma B.2.12 (Transition preserves mayMove(LP ))
Given that Γ is closed located type context, if Γ 
 LP

β−→
∆

LQ then either

• β is an output label and mayMove(LQ) ⊆ mayMove(LP ) ∪mov(∆); or

• β is not an output label and mayMove(LQ) ⊆ mayMove(LP ).

Proof: A routine induction on the transition derivation. �

B.3 Subject Reduction

Theorem B.3.1 (Subject reduction (4.5.1))

Given a closed located type context Γ,
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1. if Γ 
a P
α−→
∆

LP then Γ, ∆ ` LP ; and

2. if Γ 
 LP
β−→
∆

LQ then Γ, ∆ ` LQ.

Proof: First, we prove that if Γ 
a P
α−→
∆

LP then Γ `a P and α = migrate to s implies

Γ ` s ∈ Site (required for (Lts-Bound-Migrate) case). This is proved by an induction on
derivation of Γ 
a P

α−→
∆

LP . We shall only demonstrate interesting cases.

Base Case (Lts-L-Let): Supposing

Γ 
a letletlet p = ev ininin P
τ−→ @amatch(p, eval(ev))P

and only (Lts-L-Let) is used for deriving this, we may derive the following. By (Lts-L-

Let), Γ `a letletlet p = ev ininin P and eval(ev) is defined. Γ ` ev ∈ T , Γ ` p ∈ T . ∆, and Γ, ∆ `a

P , by (Let). Γ ` eval(ev) ∈ T , by Lemma 3.7.3. match(p, eval(ev)) is defined, by Lemma
3.8.3. Moreover, Γ `a match(p, eval(ev))P , by Lemma B.1.9. Γ ` @amatch(p, eval(ev))P ,
by (At). Thus true for this case.

Base Case (Lts-L-Create): Supposing

Γ 
a createcreatecreateZ b = P ininin Q
τ−→ newnewnew b : AgentZ ininin @aQ | @bP

and only (Lts-L-Create) is used for deriving this, we may derive the following. By
(Lts-L-Create), Γ `a createcreatecreateZ b = P ininin Q and Γ ` a@s. a 6= b, Γ, b : AgentZ `a P ,
and Γ, b : AgentZ `a Q, by (Create). Γ, b : AgentZ ` @aQ, and Γ, b : AgentZ ` @bP . As
Γ ` a@s and ` Γ, we have Γ ` s ∈ Site, by (LC-Var). Γ ` newnewnew b : AgentZ@s ininin @bP | @aQ,
by (LPar) and (NewAgent). Thus true for this case.

Base Case (Lts-L-Migrate): Supposing Γ 
a migrate tomigrate tomigrate to s→P
migrate to s−−−−−−−→ @aP , and

only (Lts-L-Migrate) is used for deriving this, we may derive the following. Γ `a

migrate tomigrate tomigrate to s → P , by (Lts-L-Migrate). Γ ` s ∈ Site, Γ ` a ∈ Agentm and Γ `a P ,
by (Migrate). Γ ` @aP , by (At). In this case Γ ` s ∈ Site and

Γ 
a migrate tomigrate tomigrate to s→P
migrate to s−−−−−−−→ @aP

Thus true for this case.

Base Case (Lts-L-IfLocal-True): Supposing

Γ 
a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
τ−→ @aP | @bc!!!v

and only (Lts-L-IfLocal-True) is used for deriving this, we may derive the following.
Γ `a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q, since the LTS is typed, and Γ ` a@s∧ b@s for some s,
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by (Lts-L-IfLocal-True). Γ ` b ∈ Agents, Γ ` c ∈ ^̂̂wT , Γ ` v ∈ T , Γ `a P and Γ `a Q,
by (IfLocal). Γ ` @bc!!!v and Γ ` @aP , by (At) and (Out). Γ ` @aP | @bc!!!v, by (LPar).
Thus true for this case.

Base Case (Lts-L-(Rep-)In): Supposing

Γ 
a ***c???v→P
c???v−−→
∆

@a((match(p, v)P ) | ***c???p→P )

and only (Lts-L-(Rep-)In) is used for deriving this, we may derive the following. By
(Lts-L-(Rep-)In), Γ `a ***c???p → P and Γ, ∆ ` v ∈ T , dom(∆) ⊆ fv(v). Γ ` c ∈ ^̂̂rT ,
Γ ` p ∈ T . Ξ and Γ, Ξ `a P , by ((Rep-)In). match(p, v) is defined, by Lemma 3.8.3.
Γ, ∆ `a match(p, v) P , by Lemma B.1.9. Γ, ∆ ` @amatch(p, v)P |***c???p→P , by (At). Thus
true for this case.

Base Case (Lts-L-LI-Send): Supposing Γ 
a 〈b@?〉c!!!v τ−→ @bc!!!v, and only (Lts-L-LI-

Send) is used for deriving this, we may derive the following. Γ `a 〈b@?〉c!!!v, since the
semantics is typed. Γ ` a, b ∈ Agents, Γ ` c ∈ ^̂̂wT , and Γ ` v ∈ T , by (SendLI) and (At).
Γ ` @bc!!!v, by (Out) and (At). Thus true for this case.

Therefore subject reduction is true for basic processes. We prove that if Γ 
 LP
β−→
∆

LQ then
Γ ` LQ and β = @amigrate to s implies Γ ` s ∈ Site. This is proved by an induction on the
derivation of Γ 
 LP

β−→
∆

LQ.

Base Case (Lts-Local): Supposing Γ 
 @aP
β−→
∆

LQ, and (Lts-Local) is used last for
deriving this, we may derive the following. Γ ` @aP , since the semantics is typed, and
Γ 
a P

α−→
∆

LQ, by (Lts-Local), where β = α = τ or β = @aα. Γ `a P , by (At).

Γ, ∆ ` LQ, by Theorem 4.5.1 (Subj) for basic process. If α = migrate to s then Γ ` s ∈ Site,
by the proved hypothesis of basic process case. Thus simply true for this case.

Inductive Case (Lts-Cong-R): Supposing Γ 
 LP
β−→
∆

LR and (Lts-Cong-R) is used for

deriving the transition, we may derive the following. Γ 
 LP
β−→
∆

LQ and LQ ≡ LR, for

some LQ, by (Lts-Cong-R). Γ, ∆ ` LQ, by the induction hypothesis. LR ≡ LQ implies
Γ, ∆ ` LR, by Lemma 4.1.2 (Type StrCong). If β = @amigrate to s then Γ ` s ∈ Site, by
the induction hypothesis. Thus true for this case.

Inductive Case (Lts-Comm): Supposing Γ 
 LP |LQ
τ−→ newnewnew ∆ ininin LP ′|LQ′ and (Lts-

Comm) is used last for deriving the transition, we may derive the following. Γ 
 LP
@ac!!!v−−−−→

∆

LP ′ and Γ 
 LQ
@ac???v−−−−→

∆
LQ′, for some a, c, v, by (Lts-Comm). Γ, ∆ ` LP ′ and Γ, ∆ ` LQ′,

by the induction hypothesis. Γ, ∆ ` LP ′|LQ′, by (LPar). Γ ` newnewnew ∆ ininin LP | LQ, by
(NewAgent) and (NewChannel). Thus true for this case.
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Inductive Case (Lts-Prl): Supposing Γ 
 LP |LQ
β−→
∆

LR|LQ and (Lts-Prl) is used last

for deriving the transition, we may derive the following. Γ 
 LP
β−→
∆

LR, by (Lts-Prl).
Γ, ∆ ` LR, by the induction hypothesis. ` Γ, ∆, by the definition of the transition relation.
Γ, ∆ ` LQ, by Lemma 3.7.2. Γ, ∆ ` LR|LQ, by (LPar). If β = @amigrate to s then
Γ ` s ∈ Site, by the induction hypothesis. Thus true for this case.

Inductive Case (Lts-Open): Supposing Γ 
 newnewnew x : T@z ininin LP
@ac!!!v−−−−−→

∆,x:T@z
LQ and (Lts-

Open) is used last for deriving the transition, we may derive the following. By (Lts-Open),
we have: x ∈ fv(v), x 6= a, c, and Γ, x : T@z 
 LP

@ac!!!v−−−−→
∆

LQ. Γ, x : T@z, ∆ ` LQ, by the
induction hypothesis. By 3.7.1, Γ, ∆, x : T@z ` LQ. Thus true for this case.

Inductive Case (Lts-New): Supposing Γ 
 newnewnew x : AgentZ@s ininin LP
β−→
∆

LQ and (Lts-

New) is used last in deriving the transition, we may derive the following. By (Lts-

New), Γ, x : AgentZ@s 
 LP
β−→
∆

LQ with x 6∈ fv(β). Γ, x : T, ∆ ` LQ, by the induction

hypothesis. Γ, ∆, x : T ` LQ, by 3.7.1. Γ, ∆ ` newnewnew x : T@s ininin LQ, by (NewAgent). If
β = @amigrate to s then Γ ` s ∈ Site, by the induction hypothesis. Thus true for this case.
The case where x is of channel type is similar.

Inductive Case (Lts-Bound-Mig): Supposing

Γ 
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ

and (Lts-Bound-Mig) is used last in deriving the transition, we may derive the following.

Γ, a : Agentm@s 
 LP
@amigrate to s′−−−−−−−−−→ LQ, by (Lts-Bound-Mig). Γ, a : AgentZ ` LQ, by the

induction hypothesis. Γ ` s′ ∈ Site, by the claim proved above. Γ ` newnewnew x : T@s′ ininin LQ,
by (NewAgent). Thus true for this case.

Therefore the subject reduction is proved by induction. �

B.4 (Cong-L) Absorption

Theorem B.4.1 (Cong-L absorption (4.5.2))

Given a closed located type context Γ,

1. if P ≡ Q and Γ 
a P
α−→
∆

LP then Γ 
a Q
α−→
∆

LP ; and

2. if LP ≡ LR and Γ 
 LP
β−→
∆

LQ then Γ 
 LR
β−→
∆

LQ.
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Proof: First of all, we need to make explicit the structural congruence rules in Figure B.1,
that ensure that ≡ is indeed a congruence.

(Str-Refl)
P ≡ P

(Str-Sym)
P ≡ Q

Q ≡ P

(Str-Trans)
P ≡ Q Q ≡ R

P ≡ R

(Str-L-Context)
P ≡ Q

EB[P ] ≡ EB[Q]

(Str-L-Refl)
LP ≡ LP

(Str-L-Sym)
LP ≡ LQ

LQ ≡ LP

(Str-L-Trans)
LP ≡ LQ LQ ≡ LR

LP ≡ LR

(Str-Context)
LP ≡ LQ

E [LP ] ≡ E [LQ]

Figure B.1: Supplementary structural congruence rules

The basic process contexts, ranged over by EB[·], are defined by the following grammar:

EB[·] ::= . | EB[·]|Q | newnewnew c : T ininin EB[·] | c???p→EB[·] | ***c???p→EB[·]

| ififif v thenthenthen EB[·] elseelseelse Q | ififif v thenthenthen P elseelseelse EB[·]

| createcreatecreatem a = EB[·] ininin Q | createcreatecreatem a = P ininin EB[·]

| migrate tomigrate tomigrate to s → EB[·] | letletlet p = ev ininin EB[·]

| iflocaliflocaliflocal 〈a〉c!!!v thenthenthen EB[·] elseelseelse Q | iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse EB[·]

Most of this proof is similar to that of [Sew00], we shall only highlight rules which are specific
to our setting ie. (Str-Locate) and (Str-Distr).

Base Case (Str-Locate): Supposing @aP ≡ @aQ and (Str-Locate) is used last for
deriving this equivalence. Let Γ 
 @aP

β−→
∆

LP , we may derive the following. Γ 
a P
α−→
∆

LP , where β = α = τ or β = @aα, by (Lts-Local). Γ 
a Q
α−→
∆

LP , by Theorem 4.5.2 for

basic process. Γ 
 @aQ
β−→
∆

LP , by (Lts-Local). Thus true for this case.

Base Case (Str-Distr): In this case, @a(P |Q) ≡ @aP |@aQ. From left-to-right direction,
supposing Γ 
 @a(P |Q)

β−→
∆

LR, by (Lts-Local), Γ 
a P |Q α−→
∆

LR and α = β = τ or

β = @aα. By Lemma B.2.3 (Lts Analysis), either of the following hold.

1. (Lts-L-Prl) (Left) There exists LP such that Γ 
a P
α−→
∆

LP and LR ≡ LP |@aQ.

2. (Lts-L-Prl) (Right) There exists LQ such that Γ 
a Q
α−→
∆

LQ and LR ≡ @aP |LQ.

3. (Lts-L-Comm) (Left) There exist c, v, Ξ, LP, LQ such that Γ 
a P
c!!!v−−→
Ξ

LP , Γ 
a Q
c???v−−→
Ξ

LQ, and LR ≡ newnewnew Ξ ininin LP |LQ.
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4. (Lts-L-Comm) (Right) There exist c, v, Ξ, LP, LQ such that Γ 
a P
c???v−−→
Ξ

LP , Γ 
a Q
c!!!v−−→
Ξ

LQ, and LR ≡ newnewnew Ξ ininin LP |LQ.

From right-to-left direction, supposing Γ 
 @aP |@aQ
β−→
∆

LR, By Lemma B.2.3 (Lts Analy-

sis), either of the following hold.

1. (Lts-Prl) (Left) There exists LP such that Γ 
 @aP
α−→
∆

LP and LR ≡ LP |@aQ.

2. (Lts-Prl) (Right) There exists LQ such that Γ 
 @aQ
α−→
∆

LQ and LR ≡ @aP |LQ.

3. (Lts-L-Comm) (Left) There exist c, v, Ξ, LP, LQ such that Γ 
 @aP
c!!!v−−→
Ξ

LP , Γ 
 @aQ
c???v−−→
Ξ

LQ, and LR ≡ newnewnew Ξ ininin LP |LQ.

4. (Lts-L-Comm) (Right) There exist c, v, Ξ, LP, LQ such that Γ 
 @aP
c???v−−→
Ξ

LP , Γ 
 @aQ
c!!!v−−→
Ξ

LQ, and LR ≡ newnewnew Ξ ininin LP |LQ.

The cases correspond exactly (1 to 1 etc.) — one may check in each there are matching
transitions. Thus true for this case.

�

B.5 Semantics Matching

Theorem B.5.1 (Labelled and reduction semantics matching (4.5.3))

Given a closed located type context Γ, and a located process LP ,

Γ 
 LP −→ Γ′ 
 LQ IFF

Γ 
 LP
τ−→ LQ Γ′ = Γ or

Γ 
 LP
@amigrate to s−−−−−−−−−→ LQ Γ′ = Γ⊕ a 7→ s

Proof: We need to the two directions separately — each of which uses an induction on the
derivation of the reduction/transition.

Left-to-right direction Hypothesis: Γ 
 LP −→ Γ′ 
 LQ implies either Γ 
 LP
τ−→ LQ

with Γ′ = Γ or, for some s, Γ 
 LP
@amigrate to s−−−−−−−−−→ LQ and Γ′ = Γ ⊕ a 7→ s. We shall only

demonstrate interesting cases.

Base Case (Red-Create): Supposing only (Red-Create) is used for deriving the reduc-
tion below.

Γ 
 @acreatecreatecreateZ b = P ininin Q −→ Γ 
 newnewnew b : AgentZ@s ininin (@aQ|@bP )
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We may derive the following. Γ ` a@s, by (Red-Create). By (Lts-L-Create) and
(Lts-Local), Γ 
 @acreatecreatecreateZ b = P ininin Q

τ−→ newnewnew b : AgentZ@s ininin @aQ|@bP . Thus
true for this case.

Base Case (Red-Migrate): Supposing

Γ 
 @amigrate tomigrate tomigrate to s→P −→ Γ⊕ a 7→ s 
 @aP

and only (Red-Migrate) is used for deriving this reduction. We may derive the following.
Γ 
 @amigrate tomigrate tomigrate to s→P

@amigrate to s−−−−−−−−−→ @aP , by (Lts-L-Migrate) and (Lts-Local). It is
clear from the definition that Γ⊕ a 7→ s = Γ@amigrate to s. Thus true for this case.

Base Case (Red-Comm): Supposing Γ 
 @a(c!!!v|c???p→P ) −→ Γ 
 @amatch(p, v)P , and
only (Red-Comm) is used for deriving this reduction. We may derive the following.

• match(p, v) is defined, by (Red-Comm).

• Γ 
a c!!!v
c!!!v−−→ @a000, by (Lts-L-Out).

• Γ 
a c???p→P
c???v−−→ @amatch(p, v)P , by (Lts-L-In).

• Γ 
a c!!!v|c???p→P
τ−→ @a000|@amatch(p, v)P , by (Lts-L-Comm).

• Γ 
a c!!!v|c???p→P
τ−→ @amatch(p, v)P , by (Lts-L-Cong-R).

• Γ 
 @a(c!!!v|c???p→P ) τ−→ @amatch(p, v)P , by (Lts-Local).

Thus true for this case.

Inductive Case (Red-Prl): Supposing that Γ 
 LP |LQ −→ Γ′ 
 LR|LQ and (Red-Prl)
is the last step in deriving this reduction, we may derive the following. Γ 
 LP −→
Γ′ 
 LR, by (Red-Prl). This means that either Γ 
 LP |LQ

τ−→ LR|LQ and Γ′ = Γ; or
Γ 
 LP |LQ

@amigrate to s−−−−−−−−−→ LR|LQ and Γ′ = Γ ⊕ a 7→ s, by the induction hypothesis and
(Lts-Prl). Thus true for this case.

Inductive Case (Red-New): Supposing that (Red-New) is the last step in deriving the
reduction below.

Γ 
 newnewnew x : T@z ininin LP −→ Γ′ 
 newnewnew x : T@z′ ininin LQ

We may derive the following. Γ, x : T@z 
 LP −→ Ξ 
 LQ, by (Red-New). The following
three cases are all the possibilities of applying the induction hypothesis.

• If (Γ, x : T@z) 
 LP
τ−→ LQ then, by (Lts-New), we have:

Γ 
 newnewnew x : T@z ininin LP
τ−→ newnewnew x : T@z ininin LQ
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In this case, Γ′ = Γ.

• If (Γ, x : T@z) 
 LP
@amigrate to s−−−−−−−−−→ LQ and a 6= x then, by (Lts-New), we have:

Γ 
 newnewnew x : T@z ininin LP
@amigrate to s−−−−−−−−−→ newnewnew x : T@z ininin LQ

In this case, Γ′ = Γ⊕ a 7→ s.

• If (Γ, x : T@z) 
 LP
@xmigrate to s−−−−−−−−−→ LQ then, by (Lts-bound-Mig), we have:

Γ 
 newnewnew x : T@z ininin LP
τ−→ newnewnew x : T@s ininin LQ

In this case, Γ′ = Γ.

Thus true for this case.

Right-to-left direction Hypothesis: Γ 
 LP
τ−→ LQ implies Γ 
 LP −→ Γ 
 LQ and

Γ 
 LP
@amigrate to s−−−−−−−−−→ LQ implies Γ 
 LP −→ Γ′ 
 LQ, where Γ′ = Γ ⊕ a 7→ s. We shall

only demonstrate more interesting cases.

Inductive Case (Lts-Comm): Supposing Γ 
 LP |LQ
τ−→ newnewnew Ξ ininin (LP1 | LQ1), and

(Lts-Comm) is the last rule used, we may derive the following.

• Γ 
 LP
@ac!!!v−−−−→

Ξ
LP1 and Γ 
 LQ

@ac???v−−−−→
Ξ

LQ1, by (Lts-Comm) and (Lts-Local).

• LP ≡ newnewnew ∆1, Ξ ininin (@ac!!!v | LP ′) and LQ ≡ newnewnew ∆2 ininin (@ac???p→Q | LQ′) (wlog,
the case for replicated input is similar) for some ∆1, ∆2, LP ′, p,Q, LQ′ with dom(∆2)∩
dom(Ξ) = ∅, by Lemma 4.5.4.

Moreover, LP1 ≡ newnewnew ∆1 ininin LP ′ and LP2 ≡ newnewnew ∆2 ininin @amatch(p, v)Q | LQ′.

• Assume (with explicit alpha-conversion if requires) that the domains of ∆1, ∆2 are
disjoint, we have

newnewnew Ξ ininin (LP1 | LQ1) ≡ newnewnew ∆1, ∆2, Ξ ininin (LP ′ | @amatch(p, v)Q′ | LQ′).

• match(p, v) is defined, by Lemma 3.8.3.

• Γ, ∆1, ∆2 
 @a(c!!!v | c???p→Q) −→ Γ, ∆1, ∆2 
 @amatch(p, v)Q, by (Red-Comm).

• By (Red-Cong),

Γ 
 newnewnew ∆1, ∆2, Ξ ininin (@ac!!!v | LP ′ | @ac???p→Q | LQ′)
−→ Γ 
 newnewnew ∆1, ∆2, Ξ ininin (@amatch(p, v)Q | LP ′ | LQ′)
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• By structural congruence rearrangement, we have:

newnewnew ∆1, ∆2, Ξ ininin (@ac!!!v | LP ′ | @ac???p→Q | LQ′)
≡ (newnewnew ∆1 ininin @ac!!!v | LP ′) | (newnewnew ∆2 ininin @ac???p→Q | LQ′) and

newnewnew ∆1, ∆2, Ξ ininin (@amatch(p, v)Q | LP ′ | LQ′)
≡ newnewnew Ξ ininin (newnewnew ∆1 ininin | LP ′) | (newnewnew ∆2 ininin @amatch(p, v)Q | LQ′)

• That is Γ 
 LP | LQ −→ Γ 
 newnewnew Ξ ininin (LP1 | LQ1)

Thus true for this case.

Inductive Case (Lts-Prl): Supposing Γ 
 LP |LQ
@amigrate to s−−−−−−−−−→ LR|LQ and (Lts-Prl) is

used as the last rule in derivating the transition, we may derive the following.
Γ 
 LP

@amigrate to s−−−−−−−−−→ LR, by (Lts-Prl). Γ 
 LP −→ Γ⊕ a 7→ s 
 LR, by the induction
hypothesis. Γ 
 LP |LQ −→ Γ⊕ a 7→ s 
 LR|LQ, by (Red-Prl). Thus true for this case.

Inductive Case (Lts-Bound-Mig): Supposing

Γ 
 newnewnew a : Agentm@z ininin LP
τ−→ newnewnew x : Agentm@s ininin LR

and (Lts-Bound-Mig) is the last rule used in deriving the transition, we may derive the
following. By (Lts-New), Γ, a : Agentm@z 
 LP

@amigrate to s−−−−−−−−−→ LR. By the induction
hypothesis, Γ, a : Agentm@z 
 LP −→ Γ⊕ a 7→ Agents@z 
 LR. By (Red-New), we have:

Γ 
 newnewnew a : Agents@z ininin LP −→ Γ 
 newnewnew a : Agents@s ininin LR

Thus true for this case.

The right-to-left direction is thus proved by induction. Hence the lemma. �

B.6 Translocating Relations

Lemma B.6.1 (Relocation preserves transloc. equivalences)

If LP ∼̇M
Γ LQ then, for any valid relocator δ for (Γ,M), LP ∼̇M

ΓδLQ. Similarly for ≈̇ and �̇.

Lemma B.6.2 (Strengthening translocating index)

If LP ∼̇M
Γ LQ and M ′ ⊆ M then LP ∼̇M ′

Γ LQ. Similarly for ≈̇ and �̇.

Lemma B.6.3

Given that Θ is extensible, ` Γ, Θ with M ⊆ mov(Γ) and M ′ ⊆ mov(Θ), if δ is a valid
relocator for (Γ,M) then it is also valid for ((Γ, Θ), (M ∪ M ′)). Moreover, if δ′ is a valid
relocator for ((Γ, Θ), (M ∪ M ′)) then δ, constructed from δ′ by restricting the domain to
dom(Γ), is a valid relocator for (Γ,M).
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Lemma B.6.4

If LP ∼̇M
Γ LQ and Γ ≡ Θ then LP ∼̇M

Θ LQ. Similarly for ≈̇ and �̇.

Lemma B.6.5 (Injection preserves translocating equivalences (5.3.2))

Given that Γ is a closed located type context and ρ : dom(Γ) → X is injective, we have:

1. if LP1 ∼̇M
Γ LP2 then ρLP1 ∼̇ρM

ρΓ ρLP2; and

2. if LP1 ≈̇M
Γ LP2 then ρLP1 ≈̇ρM

ρΓ ρLP2.

Proof: Assuming S is a translocating strong bisimulation, construct a translocating relation
Rs with RsM ′

Θ is defined as follows:

{
(LP ′, LQ′)

∣∣∣ ∃ LP, LQ, Φ,M ′′,

injective σ : dom(Φ) → X
.

LP ′ = σLP ∧ LQ′ = σLQ∧
LPSM ′′

Φ LQ ∧Θ = σΦ ∧M ′ = σM ′′

}
We shall check that this is indeed a strong translocating bisimulation.

Supposing (LP ′, LQ′) ∈ RsM ′
Θ , by definition of Rs, there exist LP, LQ, Φ,M ′′ and an injec-

tive substitution σ such that LP ′ = σLP , LQ′ = σLQ, LPSM ′′
Φ LQ, Θ = σΦ and M ′ = σM ′′.

Let δ be a valid relocator for (Φ,M ′′) (this implies σδ is a valid relocator for (Θ,M ′)) and
Θ(σδ) 
 LP ′ β−→

∆
LP1,

• In order to make sure the names in ∆ do not clash with that in Φ, we pick an injective
substitution σ′ : dom(∆) → X/dom(Φ). Clearly σ−1+σ′ is a bijection from dom(σΦ, ∆)
to dom(Φ, σ′∆).

• σ−1(Θ(σδ)) 
 σ−1LP ′ (σ−1+σ′)β−−−−−−−→
σ′∆

(σ−1 + σ′)LP1, by Lemma 4.5.7 (Lts Inj).

Thus Φδ 
 LP
(σ−1+σ)β−−−−−−→

σ∆
(σ−1 + σ)LP ′.

• Since LPSM ′′
Φ LQ and δ is a valid relocator for (Φ,M ′′), there exists LQ1 such that

Φδ 
 LQ
(σ−1+σ′)β−−−−−−−→

σ′∆
LQ1 and (σ−1 + σ′)LP ′S

M ′′](σ−1+σ′)βmov(σ′∆)

Φδ((σ−1+σ′)β),σ′∆
LQ1 (†).

• Applying σ +(σ′)−1, we have Θ(σδ) 
 σLQ
β−→
∆

(σ +(σ′)−1)LQ1 (†), by Lemma 4.5.7

(Lts Inj).

• As (σ−1 + σ′)LP ′S
M ′′](σ−1+σ′)βmov(σ′∆)

Φ((σ−1+σ′)β),σ′∆
LQ1, by definition, we have:

LP ′ Rs
(σ+(σ′)−1)(M ′](σ−1+σ′)βmov(σ′∆))

(σ+(σ′)−1)(Φ((σ−1+σ′)β),σ′∆)
(σ + (σ′)−1)LQ1

• Rearranging, we have: LP ′ Rs
(M ′]βmov(∆))
Θβ,∆ (σ + (σ′)−1)LQ1.
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Therefore Rs is a translocating strong bisimulation.

Supposing S translocating weak simulation (expansion etc.) and replacing
β−→
∆

with
β̂

=⇒
∆

at

(†), we obtain the prove for the weak case. �

Lemma B.6.6 (Strengthening and weakening: transloc. bisimulations (5.3.5))

Let Γ, Θ be closed located type contexts with Θ extensible and `L Γ, Θ. Let M1 ⊆ mov(Γ)
and M2 ⊆ mov(Θ), then if Γ ` LP, LQ the following hold.

LP ∼̇M1∪M2
Γ,Θ LQ ⇐⇒ LP ∼̇M1

Γ LQ

LP ≈̇M1∪M2
Γ,Θ LQ ⇐⇒ LP ≈̇M1

Γ LQ

Proof: We prove this in two parts, omitting symmetric cases.

Weakening Construct a translocating relation R with RM
Ψ defined as follows:

{(LP1, LQ2) | ∃Φ, Ξ,M ′ . Ψ = (Φ, Ξ) ∧ LP1∼̇M ′
Φ LQ2 ∧M ∩mov(Φ) ⊆ M ′}

We shall check that this is indeed a strong translocating bisimulation.

Supposing (LP1, LQ2) ∈ RM
Ψ , this implies there exist Φ, Ξ,M ′ such that Ψ = (Φ, Ξ),

LP1∼̇M ′
Φ LQ2 and M ∩mov(Φ) ⊆ M ′. Let δ be a valid relocator for (Ψ,M) and Ψδ 
 LP1

β−→
∆

LP2. We only demonstrate the case where β = @ac???v, for some a, c, v. The case where β is
not an input label is similar, except “shifting” of extruded context never occurs.

• By Lemma B.2.1 (Lts FV), {a, c} ⊆ fv(LP1). Moreover, as Φ ` LP1, we have fv(LP1) ⊆
dom(Φ) (the transloc relation is typed) and thus {a, c} ⊆ dom(Φ), by Lemma B.1.3
(Type FV).

• Let Ξ ≡ Ξ1, Ξ2 with dom(Ξ) ∩ fv(v) = dom(Ξ1), we have, by Lemma 4.5.5 (Lts SW),
Φ, Ξ2δ 
 LP1

@ac???v−−−−→
∆

LP2.

• By Lemma 4.5.6 (Lts Shift), we have Φδ 
 LP1
@ac???v−−−−→
∆,Ξ2δ

LP2.

• Since LP1∼̇M ′
Φ LQ2 and δ restricted to dom(Φ) is a valid relocator for (Φ,M ′), there

exists LQ2 with Φδ 
 LQ2
@ac???v−−−−→
∆,Ξ2δ

LQ2 (†) and LP2∼̇M ′∪mov(∆,Ξ2)
Φ,∆,Ξ2δ LQ2.

• By Lemma 4.5.6 (Lts Shift) and Lemma 4.5.5 (Lts SW), we have Ξδ 
 LQ2
@ac???v−−−−→

∆
LQ2

(†).

• Since M ∩mov(Φ) ⊆ M ′, we have (M ∪mov(∆)) ∩mov(Φ) ⊆ M ′ ∪mov(∆).
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• This implies LP2 RM∪mov(∆)
Ψ,∆ LQ2.

Thus, for this case, R is a translocating strong bisimulation.

The proof for the weak translocating simulation can be obtained by replacing ∼̇ with ≈̇
everywhere and

β−→
Ξ

with
β̂

=⇒
Ξ

at (†).

Strengthening Construct a translocating relation S such that SM
Φ is as follows.

{(LP1, LQ2) | Φ ` LP1, LQ2 ∧ ∃Ξ,M ′ . LP1∼̇M∪M ′
Φ,Ξ LQ2 ∧ M ⊆ mov(Φ) ∧ M ′ ⊆ mov(Ξ)}

We shall prove that this is a translocating strong bisimulation.

Supposing (LP1, LQ2) ∈ SM
Φ , this implies there exists Ξ,M ′ such that LP1∼̇M∪M ′

Φ,Ξ LQ2,

M ⊆ mov(Φ) and M ′ ⊆ mov(Ξ). Let δ is a valid relocator for (Φ,M) and Φδ 
 LP1
β−→
∆

LP2,
we may derive the following.

• To make sure that the names in ∆ and those in Ξ do not clash, we pick an injective
valid substitution ρ : dom(Ξ) → X/dom(Φ, ∆).

• LP1∼̇M∪M ′
Φ,Ξ LQ2 implies ` Φ, Ξ. Furthermore, this means that ` Φ, ρΞ, dom(ρΞ) ∩

(dom(∆) ∪ fv(β)) = ∅ (since fv(β) ⊆ dom(Φ, ∆)). By Lemma 4.5.5 (Lts SW), we have:
Φδ, ρΞ 
 LP1

β−→
∆

LP2.

• Since Φ ` LP1, LQ2, LP1∼̇M∪ρM ′

Φ,ρΞ LQ2, by Lemma 5.3.2 (Transloc Bisim Inj).

• Since δ is a valid relocator for (Φ, ρΞ,M ∪ ρM ′) (by Lemma B.6.3), there exists LQ2

such that Φδ, ρΞ 
 LQ2
β−→
∆

LQ2 and LP2ρ∼̇
M∪ρM ′]βmov(∆)
Φ,ρΞ,∆ LQ2 (†), by the definition

of translocating equivalence.

• Φ, ρΞ, ∆ ≡ Φ, ∆, ρΞ since ∆, ρΞ are extensible.

• By the definition of S, LP2 S
M]βmov(∆)
Φ,∆ ρ−1LQ2 (pick ρΞ, ρM ′).

Therefore S is a translocating strong bisimulation.

The proof for the weak translocating simulation can be obtained by replacing ∼̇ with ≈̇
everywhere and

β−→
Ξ

with
β̂

=⇒
Ξ

at (†).

Therefore the lemma is verified. �
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B.7 Congruence Result

Theorem B.7.1 (Composing translocating bisimulations (5.3.6))

Let Γ, Θ be closed located type contexts, with Θ extensible; moreover, let MP ,MQ ⊆
mov(Γ, Θ), and suppose mayMove(LQ, LQ′) ⊆ MP and mayMove(LP, LP ′) ⊆ MQ.

• LP ∼̇MP
Γ,Θ LP ′ and LQ ∼̇MQ

Γ,Θ LQ′ implies:

newnewnew Θ ininin (LP | LQ) ∼̇MP∩MQ∩mov(Γ)
Γ newnewnew Θ ininin

(
LP ′ | LQ′) ; and

• LP ≈̇MP
Γ,Θ LP ′ and LQ ≈̇MQ

Γ,Θ LQ′ implies:

newnewnew Θ ininin (LP | LQ) ≈̇MP∩MQ∩mov(Γ)
Γ newnewnew Θ ininin

(
LP ′ | LQ′) .

Proof: We construct a translocating relation R with RM
Ψ defined

{(newnewnew ∆, Θcomm ininin (LPk | LQk), newnewnew ∆, Θcomm ininin (LP ′
k | LQ′

k)) | side-condition}

where the side-condition is that there exists closed located type context Γ and extensible
located type contexts ∆ex, Θin, ΘLP

out, ΘLQ
out, ΘLP

comm, ΘLQ
comm and sets of names MP ,MQ such

that:

Ψ ≡ Γ, ∆ex, Θin, Θout ([TC])

M = (mov(Γ) ∩MP ∩MQ) ∪mov(Θin) ([TL])

mayMove(LQk, LQ′
k) ⊆ MP ∪mov(ΘLQ) ([MovLP ])

mayMove(LPk, LP ′
k) ⊆ MQ ∪mov(ΘLP ) ([MovLQ])

LPk ∼̇
MP∪mov(Θin,ΘLQ)
Ψ,∆,Θcomm

LP ′
k ([BisimLP ])

LQk ∼̇
MQ∪mov(Θin,ΘLP )
Ψ,∆,Θcomm

LQ′
k ([BisimLQ])

Here Θcomm denotes (ΘLP
comm, ΘLQ

comm), and similarly for Θout. We also let ΘLP denote
(ΘLP

out, ΘLP
comm), and similarly for ΘLQ. We shall prove that R is a translocating strong

bisimulation.

Supposing

(newnewnew ∆, Θcomm ininin (LPk | LQk), newnewnew ∆, Θcomm ininin (LP ′
k | LQ′

k)) ∈ RM
Ψ

This means that there exist closed extensible located type contexts Γ, ∆ex, Θin, ΘLP
out, ΘLQ

out,

ΘLP
comm, ΘLQ

comm and two sets of names MP ,MQ satisfying the above conditions. Let δ be a valid

relocator for (Ψ,M) with Ψδ 
 newnewnew ∆, Θcomm ininin (LPk | LQk)
β−→
∆

LR, then the following are

all the possibilities (by Lemma B.2.3 (Lts Analysis)):
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1. LPk or LQk commits an action (silent, input, output, migration), and

2. LPk and LQk communicate (LPk sends and LQk receives, or vice versa).

We select the following for demonstration (ignoring the silent transition and symmetric
cases). Note that since Θcomm, ΘLP etc. are extensible and that if Θ1, Θ2 are extensible
then Θ1, Θ2 ≡ Θ2, Θ1 (provided that their domain are distinct and they are well-formed
etc.), we can mostly ignore the order of these extensible contexts.

Case Ψδ, ∆, Θcomm 
 LPk
@ax!!!v−−−−→

Ξ
LPk+1: Let ∆ ≡ ∆1, ∆2 and ΘL?

comm ≡ ΘL?
comm1, ΘL?

comm2,

where ? = P or Q, such that dom(∆, Θcomm) ∩ fv(v) = dom(∆1, Θcomm1). In this case, we
may derive the following.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LPk|LQk) @ax!!!v−−−−−−−−→
Ξ,∆1,Θcomm1

newnewnew ∆2, Θcomm2 ininin (LPk+1|LQk), by

(Lts-Open), (Lts-New) and (Lts-Prl).

• By [BisimLP ], there exists LP ′
k+1 such that, Ψδ, ∆, Θcomm 
 LP ′

k
@ax!!!v−−−−→

Ξ
LP ′

k+1 (†)

and LPk+1∼̇
MP∪mov(Θin,ΘLQ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1, by the definition of translocating strong bisim.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LP ′
k|LQ′

k) @ax!!!v−−−−−−−−→
Ξ,∆1,Θcomm1

newnewnew ∆2, Θcomm2 ininin (LP ′
k+1|LQ′

k) (†),

by (Lts-Open), (Lts-New) and (Lts-Prl).

• Let Ψ′ = Ψδ, Ξ, ∆1, Θcomm1, we have:

newnewnew ∆2, Θcomm2 ininin (LPk+1|LQk) RM
Ψ′ newnewnew ∆2, Θcomm2 ininin (LP ′

k+1|LQk)

as there exist

∆′
ex ≡ ∆exδ, ∆1 Ξin ≡ Θinδ

ΞLP
out ≡ ΘLP

out, ΘLP
comm1, Ξ ΞLQ

out ≡ ΘLQ
out, ΘLQ

comm1

ΞLP
comm ≡ ΘLP

comm2 ΞLQ
comm ≡ ΘLQ

comm2

such that

1. [TC] Ψ′ ≡ (Γ, ∆ex, Θin, Θout)δ, Ξ, Θcomm1, ∆1 ≡ Γδ, ∆′
ex, Ξin, Ξout.

2. [TL] M = (mov(Γ) ∩MP ∩MQ) ∪mov(Ξin), as mov(Ξin) = mov(Θin).

3. [MovLP ] mayMove(LQk, LQk) ⊆ MP ∪mov(ΞLQ) since dom(ΘLQ) = dom(ΞLQ).

4. [MovLQ] mayMove(LPk+1, LP ′
k+1) ⊆ MQ ∪mov(ΞLP ), by Lemma B.2.12.

5. [BisimLP ] LPk+1∼̇
MP∪mov(Θin,ΘLQ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1 implies, by context rearranging,

LPk+1∼̇
MP∪mov(Ξin,ΞLQ)
Ψ′,∆2,Ξcomm2

LP ′
k+1
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6. [BisimLQ] LQk∼̇
MQ∪mov(Θin,ΘLP )
Ψ,∆,Θcomm

LQ′
k implies,

– By Lemma 5.3.5 (Transloc Bisim SW), LQk∼̇
MQ∪mov(Θin,ΘLP ,Ξ)
Ψ,∆,Θcomm,Ξ LQ′

k.

– Since δ is valid for (Ψ,M), by Lemma B.6.1, and context rearranging, we
have: LQk∼̇

MQ∪mov(Ξin,ΞLP )
Ψ′,∆2,Ξcomm2

LQ′
k.

Thus RHS translocating strong simulates LHS in this case.

Case Ψδ, ∆, Θcomm 
 LPk
@ax???v−−−−→

Ξ
LPk+1 with fv(v) ∩ dom(∆, Θcomm) = ∅:: This implies:

• Ψδ 
 newnewnew ∆, Θcomm ininin (LPk|LQk) @ax???v−−−−→
Ξ

newnewnew ∆, Θcomm ininin (LPk+1|LQk), by (Lts-

New) and (Lts-Prl).

• By [BisimLP ], there exists LP ′
k+1 such that, Ψδ, ∆, Θcomm 
 LP ′

k
@ax???v−−−−→

Ξ
LP ′

k+1 (†),

and LPk+1∼̇
MP∪mov(Θin,ΘLQ)∪mov(Ξ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1 by the definition of translocating strong bisim.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LP ′
k|LQ′

k) @ax???v−−−−→
Ξ

newnewnew ∆, Θcomm ininin (LP ′
k+1|LQ′

k) (†), by

(Lts-New) and (Lts-Prl).

• Let Ψ′ ≡ Ψδ, Ξ, we have

newnewnew ∆, Θcomm ininin (LPk+1|LQk) RM∪mov(Ξ)
Ψ′ newnewnew ∆, Θcomm ininin (LP ′

k+1|LQk)

as there exists ΘLP
out, ΘLQ

out, ΘLP
comm, ΘLQ

comm and

∆′
ex ≡ ∆exδ Ξin ≡ Θinδ, Ξ

such that

1. [TC] Ψ′ ≡ (Γ, ∆ex, ΘinΘout)δ, Ξ ≡ Γδ, ∆′
ex, Ξin, Θout.

2. [TL] M ∪mov(Ξ) = (mov(Γ)∩MP ∩MQ)∪mov(Ξin), as mov(Ξin) = mov(Θin, Ξ).

3. [MovLP ] mayMove(LQk, LQ′
k) ⊆ MP ∪mov(ΘLQ) remains valid.

4. [MovLQ] mayMove(LPk+1, LP ′
k+1) ⊆ MQ ∪mov(ΘLP ), by Lemma B.2.12.

5. [BisimLP ] LPk+1∼̇
MP∪mov(Θin,Ξ,ΘLQ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1 implies, by rearranging,

LPk+1∼̇
MP∪mov(Ξin,ΞLQ)
Ψ′,∆,Θcomm

LP ′
k+1

6. [BisimLQ] Since δ is valid for (Ψ,M), LQk∼̇
MQ∪mov(Θin,ΘLP )
Ψ,∆,Θcomm

LQ′
k implies, by

Lemma 5.3.5 (Transloc Bisim SW) and Lemma B.6.1,

LQk∼̇
MQ∪mov(Θin,ΘLP ,Ξ)
Ψ′,∆,Θcomm

LQ′
k.
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Thus LQk∼̇
MQ∪mov(Ξin,ΘLP )
Ψ′,∆,Θcomm

LQ′
k.

Thus RHS translocating strong simulates LHS in this case.

Case Ψδ, ∆, Θcomm 
 LPk
@ax!!!v−−−−→

Ξ
LPk+1 and Ψδ, ∆, Θcomm 
 LQk

@ax???v−−−−→
Ξ

LQk+1: assuming
Ξ is fresh. This implies:

• Ψδ 
 newnewnew ∆, Θcomm ininin (LPk|LQk) τ−→ newnewnew ∆, Θcomm, Ξ ininin (LPk+1|LQk+1), by (Lts-

New) and (Lts-Comm).

• By [BisimLP ], there exists LP ′
k+1 such that, Ψδ, ∆, Θcomm 
 LP ′ @ax!!!v−−−−→

Ξ
LP ′

k+1 (†),

and LPk+1∼̇
MP∪mov(Θin,ΘLQ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1 by the definition of translocating strong bisim.

• By [BisimLP ], there exists LQ′
k+1 such that, Ψδ, ∆, Θcomm 
 LQ′ @ax???v−−−−→

Ξ
LQ′

k+1 (†),

and LQk+1∼̇
MQ∪mov(Θin,ΘLP )∪mov(Ξ)
Ψδ,∆,Θcomm,Ξ LQ′

k+1 by the definition of translocating strong
bisim.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LP ′
k|LQ′

k) τ−→ newnewnew ∆, Θcomm, Ξ ininin (LP ′
k+1|LQ′

k+1) (†), by
(Lts-New) and (Lts-Comm).

• Let Ψ′ = Ψδ, we have:

newnewnew ∆, Θcomm, Ξ ininin (LPk+1|LQk+1) RM
Ψ′ newnewnew ∆, Θcomm, Ξ ininin (LP ′

k+1|LQ′
k+1)

as there exists ΘLP
out, ΘLQ

out and

∆′
ex ≡ ∆exδ Ξin ≡ Θinδ

ΞLP
comm ≡ ΘLP

comm, Ξ ΞLQ
comm ≡ ΘLQ

comm

such that

1. [TC] Ψ′ ≡ (Γ, ∆ex, ΘinΘLP
out, ΘLQ

out)δ ≡ Γ, ∆′
ex, Ξin, Θout.

2. [TL] M = (mov(Γ) ∩MP ∩MQ) ∪mov(Ξin), as mov(Ξin) = mov(Θin).

3. [MovLP ] mayMove(LQk+1, LQ′
k+1) ⊆ MP ∪mov(ΞLQ), by Lemma B.2.12.

4. [MovLQ] mayMove(LPk+1, LP ′
k+1) ⊆ MQ ∪mov(ΞLP ), by Lemma B.2.12.

5. [BisimLP ] LPk+1∼̇
MP∪mov(Θin,Θ,ΘLQ)
Ψδ,∆,Θcomm,Ξ LP ′

k+1 implies, by rearranging,

LPk+1∼̇
MP∪mov(Ξin,ΞLQ)
Ψ′,∆,Ξcomm

LP ′
k+1
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6. [BisimLQ] LQk+1∼̇
MQ∪mov(Θin,ΘLP ,Ξ)
Ψδ,∆,Θcomm,Ξ LQ′

k+1 implies, by rearranging,

LQk+1∼̇
MQ∪mov(Ξin,ΞLP )
Ψ′,∆,Ξcomm

LQ′
k+1

Thus RHS translocating strong simulates LHS in this case.

Case Ψδ, ∆, Θcomm 
 LPk
@amigrate to s−−−−−−−−−→ LPk+1 and a ∈ dom(Γ): This implies:

• Ψδ 
 newnewnew ∆, Θcomm ininin (LPk|LQk)
@amigrate to s−−−−−−−−−→ newnewnew ∆, Θcomm ininin (LPk+1|LQk), by

(Lts-New) and (Lts-Prl).

• By [BisimLP ], there exists LP ′
k+1 such that, Ψδ, ∆, Θcomm 
 LP ′

k

@amigrate to s−−−−−−−−−→ LP ′
k+1

(†), and LPk+1∼̇
MP∪mov(Θin,ΘLQ)
Ψδ@amigrate to s,∆,Θcomm

LP ′
k+1 by the definition of translocating strong

bisim.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LP ′
k|LQ′

k)
@amigrate to s−−−−−−−−−→ newnewnew ∆, Θcomm ininin (LP ′

k+1|LQ′
k) (†),

by (Lts-New) and (Lts-Prl).

• Let Ψ′ = Ψδ@amigrate to s, we have:

newnewnew ∆, Θcomm ininin (LPk+1|LQk) RM
Ψ′ newnewnew ∆, Θcomm ininin (LP ′

k+1|LQk)

as there exists

∆′
ex ≡ ∆exδ Ξin ≡ Θinδ

and ΘLP
out, ΘLQ

out, ΘLP
comm, ΘLQ

comm such that

1. [TC] Ψ′ ≡ (Γ, ∆ex, Θin, Θout)δ@amigrate to s ≡ Γδ@amigrate to s, ∆′
ex, Ξin, Θout.

2. [TL] M = (mov(Γ) ∩MP ∩MQ) ∪mov(Ξin), as mov(Ξin) = mov(Θin).

3. [MovLP ] mayMove(LQk, LQ′
k) ⊆ MP ∪mov(ΘLQ) remains valid.

4. [MovLQ] mayMove(LPk+1, LP ′
k+1) ⊆ MQ ∪mov(ΘLP ), by Lemma B.2.12.

5. [BisimLP ] LPk+1∼̇
MP∪mov(Ξin,ΘLQ)
Ψ′,∆,Θcomm

LP ′
k+1, see above.

6. [BisimLQ] Since δ is valid for (Ψ,M) and, by Lemma B.2.11, a ∈ mayMove(LPk),
i.e. a ∈ MP ∪mov(ΘLP ). This implies, by Lemma B.6.1,

LQk∼̇
MQ∪mov(Ξin,ΘLP )
Ψ′,∆,Θcomm

LQ′
k.

Thus RHS translocating strong simulates LHS in this case, (Similarly for the case where
a ∈ dom(∆ex)).

Case Ψδ, ∆, Θcomm 
 LPk
@amigrate to s−−−−−−−−−→ LPk+1 and a ∈ dom(ΘLP

comm): This implies:
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• Ψδ 
 newnewnew ∆, Θcomm ininin (LPk|LQk) τ−→ newnewnew ∆, (Θcomm ⊕ a 7→ s) ininin (LPk+1|LQk), by
(Lts-Bound-Mig), (Lts-New) and (Lts-Prl).

• By [BisimLP ], there exists LP ′
k+1 such that, Ψδ, ∆, Θcomm 
 LP ′

k

@amigrate to s−−−−−−−−−→ LP ′
k+1

(†), and LPk+1∼̇
MP∪mov(Θin,ΘLQ)
Ψ,∆,(Θcomm⊕a 7→s)LP ′

k+1 by the definition of translocating strong bisim.

• Ψδ 
 newnewnew ∆, Θcomm ininin (LP ′
k|LQ′

k) τ−→ newnewnew ∆, (Θcomm ⊕ a 7→ s) ininin (LP ′
k+1|LQ′

k) (†),
by (Lts-Bound-Mig), (Lts-New) and (Lts-Prl).

• Let Ψ′ = Ψδ, we have:

newnewnew ∆, (Θcomm⊕a 7→ s) ininin (LPk+1|LQk) RM
Ψ′ newnewnew ∆, (Θcomm⊕a 7→ s) ininin (LP ′

k+1|LQk)

as there exists

∆′
ex ≡ ∆exδ Ξin ≡ Θinδ

ΞLP
comm ≡ ΘLP

comm ⊕ a 7→ s ΞLQ
comm ≡ ΘLQ

comm

∆′ ≡ ∆

and ΘLP
out, ΘLQ

out such that

1. [TC] Ψ′ ≡ (Γ, ∆ex, Θin, Θout)δ ≡ Γδ, ∆′
ex, Ξin, Θout.

2. [TL] M = (mov(Γ) ∩MP ∩MQ) ∪mov(Ξin), as mov(Ξin) = mov(Θin).

3. [MovLP ] mayMove(LQk, LQ′
k) ⊆ MP ∪mov(ΞLQ), since dom(ΞLQ) = dom(ΘLQ).

4. [MovLQ] mayMove(LPk+1, LP ′
k+1) ⊆ MQ ∪mov(ΞLQ), by Lemma B.2.12.

5. [BisimLP ] LPk+1∼̇
MP∪mov(Ξin,ΞLQ)
Ψ′,∆,Ξcomm

LP ′
k+1, see above.

6. [BisimLQ] Since δ is valid for (Ψ,M) and, by Lemma B.2.11, we have a ∈
mayMove(LPk), i.e. a ∈ MP ∪mov(ΘLP ). This implies LQk∼̇

MQ∪mov(Ξin,ΞLP )
Ψ′,∆,Ξcomm

LQ′
k,

by Lemma B.6.1.

Thus RHS translocating strong simulates LHS in this case, (and similarly for the cases where
a ∈ dom(∆, ΘLQ

comm)).

Therefore R is a strong translocation bisimulation.

Replacing all ∼̇ with ≈̇ and all
β−→
∆

with
β̂

=⇒
∆

at all (†) in the proof for the strong case and
we have a proof for the weak case. �
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B.8 Proof Techniques

Lemma B.8.1 (Injection preserves locality of channels)

If c is a local channel in LP and σ is an injective name substitution then cσ is a local channel
in LPσ.

Lemma B.8.2 (Substitution preserves locality of channels)

If c is a local channel in LP and σ is a name substitution with c 6∈ range(σ) then c is a local
channel in LPσ.

Lemma B.8.3 (Transition preserves locality of channels)

Given that c is a local channel in LP and Γ 
 LP
β−→
∆

LQ, if β is not an input label @ax???v,

for some a, x, v, with c ∈ fv(v), then c is a local channel in LQ.

Proof: A routine induction on the derivation of Γ 
 LP
β−→
∆

LQ. �

Lemma B.8.4

Given that c is a local channel and Γ 
 LP
β−→
Ξ

LQ with c 6∈ fv(β), we have:

• if β is an output label then readA(c, LQ) ⊆ readA(c, LP )∪agents(Ξ) and writeA(c, LQ) ⊆
writeA(c, LP ) ∪ agents(Ξ).

• if β is not an output label then readA(c, LQ) ⊆ readA(c, LP ) and writeA(c, LQ) ⊆
writeA(c, LP ).

Proof: A routine induction on the derivation of Γ 
 LP
β−→
Ξ

LQ. �

Lemma B.8.5

1. If c is a local channel in LP and Γ 
 LP
@ac!!!v−−−−→

Ξ
LQ then a ∈ writeA(c, LP ).

2. If c is a local channel in LP and Γ 
 LP
@ac???v−−−−→

Ξ
LQ then a ∈ readA(c, LP ).

Lemma B.8.6 (Scope narrowing of local channel (6.2.7))

Given that Γ is a closed located type context with Γ, c : ^̂̂IT ` LP |LQ, if c is a local channel
in LP, LQ and agents(LP ) ∩ agents(LQ) = ∅ then

newnewnew c : ^̂̂IT ininin (LP | LQ) ∼Γ (newnewnew c : ^̂̂IT ininin LP ) | (newnewnew c : ^̂̂IT ininin LQ).

Proof: Construct a translocating relation S, with SM
Φ contains the pairs

(newnewnew c : ^̂̂IT, Θ ininin (LP1 | LQ1), newnewnew c, c′ : ^̂̂IT, Θ ininin (LP1 | ({c′/c}LQ1)))
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subject to the following.

Φ, c : ^̂̂rwT, Θ ` LP1 | LQ1 ∧ ` Φ, c : ^̂̂rwT, c′ : ^̂̂rwT, Θ ([Process typing])

c is a local channel in LP1, LQ1 ([Loc])

readA(c, LP1) ∩ writeA(c, LQ1) = readA(c, LQ1) ∩ writeA(c, LP1) = ∅ ([Disj])

We shall show that S is a translocating strong bisimulation. In fact, since there is no condition
on the translocating index, S is a strong congruence. Once such a result is validated, we may
derive the lemma as follows.

newnewnew c : ^̂̂IT ininin (LP | LQ) ∼Γ newnewnew c, c′ : ^̂̂IT ininin (LP | ({c′/c}LQ))

≡ (newnewnew c : ^̂̂IT ininin LP ) | (newnewnew c′ : ^̂̂IT ininin ({c′/c}LQ))

≡ (newnewnew c : ^̂̂IT ininin LP ) | (newnewnew c : ^̂̂IT ininin LQ)

Let

(newnewnew c : ^̂̂IT, Θ ininin (LP1 | LQ1), newnewnew c, c′ : ^̂̂IT, Θ ininin (LP1 | ({c′/c}LQ1))) ∈ SM
Φ

and δ be a valid relocator for (Φ,M). Supposing that

Φδ 
 newnewnew c : ^̂̂IT, Θ ininin (LP1 | LQ1)
β−→
Ξ

LR

We shall demonstrate interesting cases for deriving this transition.

Case Φδ, c : ^̂̂rwT, Θ 
 LP1
@ax!!!v−−−−→

Ξ
LP2 where x 6∈ dom(Θ, c): In this case, let Θ ≡ Θ1, Θ2

with dom(Θ) ∩ fv(v) = dom(Θ1); we may derive the following.

• By [Loc], we have c is non-sendable. Applying Lemma 6.2.1, we have c 6∈ fv(v).

• Φδ 
 newnewnew c : ^̂̂IT, Θ ininin (LP1 | LQ1) @ax!!!v−−−−→
Ξ,Θ1

LR, by (Lts-Open), (Lts-Prl) and (Lts-

New), where LR ≡ newnewnew c : ^̂̂IT, Θ2 ininin (LP2 | LQ1).

• Φδ 
 newnewnew c, c′ : ^̂̂IT, Θ ininin (LP1 | ({c′/c}LQ1)) @ax!!!v−−−−→
Ξ,Θ1

LR′, by (Lts-Open), (Lts-Prl)

and (Lts-New), where LR′ ≡ newnewnew c, c′ : ^̂̂IT, Θ2 ininin (LP2 | ({c′/c}LQ1)).

• LR SM
Φδ,Ξ,Θ1

LR′ since the followings hold:

– [Process typing]: Φδ, c : ^̂̂IT, Θ2, Ξ, Θ1 ` LP2, by Theorem 4.5.1 (Subj).

– [Loc]: c is a local channel in LP2, by Lemma B.8.3.

– [Disj]: readA(c, LP2) ⊆ readA(c, LP1) and writeA(c, LP2) ⊆ writeA(c, LP1), by
Lemma B.8.4. This implies readA(c, LP2) ∩ writeA(c, LQ1) = readA(c, LQ1) ∩
readA(c, LP2) = ∅.



B.8. PROOF TECHNIQUES 223

Thus, S is a translocating bisimulation in this case.

Case Φδ, c : ^̂̂rwT, Θ 
 LQ1
@ax!!!v−−−−→

Ξ
LQ2 where x 6∈ dom(Θ, c): Similar to the above case,

except we need to show that

Φδ 
 newnewnew c, c′ : ^̂̂IT, Θ ininin (LP1 | ({c′/c}LQ1)) @ax!!!v−−−−→
Ξ,Θ1

LR′.

This transition can be derived as follows.

• Φδ, c, c′ : ^̂̂rwT, Θ 
 {c′/c}LQ1
@ax!!!v−−−−→

Ξ
{c′/c}LQ2, by Lemma 4.5.7 (Lts Inj), and c 6∈

fv(v), x, a (then apply Lemma 4.5.5 (Lts SW)).

Thus true for this case.

Case Φδ, c : ^̂̂rwT, Θ 
 LP1
@ax???v−−−−→

Ξ
LP2 and Φδ, c : ^̂̂rwT, Θ 
 LQ1

@ax???v−−−−→
Ξ

LQ2: In this case,
we may derive the following.

• x 6= c, since a ∈ writeA(c, LP1) ∩ readA(c, LQ1), by Lemma B.8.5. By [Loc], applying
Lemma 6.2.1, c 6∈ fv(v).

• Φδ 
 newnewnew c : ^̂̂IT, Θ ininin (LP1 | LQ1) τ−→ LR, by (Lts-Comm) and (Lts-New), where
LR ≡ newnewnew c : ^̂̂IT, Θ, Ξ ininin (LP2 | LQ2).

• Φδ, c′ : ^̂̂rwT, Θ 
 {c′/c}LQ1
@ax???v−−−−→

Ξ
{c′/c}LQ2, by Lemma 4.5.7 (Lts Inj), and c 6∈

fv(v), x, a.

• Φδ 
 newnewnew c, c′ : ^̂̂IT, Θ ininin (LP1 | ({c′/c}LQ1)) τ−→ LR′, by (Lts-Comm) and (Lts-New),
where LR′ ≡ newnewnew c, c′ : ^̂̂IT, Θ, Ξ ininin (LP2 | ({c′/c}LQ2)).

• LR SM
Φδ LR′ since the following hold:

– [Process typing]: Φδ, c : ^̂̂IT, Θ, Ξ ` LP2, by Theorem 4.5.1 (Subj).

– [Loc]: c is a local channel in LP2, by Lemma B.8.3.

– [Disj]: readA(c, LP2) ⊆ readA(c, LP1) and writeA(c, LP2) ⊆ writeA(c, LP1), etc.
by Lemma B.8.4.
This implies readA(c, LP2) ∩ writeA(c, LQ2) = readA(c, LQ2) ∩ readA(c, LP2) = ∅.

Thus, S is a translocating strong bisimulation. �

Lemma B.8.7 (Relocatable deterministic reduction)

If Γ 
 LP
det−−→
M

LQ then, for any valid relocator δ for (Γ,M), Γδ 
 LP
det−−→
M

LQ.
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Lemma B.8.8 (Strengthening/weakening deterministic reduction)

Given that `L Γ, ∆ with ∆ being extensible and Γ ` LP , M ⊆ agents(Γ), M ′ ⊆ agents(∆),

we have: Γ 
 LP
det−−→
M

LQ if and only if Γ, ∆ 
 LP
det−−−−→

M∪M ′
LQ.

Proof: For the right-to-left direction, supposing Γ, ∆ 
 LP
det−−−−→

M∪M ′
LQ and Γ ` LP , we

may derive the following.

• Let δ be a valid relocator for ((Γ, ∆),M ∪M ′), (Γ, ∆)δ 
 LP
τ−→ LQ, by the definition

of determinacy. This means that Γδ 
 LP
τ−→ LQ, by Lemma 4.5.5 (Lts SW).

• Let δ′ be a valid relocator for (Γ,M); Assuming Γδ′ 
 LP
β−→
Ξ

LR, by Lemma 4.5.5 (Lts

SW), we have:

Γδ′, ∆ 
 LP
β−→
Ξ

LR

However, by the definition of determinacy, we have β = τ and LQ∼̇M∪M ′
Γ,∆ LR. Applying

Lemma 5.3.5 (Transloc Bisim SW), we have: LQ∼̇M
Γ LR.

Hence Γ 
 LP
det−−→
M

LQ, ie. true for this case.

For the left-to-right direction is similar. Omitted. �

B.9 ∆-Restricted Equivalences

Names in Φaux are binding in C [[LP ]] and are subject to alpha-conversion. This means that
in principle C [[LP ]] should be able to extrude, by input or output actions, names which clash
with Φaux. However, the definition of the compositional encoding, [[]], elides Φaux, making it
impossible to explicitly rename Φaux in the C-translation. We need to deal with situations
where an extruded context clashes with Φaux without having to explicitly rename the binding
context Φaux. For this we formulate a concept of Φaux-restriction on operational equivalences
and preorders. In this section, we only give the definition and result for translocating strong
bisimulation, but it should be clear that such definitions and results extend naturally to
translocating weak bisimulation, translocating expansion, and translocating expansion up to
expansion.

Definition B.9.1 (Translocating ∆-Restricted Strong Bisimulation)

A symmetric translocating indexed relation S is a translocating ∆-restricted strong bisimu-
lation if ∆ is extensible and, for all closed type context Γ with ` Γ, ∆ and M ⊆ mov(Γ),
(LP, LQ) ∈ SM

Γ implies
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• Γ ` LP and Γ ` LQ,

• for any relocator δ valid for (Γ,M), if Γδ 
 LP
β−→
Θ

LP ′ and fv(β) ∩ dom(∆) = ∅ then

there exists LQ′ such that Γδ 
 LQ
β−→
Θ

LQ′ and (LP ′, LQ′) ∈ SM]βmov(Θ)
Γδβ,Θ .

Lemma B.9.1

Given thatR is a strong translocating ∆-restricted bisimulation, if LPRM
Γ LQ then LP ∼̇M

Γ LQ.

Proof: Constructing a translocating relation S, such that SM ′
Φ is as follows.

{(LP ′, LQ′) | ∃σ injective . σLP ′ RσM ′
σΦ σLQ′ ∧ ` σΦ, ∆}

We shall prove that S is a translocating strong bisimulation.

Supposing (LP ′, LQ′) ∈ SM ′
Φ , this means that there exists an injection σ such that ` σΦ, ∆

and σLP ′ RσM ′
σΦ σLQ′. Let δ be a valid relocator for (Φ,M ′), and Φδ 
 LP ′ β−→

Θ
LP ′

1, we may
derive the following.

• Picking an injective ρ : dom(Θ) → X/dom(Φ, ∆), clearly σ + ρ is an injective. By

Lemma 4.5.7 (Lts Inj), we have: σ(Φδ) 
 σLP ′ (σ+ρ)β−−−−→
ρΘ

(σ + ρ)LP ′
1.

• Since dom(Θρ) ∩ dom(∆) = ∅, there exists LQ′
1 such that σ(Φδ) 
 σLQ′ (σ+ρ)β−−−−→

ρΘ
LQ′

1

and (σ + ρ)LP ′
1 R

(σ+ρ)(M ′]βmov(Θ))

(σ+ρ)(Φδβ,Θ) LQ′
1, since σLP ′RσM ′

σΦ σLQ′.

• Since (σ + ρ) is an injective, we have (σ + ρ)−1 is also an injective. By Lemma 4.5.7
(Lts Inj), we have: Φδ 
 LQ′ β−→

Θ
(σ + ρ)−1LQ′

1.

• This implies LP ′
1S

M ′]βmov(Θ)
Φδ,Θ (σ + ρ)−1LQ′

1.

This implies S is a translocating strong simulation. The proof of S−1 being a translocating
strong simulation is similar. Hence the lemma. �
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Appendix C

Properties of Temporary

Immobility

Lemma C.0.2 (Blocking set up to ≈̇ implies temporary immobility (6.4.6))

Given that Γ is a closed located type context, and M ⊆ agents(Γ) is a translocating index, if
there exists a blocking set up to ≈̇ under l, M, such that LP ∈MM

Γ then LP is temporary
immobile under l w.r.t. (Γ, M).

Proof: Supposing M is a blocking set up to ≈̇ under l, we construct a translocating set N ,
defined for any closed located type context Φ, and translocating index M ′, as follows:

NM ′
Φ

def= {LQ | ∃LR . LQ≈̇M ′

Φ LR ∧ LR ∈MM ′
Φ }

We shall prove that N is a blocking set under l. Let LQ ∈ NM ′
Φ . By definition there exists

LR such that LQ≈̇M ′

Φ LR and LR ∈ MM ′
Φ . Suppose that δ ia a valid relocator for (Φ,M ′)

and Φδ 
 LQ
β−→
∆

LQ′. The following are all the possibilities. We omit the trivial β = τ case.

Case β = @bc???v with l 6∈ fv(β): There exists LR′ such that Φδ 
 LR
β

=⇒
∆

LR′ and

LQ′≈̇M ′∪mov(∆)
Φδ,∆ LR′, by the definition of translocating weak bisimulation. LR′ ∈MM ′∪mov(∆)

Φδ,∆

since M is a blocking set under l. LQ′ ∈ NM ′∪mov(∆)
Φδ,∆ , by definition.

Case β = @bc!!!v: There exists LR′ such that Φδ 
 LR
β

=⇒
∆

LR′ and LQ′≈̇M ′

Φδ,∆LR′, by

the definition of translocating weak bisimulation. LR′ ∈ MM ′
Φδ,∆ and l 6∈ fv(β), since M is a

blocking set. LQ′ ∈ NM ′
Φδ,∆, by definition.

227
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Case β = @bmigrate to s: There exists LR′ such that Φδ 
 LR
@bmigrate to s

=⇒ LR′ and

LQ′≈̇M ′

Φδ@bmigrate to sLR′, by the definition of translocating weak bisimulation. However, M
is a blocking set implies that such an LR′ does not exist. A contradiction occurs. Therefore
b, s, LQ′ do not exist.

Hence the lemma. �

Lemma C.0.3 (Safety of deterministic reduction (6.4.2))

Given that LQ is temporary immobile under l w.r.t. ((Γ, ∆),M), with ∆ being extensible

and l ∈ dom(∆), if Γ, ∆ 
 LP1
det−−→
M

LP2 then

newnewnew ∆ ininin (LP1 | LQ) �̇M∩dom(Γ)
Γ newnewnew ∆ ininin (LP2 | LQ)

Proof: Construct a translocating relation R with RM ′
Ξ the union of ≡ and the pairs

(newnewnew ∆′ ininin (LP1 | LQ′), newnewnew ∆′ ininin (LP2 | LQ′))

subject to the condition that there exist Γ′, Θin, Θex,M ′′, with Γ′ closed, and Θin and Θex

extensible, satisfying

Ξ ≡ Γ′, Θex, Θin ([Cont])

Ξ ` newnewnew ∆′ ininin (LP1|LQ′) ([Type])

M ′ = (M ′′ ∩mov(Γ′)) ∪mov(Θin) ([Transl])

l ∈ dom(∆′) ([Lock])

LQ′ ∈MM ′′∪mov(Θin)
Ξ,∆′ ([TempImmob])

Ξ, ∆′ 
 LP1
det−−−−−−−−−−−−→

M ′′∪mov(Θex,Θin)
LP2 ([Determ])

We shall prove that R is a translocating expansion. Let δ be a valid relocator for (Ξ,M ′)
and (newnewnew ∆′ ininin (LP1 | LQ′),newnewnew ∆′ ininin (LP2 | LQ′)) ∈ RM ′

Ξ . By the definition of R, there
exists Γ′, Θin, Θex,M ′′ satisfying all the above conditions.

RHS strictly simulates LHS Supposing Ξδ 
 newnewnew ∆′ ininin (LP1 | LQ′)
β−→
Θ

LR, this im-

plies, by Lemma B.2.3 (Lts Analysis), that one of the following cases holds. We omit trivial
cases.

Case Ξδ, ∆′ 
 LP1
τ−→ LP ′: Applying the definition of determinism on [Determ], we have

LP ′ ≡ LP2. β = τ , Θ = • and LR ≡ newnewnew ∆′ ininin LP2 | LQ′. As ≡ ⊆ R, we have
(LR,newnewnew ∆′ ininin (LP2 | LQ′)) ∈ RM ′

Ξ Thus RHS strictly simulates LHS in this case.
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Case Ξδ, ∆′ 
 LP1
β−→ LP ′: Applying the definition of determinism on [Determ], we have

β = τ , which is the previous case.

Case Ξδ, ∆′ 
 LQ′ @ac???v−−−−→
Θ

LQ′′ with dom(∆′) ∩ fv(@ac???v) = ∅: In this case, we may derive
the following.

• β = @ac???v, Θ = Θ and LR ≡ newnewnew ∆′ ininin (LP1 | LQ′′).

• Ξδ 
 newnewnew ∆′ ininin (LP2 | LQ′) @ac???v−−−−→
Θ

newnewnew ∆′ ininin (LP2 | LQ′′), by (Lts-Prl), (Lts-New).

• (LR,newnewnew ∆′ ininin (LP2 | LQ′′)) ∈ RM ′∪mov(Θ)
Ξδ,Θ since there exists:

Γ′′ = Γ′δ Θ′
in = Θinδ, Θ Θ′

ex = Θex

such that:

– [Cont] Ξδ, Θ = Γ′′, Θ′
in, Θ′

ex.

– [Type] Ξδ, Θ ` LR, by Theorem 4.5.1 (Subj).

– [Transl]

M ′′ ∪mov(Θ) = (M ′′ ∩mov(Γ′))∪mov(Θin, Θ) = (M ′′ ∩mov(Γ′))∪mov(Θ′
in)

Since M ′′ ⊆ agents(Γ′, ∆′) and hence M ′′ ∩ dom(Θ) = ∅.

– [Lock] l ∈ dom(∆′).

– [Determ] Ξδ, Θ, ∆′ 
 LP1
det−−−−−−−−−−−−→

M ′′∪mov(Θ′
ex,Θ′

in)
LP2, by Lemma B.8.7 and Lemma

B.8.8.

– [TempImmob] Since l 6∈ fv(v), we have: LQ′ ∈ MM ′′∪mov(Θ′
in)

Ξδ,Θ,∆′ , by the closure
property of M being a blocking set.

Thus true for this case.

Case Ξδ, ∆′ 
 LQ′ @ac!!!v−−−−→
Θ

LQ′′ with a, c ∈ dom(Ξ): In this case, we may derive the following.

• l 6∈ fv(@ac!!!v) since LQ′ ∈MM ′′∪mov(Θin), apply Lemma 6.4.3.

• Assuming ∆′ = ∆′
1, ∆′

2 where dom(∆′) ∩ fv(v) = dom(∆′
1).

• β = @ac!!!v, Θ = Θ, ∆′
1 and LR ≡ newnewnew ∆′

2 ininin (LP1 | LQ′′).

• Ξδ 
 newnewnew ∆′ ininin (LP2 | LQ′) @ac!!!v−−−−→
Θ,∆′

1

newnewnew ∆′
2 ininin (LP2 | LQ′′), by (Lts-Prl), (Lts-New)

and (Lts-Open).
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• (LR,newnewnew ∆′ ininin (LP2 | LQ′′)) ∈ RM ′

Ξδ,Θ,∆′
1

since there exists:

Γ′′ = Γ′δ, ∆′
1 Θ′

in = Θinδ Θ′
ex = Θex, Θ

such that:

– [Cont] Ξδ, Θ, ∆′
1 = Γ′′, Θ′

in, Θ′
ex.

– [Type] Ξδ, Θ, ∆′
1 ` LR, by Theorem 4.5.1 (Subj).

– [Transl]

M ′ = (M ′′ ∩mov(Γ′)) ∪mov(Θin) = (M ′′ ∩mov(Γ′)) ∪mov(Θ′
in)

– [Lock] l 6∈ fv(v) implies l ∈ dom(∆′
2).

– [Determ] Ξδ, Θ, ∆′ 
 LP1
det−−−−−−−−−−−−→

M ′′∪mov(Θ′
ex,Θ′

in)
LP2, by Lemma B.8.7 and Lemma

B.8.8.

– [TempImmob] LQ′ ∈MM ′′∪mov(Θ′
in)

Ξδ,Θ,∆′ , by the closure property of M being a block-
ing set.

Thus true for this case.

Case Communication between LP1 and LQ′: Impossible since LP1 can neither send nor
receive.

Case Ξδ, ∆′ 
 LQ′ @amigrate to s−−−−−−−−−→ LQ′′: Impossible, by [TempImmob].

LHS progressingly simulates RHS Whatever action committed by RHS, LHS can do
one silent action and commit the same action. �

Lemma C.0.4 (Immobility)

Given that LP is a located process such that mayMove(LP ) = ∅, if Γ is a closed located
type context with Γ ` P , M ⊆ mov(Γ) and l is non-sendable in LP , then LP is temporary
immobile under l w.r.t. (Γ,M).

Lemma C.0.5 (Composition preserve temporary immobility (6.4.7))

If LP and LQ are temporarily immobile under l, w.r.t. ((Γ, ∆),M) with l ∈ dom(Γ) and ∆
extensible, then newnewnew ∆ ininin (LP |LQ) is temporarily immobile under l, w.r.t. (Γ,M ∩dom(Γ)).

Proof: Given that LP, LQ are temporarily immobile under l, wrt ((Γ, ∆),M), there exist
blocking sets under l, M,N such that LP ∈MM

Γ,∆ and LQ ∈ NM
Γ,∆. We choose those which

satisfy the following.
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• They are translocating. LR ∈ MM ′
Φ and δ be a valid relocators for (Φ,M ′) implies

LR ∈MM ′
Φδ .

• They can be weakened. LR ∈MM ′
Φ , ` Φ, Θ and M ′′ ⊆ mov(Θ) implies LR ∈MM ′∪M ′′

Φ,Θ .

It is easy to prove that choosing blocking sets which satisfy the above is always possible.

We construct a translocating set O, such that

OM ′
Φ

def=

{
newnewnew Θ ininin (LP ′|LQ′)

∣∣∣ ∃MP ,MQ .
M ′ ⊆ (MP ∩MQ ∩ dom(Φ)) ∧
LP ′ ∈MMP

Φ,Θ ∧ LQ′ ∈ NMQ

Φ,Θ

}

We need to prove that O is a blocking set under l. Let δ be a valid relocator for (Φ,M ′) and
consider newnewnew Θ ininin (LP ′|LQ′) ∈ OM ′

Φ . By definition of O, there exists MP ,MQ such that the

above holds. Suppose Φδ 
 newnewnew Θ ininin (LP ′|LQ′)
β−→
Ξ

LR, one of the following cases holds.

Case β = τ : By Lemma B.2.3 (Lts Analysis), these are all the possibilities (we ignore
symmetric cases).

• Φδ, Θ 
 LP ′ τ−→ LP ′′ and LR ≡ newnewnew Θ ininin (LP ′′|LQ′). LP ′ ∈ MMP
Φ,Θ implies LP ′′ ∈

MMP
Φδ,Θ. LQ′ ∈ NMQ

Φδ,Θ, since N satisfies “translocating” condition above.

• Φδ, Θ 
 LP ′ @ac???v−−−−→
Ξ

LP ′′, Φδ, Θ 
 LQ′ @ac!!!v−−−−→
Ξ

LQ′′ and LR ≡ newnewnew Θ, Ξ ininin LP ′′|LQ′′.

LQ′ ∈ MMQ

Φ,Θ implies l 6∈ fv(c, v) and LQ′′ ∈ MMQ

Φδ,Θ,Ξ. LP ′ ∈ MMP
Φ,Θ and l 6∈ fv(c, v)

implies LP ′′ ∈MMP∪mov(Ξ)
Φδ,Θ,Ξ .

This means that LR ∈ OM ′
Φδ . Thus true for this case.

Case β = @ac!!!v: By Lemma B.2.3 (Lts Analysis), ignoring symmetric cases, we have
Φδ, Θ 
 LP ′ @ac!!!v−−−−→

Ξ′
LP ′′. Supposing fv(v) ∩ dom(Θ) = dom(Θ1) where Θ ≡ Θ1, Θ2, by

(Lts-Open) etc, we have LR ≡ newnewnew Θ2 ininin LP ′′|LQ′ and Ξ = Ξ′, Θ1. LP ′ ∈ MMP
Φ,Θ implies

l 6∈ fv(β) and LP ′′ ∈ MMP
Φδ,Θ,Ξ′ . LQ′ ∈ NMQ

Φδ,Θ,Ξ′ , since N satisfies the “weakening” condition
above. This means that LR ∈ OM ′

Φδ,Ξ′,Θ1
. Thus true for this case.

Case β = @ac???v with l 6∈ fv(β): By Lemma B.2.3 (Lts Analysis), ignoring symmetric
cases, we have Φδ, Θ 
 LP ′ @ac???v−−−−→

Ξ
LP ′′ and a, c ∈ dom(Φ). Pick a injection σ : dom(Ξ) →

X/dom(Φ, Θ), by Lemma 4.5.7 (Lts Inj) Φδ, Θ 
 LP ′ @ac???σv−−−−→
σΞ

LP ′′′, where LP ′′′ = σLP ′′.

By (Lts-Prl) etc, we have LR ≡ newnewnew Θ ininin LP ′′′|LQ′. LP ′ ∈ MMP
Φ,Θ and l 6∈ fv(β) im-

plies LP ′′ ∈ MMP∪mov(σΞ)
Φδ,Θ,σΞ . LQ′ ∈ NMQ∪mov(σΞ)

Φδ,Θ,σΞ , since N satisfies the “translocating” and

“weakening” conditions above. This means that LR ∈ OM ′∪mov(σΞ)
Φ,σΞ . Thus true for this

case.
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Case β = @amigrate to s, a ∈ dom(Φ): By Lemma B.2.3 (Lts Analysis), ignoring symmetric
cases, we have Φδ, Θ 
 LP ′ @amigrate to s−−−−−−−−−→ LP ′′. This is impossible, however, since LP ′ ∈
MMP

Φ,Θ. A contradiction has occurred. Thus this transition is impossible. �

Lemma C.0.6 (Weak bisimulation preserves temporary immobility (6.4.8))

If LP is temporary immobile under l w.r.t. (Γ,M) and LP ≈̇M
Γ LQ then LQ is temporary

immobile under l w.r.t. (Γ,M).

Proof: Quite obvious from the proof of Lemma 6.4.6. �

C.1 Proofs of C-Related Results

Lemma C.1.1 (Blocked by local lock (6.4.4))

Given that Γ is a closed located type context, Γ `a P , `L Γ, Φaux and M ⊆ agents(Γ)/{a}.
@a([[P ]]a |Deliverer) is temporarily immobile under currentloc w.r.t. ((Γ, Φaux),M).

Proof: We need to consider a translocating derivative of LP = @a([[P ]]a |Deliverer), which
is in the form of

newnewnew Θ ininin (
∏

i

@aici!!!vi | @a([[R]]a |Deliverer))

where
∏

i @aici!!!vi are inter-agent messages produced, with Θ being the potentially extruded
context. We define a translocating set M such that MM ′

Ψ,Φaux
is a set of processes of the form

newnewnew Θ ininin (
∏

i

@aici!!!vi| @a([[R]]a |Deliverer))

well-typed wrt Ψ, Φaux, satisfying the following.

M ′ ⊆ agents(Ψ)/{a} ([Transloc])

currentloc 6∈ fv(R,
∏

i

@aici!!!vi) ([FreeV])

We shall prove that M is a blocking set up to ≈̇ under currentloc.

Let δ be a valid relocator for ((Ψ, Φaux),M ′) and LP ∈MM ′
Ψ,Φaux

, where

LP ≡ newnewnew Θ ininin (
∏

i

@aici!!!vi| @a([[R]]a | Deliverer))

Supposing Ψδ, Φaux 
 LP
β−→
∆

LQ with β not being an input label with currentloc ∈ fv(β),

we shall check all the possibilities that this transition may occur (omitting trivial and similar
cases).
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Case R ≡ P ′|Q and P ′ is a createcreatecreate or migrate tomigrate tomigrate to process: The channel currentloc
must be acquired in the first step. Thus true for this case.

Case R ≡ P ′|Q and P ′ = 〈b@?〉c!!!v: In this case, we have:

• By the definition of [[]]a, we have [[P ′]]a
def= 〈D@SD〉message!!! {|T |} [b c v], where Ψ, Φaux, Θ `

v ∈ T .

• We decompose LP as E [LQ] (and clearly LP ≡ E [LQ]) where

E [·] = newnewnew Θ ininin [·] | @a([[Q]]a |Deliverer)

LQ =
∏

i

@bi
ci!!!vi | @a

[[
P ′]]

a

• By Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), @a [[P ′]]a �E[Ψ,Φaux] @Dmessage!!! {|T |} [b c v],
since D is a static agent in Φaux (ie. D 6∈ mov(E [Ψ, Φaux])).

• Applying Theorem 5.4.4 (Transloc Bisim Cong), we have LQ �E[Ψ,Φaux] LQ1, where

LQ1 =
∏

i

@bi
ci!!!vi | @Dmessage!!! {|T |} [b c v]

Also, LP �̇M ′

Ψ,Φaux
E [LQ1], by Theorem 5.4.3 (cong property for expansion).

• E [LQ1] ∈MM ′
Ψδ,Φaux

, since M is a blocking set up to ≈̇ under l.

Thus true for this case.

Case R ≡ P ′|Q and P ′ = iflocaliflocaliflocal 〈b〉c!!!v ininin P1 elseelseelse P2 with Ψδ, Φaux ` a@s ∧ b@s: In
this case, we have:

• By the definition of [[]], we have [[P ′]]a
def= iflocaliflocaliflocal 〈b〉c!!!v ininin [[P1]]a elseelseelse [[P2]]a.

• We decompose LP as E [LQ] (and clearly LP ≡ E [LQ]) where

E [·] = newnewnew Θ ininin (
∏

i

@bi
ci!!!vi | [·] | @a([[Q]]a |Deliverer))

LQ = @a

[[
P ′]]

a

• By (Lts-L-IfLocal-True), (Lts-Prl) and (Lts-New), we have Ψδ, Φaux 
 LP
τ−→

LP ′ where LP ′ = E [LQ′] with LQ′ ≡ @bc!!!v | @a [[P1]]a.

• LP ′ ∈ MM ′
Ψδ,Φaux

, since Ψδ, Φaux ` LP ′ (by Theorem 4.5.1 (Subj)) and the following
holds:
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– [Transloc] M ′ ⊆ agents(Ψδ)/{a}.

– [FreeV] currentloc 6∈ fv(R) implies currentloc 6∈ fv(Q, @bc!!!v).

Thus true for this case.

Case R ≡ P ′|Q and P ′ = c!!!v|c???p→P ′′: Similar to the previous case. One may easily ob-
serve that, by [FreeV], currentloc is not involved in this communication (ie. currentloc 6∈
fv(c!!!v)).

Case R ≡ P ′|Q and P ′ = c???p→P ′′: In this case, we have:

• By the definition of [[]], we have [[P ′]]a
def= c???p→ [[P ′′]]a.

• We decompose LP as E [LQ] (and clearly LP ≡ E [LQ]) where

E [·] = newnewnew Θ ininin (
∏

i

@bi
ci!!!vi | [·] | @a([[Q]]a |Deliverer))

LQ = @a

[[
P ′]]

a

• By (Lts-L-In), (Lts-Prl) and (Lts-New), we have Ψδ, Φaux 
 LP
@ac???v−−−−→

∆
LP ′ where

LP ′ = E [LQ′] with

LQ′ ≡ @amatch(p, v)
[[
P ′′]]

a
= @a

[[
match(p, v)P ′′]]

a

where Ψ, Φaux ` c ∈ ^̂̂rT , Ψ, Φaux, ∆ ` v ∈ T and ∆ is an extensible context with
dom(∆) ⊆ fv(v) and dom(∆) ∩ dom(Θ) = ∅.

• If currentloc 6∈ fv(@ac???v) then LP ′ ∈ MM ′∪mov(∆)
Ψδ,Φaux,∆ , since Ψδ, Φaux, ∆ ` LP ′ (by

Theorem 4.5.1) and the following holds:

– [Transloc]: M ′ ∪mov(∆) ⊆ agents(Ψδ, ∆)/{a}, since ` Ψ, Φaux, ∆.

– [FreeV]: currentloc 6∈ fv(R, v) implies currentloc 6∈ fv(Q,match(p, v)P ′′).

Thus true for this case.

Case Input via deliver: In this case, we have:

• We decompose LP as E [LQ] (and clearly LP ≡ E [LQ]) where

E [·] = newnewnew Θ ininin (
∏

i

@bi
ci!!!vi | [·] | @a [[R]]a)

LQ = @aDeliverer
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• By (Lts-L-In), (Lts-Prl) and (Lts-New), we have

Ψδ, Φaux 
 LP
@adeliver???{|T |}[c v dack]−−−−−−−−−−−−−−−−→

∆
LP ′

where LP ′ = E [LQ′] with

LQ′ def= @a(Deliverer | c!!!v | 〈D@SD〉dack!!![])

where Ψ, Φaux, ∆ ` {|T |} [c v dack] ∈ {|X|} [̂^̂wX X ^̂̂w[]] and ∆ is an extensible context
with dom(∆) ⊆ fv({|T |} [c v dack]) and dom(∆) ∩ dom(Θ) = ∅.

• By Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), we have
@a〈D@SD〉dack!!![] �E[Ψ,Φaux,∆] @Ddack!!![], since D is a static agent in the context.

• Applying Theorem 5.4.4 (Transloc Bisim Cong), we have LQ′ �E[Ψ,Φaux,∆] LQ1, where

LQ1 = @Ddack!!![] | @ac!!!v | @aDeliverer

Also, LP ′�̇M ′

Ψ,∆,Φaux
E [LQ1], by Theorem 5.4.3 (cong property for expansion).

• Assuming currentloc 6∈ fv(@adeliver??? {|T |} [c v dack]), LP ′ ∈ MM ′∪mov(∆)
Ψδ,Φaux,∆ , since

Ψδ, Φaux, ∆ ` LP ′ (by Theorem 4.5.1 (Subj)), M is a blocking set up to ≈̇ under l,
and the following holds:

– [Transloc]: Since ∆ is fresh, a 6∈ M ′ ∪ mov(∆). This implies M ′ ∪ mov(∆) ⊆
agents(Ψδ, ∆)/{a}.

– [FreeV]: currentloc 6∈ fv({|T |} [c v dack]) implies currentloc 6∈ fv(@ac!!!v).

Thus true for this case.

Case R ≡ P ′|Q and P ′ = c!!!v: In this case, we have:

• By the definition of [[]], we have [[P ′]]a
def= c!!!v.

• Let Θ ≡ Θ1, Θ2 with fv(v)∩dom(Θ) = dom(Θ1), by (Lts-L-Out), (Lts-Open), (Lts-

Prl) and (Lts-New), we have Ψδ, Φaux 
 LP
@ac!!!v−−−−→

Θ1

LP ′ where

LP ′ ≡ newnewnew Θ2 ininin (
∏

i

@bi
ci!!!vi | @a([[Q]]a | Deliverer)).

• currentloc 6∈ fv(P ) implies (by Lemma B.1.3 (Type FV) currentloc 6∈ fv(@ac!!!v).

• LP ′ ∈ MM ′
Ψδ,Φaux,Θ1

, since Ψδ, Φaux, Θ1 ` LP ′ (by Theorem 4.5.1 (Subj)) and the
following holds:
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– [Transloc]: Since a ∈ dom(Ψ), we have M ′ ⊆ agents(Ψδ, Θ1)/{a}.

– [FreeV]: By Theorem 4.5.1 (Subj), currentloc 6∈ fv(R) implies currentloc 6∈
fv(Q).

Thus true for this case. �

Lemma C.1.2 (Blocked by acknowledgement (6.4.5))

Let Φ−
aux be defined as follows.

Φ−
aux

def= Φaux/currentloc : ^̂̂rwSite

Given that Γ is a closed located type context, {ack, currentloc} ∩ fv(P,Q) = ∅, and
Γ, Φ−

aux, ack : ^̂̂rwT ` LP , where LP is defined below.

LP = newnewnew currentloc : ^̂̂rwSite ininin @a([[P ]]a | (ack???p→Q) | Deliverer)

LP is temporarily immobile under ack w.r.t. ((Γ, Φ−
aux, ack : ^̂̂rwT ),M).

Proof: Similar to that of Lemma 6.4.4. Ee define a translocating set M such that
MM ′

Ψ,Φ−
aux,ack:̂^̂rwT

is a set of processes

newnewnew currentloc : ^̂̂rwSite, Θ ininin (
∏

i

@bi
ci!!!vi | @a([[R]]a | (ack???p→Q) | Deliverer))

well-typed wrt. Ψ, Φ−
aux, ack : ^̂̂rwT , satisfying the following.

M ′ ⊆ agents(Ψ)/{a} ([Transloc])

ack, currentloc 6∈ fv(Q,R,
∏

i

@bi
ci!!!vi) ([FreeV])

We shall prove that M is a blocking set up to ≈̇ under ack.

Supposing LP ∈MM ′

Ψ,Φ−
aux,ack:̂^̂rwT

where LP is structural congruent to the process below.

LP ≡ newnewnew currentloc : ^̂̂rwSite, Θ ininin
∏

i @bi
ci!!!vi

| @a([[R]]a | (ack???p→Q) | Deliverer)

and δ is a valid relocator for ((Ψ, Φ−
aux, ack : ^̂̂rwT ),M ′). Assume further that

Ψ, Φ−
aux, ack : ^̂̂rwT 
 LP

β−→
∆

LQ

with β not being an input label with ack ∈ fv(β), we shall check all the possibilities that this
transition may occur (omitting trivial and similar cases).
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Case R = P1 | P2 and P1 is a createcreatecreate or migrate tomigrate tomigrate to: No transition can be caused by P1

since there exists no free output on currentloc.

Case R = P1 | P2 and P1 = c???p→P ′
1 with c ∈ dom(Ψ, Φ−

aux): In this case, we have:

• By the definition of [[]], we have [[P1]]a
def= c???p→ [[P ′

1]]a.

• We decompose LP as E [LQ] (and clearly LP ≡ E [LQ]) where

E [·] = newnewnew currentloc : ^̂̂rwSite, Θ ininin (
∏

i @bi
ci!!!vi

| [·] | @a([[P2]]a |ack???p→Q|Deliverer))

LQ = @a [[P1]]a

• By (Lts-L-In), (Lts-Prl) and (Lts-New), we have

Ψδ, Φ−
aux, ack : ^̂̂rwT 
 LP

@ac???v−−−−→
∆

LP ′

where LP ′ = E [LQ′] with

LQ′ ≡ @amatch(p, v)
[[
P ′

1

]]
a

= @a

[[
match(p, v)P ′

1

]]
a

where (Ψδ, Φ−
aux, ack : ^̂̂rwT ) ` c ∈ ^̂̂rS, (Ψδ, Φ−

aux, ack : ^̂̂rwT, ∆) ` v ∈ S and ∆ is an
extensible context with dom(∆) ⊆ fv(v) and dom(∆) ∩ dom(Θ, currentloc) = ∅.

• If ack 6∈ fv(v) then LP ′ ∈ MM ′∪mov(∆)

Ψδ,Φ−
aux,ack:̂^̂rwT,∆

, since Ψδ, Φ−
aux, ack : ^̂̂rwT, ∆ ` LP ′ (by

Theorem 4.5.1 (Subj)) and the following holds:

– [Transloc] M ′ ∪mov(Ξ) ⊆ agents(Ψδ, Ξ)/{a}, since ` Ψδ, Φ−
aux, ack : ^̂̂rwT, ∆.

– [FreeV] ack, currentloc 6∈ fv(match(p, v)P ′
1|Q, R) ∪ fv(

∏
i @bi

ci!!!vi).

Thus true for this case.

The rest of the analysis is similar to that in the proof of Lemma 6.4.4; we omit the details.
�

Lemma C.1.3 (Blocked by daemon lock (6.4.3))

Given that Γ is a closed located type context, lock 6∈ fv(P ) and M ⊆ agents(Γ)/{a}, the
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following processes (each well-typed w.r.t. Γ, ΩD)

newnewnew Ωaux ininin

@D(Daemon|
∏

i mesgReq{|Ti|} [a ci vi])
| @a([[P ]]a |currentloc!!!s|Deliverer)

newnewnew Ωaux, rack : ^̂̂rw[], pack : ^̂̂rw[], b : AgentZ@s ininin

@D(Daemon|regReq[b s rack]|
∏

i mesgReq{|Ti|} [a ci vi])
| @a(regBlockP(pack Q)| [[P ]]a |Deliverer) | @bregBlockC(rack pack R)

newnewnew Ωaux, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
@D(Daemon|migReq[a mack]|

∏
i mesgReq{|Ti|} [a ci vi])

| @a(migBlock(mack Q)| [[P ]]a |Deliverer)

are temporary immobile under lock w.r.t. ((Γ, ΩD),M).

Proof: Construct a translocating set M such that MM ′
Ψ,ΩD

is a union of sets of processes of
the following forms.

newnewnew Ωaux, ∆ ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | currentloc!!!s | Deliverer))

newnewnew Ωaux, ∆, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon|
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer)
| @a(createcreatecreateZ b = 〈D@SD〉register!!![b s rack] | regBlockC(pack rack Q′)

ininin regBlockP(pack R′)))
newnewnew Ωaux, ∆, pack, rack : ^̂̂rw[], b : AgentZ@s ininin (

∏
j @bj

cj!!!vj

| @D(Daemon | regReq[b s pack] |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a(regBlockP(pack R′) | [[P ′]]a | Deliverer) | @bregBlockC(rack pack Q′))

newnewnew Ωaux, ∆, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon | migReq[a mack] |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a(migBlock(mack Q′) | [[P ′]]a | Deliverer))

well-typed wrt Ψ, ΩD, satisfying

M ′ ⊆ agents(Ψ)/{a} ([Transloc])

({lock, pack, rack, mack} ∪ dom(Ωaux))
∩(fv(P ′, Q′, R′,

∏
j @bj

cj!!!vj ,
∏

i mesgReq{|Ti|} [ai xi v′i])) = ∅
([FreeV])
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We shall prove that M is a blocking set up to ≈̇ under lock,

Supposing LP ∈ MM ′
Ψ,ΩD

and δ is a valid relocator for ((Ψ, ΩD),M ′). Assume further that

Ψ, ΩD 
 LP
β−→
∆

LQ with β not being an input label with lock ∈ fv(β), we shall check all

the possibilities that this transition may occur (omitting trivial and similar cases).

Case Initialising creation: Supposing LP is structurally congruent to the process below
(which belongs to the first subset).

newnewnew Ωaux, ∆ ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P1]]a | [[P ′]]a | currentloc!!!s | Deliverer))

with P1 = createcreatecreateZ b = Q′ ininin R′. In this case, we have:

• By (Lts-L-Comm), (Lts-Prl) and (Lts-New), Ψδ, ΩD 
 LP
τ−→ LQ where LQ is

structurally congruent to the process below.

newnewnew Ωaux, ∆, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer)
| @a(createcreatecreateZ b = 〈D@SD〉register!!![b s rack] | regBlockC(rack pack Q′)

ininin regBlockP(pack R′)))

• Clearly, LQ ∈MM ′
Ψδ,ΩD

since Ψδ, ΩD ` LQ (by Theorem 4.5.1 (Subj)) and the following
holds:

– [Transloc] M ′ ⊆ agents(Ψδ)/{a}.

– [FreeV] (lock∪dom(Ωaux))∩fv(P1 | P ′) = ∅ implies ({lock, pack, rack}∪dom(Ωaux))∩
(fv(P ′, Q′, R′) ∪ fv(

∏
j @bj

cj!!!vj ,
∏

i mesgReq{|Ti|} [ai xi v′i]) = ∅, since pack, rack
are fresh channels.

Thus true for this case.

Case Initialising migration: Supposing LP is structurally congruent to the process below
(which belongs to the first subset).

newnewnew Ωaux, ∆ ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P1]]a | [[P ′]]a | currentloc!!!s | Deliverer))

with P1 = migrate tomigrate tomigrate to s→Q′. In this case, we have:
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• By (Lts-L-Comm), (Lts-Prl) and (Lts-New), Ψδ, ΩD 
 LP
τ−→ LQ where LQ is

structural congruent to the process below.

newnewnew Ωaux, ∆, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer)
| @a(〈D@SD〉migrating!!![a mack] | migBlock(mack Q′)))

• By Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), we have

@a〈D@SD〉migrating!!![a mack] �Φ @Dmigrating!!![a mack]

where Φ = Ψ, ΩD, Ωaux, ∆, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]], since D is a static agent (ie.
D 6∈ mov(Φ)).

• By Theorem 5.4.4 (Transloc Bisim Cong), we have LQ�̇M ′

Ψδ,ΩD
LQ1, where LQ1 is struc-

tural congruent to the process below.

newnewnew Ωaux, ∆, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon | migrating!!![a mack] |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer) | @amigBlock(mack Q′))

• By [FreeV], applying Lemma 6.2.3, we have LQ1�̇
M ′

Ψδ,ΩD
LQ2, where LQ2 is structural

congruent to the process below.

newnewnew Ωaux, ∆, mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon | migReq(a mack) |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer) | @amigBlock(mack Q′))

• Clearly, LQ ∈MM ′
Ψδ,ΩD

since Ψδ, ΩD ` LQ (by Theorem 4.5.1 (Subj)) and the following
holds

– [Transloc] M ′ ⊆ agents(Ψδ)/{a}.

– [FreeV] By Theorem 4.5.1 (Subj), (lock ∪ dom(Ωaux)) ∩ fv(P1 | P ′) = ∅ implies
({lock, mack} ∪ dom(Ωaux))∩
(fv(P ′, Q′) ∪ fv(

∏
i @bi

ci!!!vi,
∏

i mesgReq{|Ti|} [ai xi v′i])) = ∅, since mack is fresh.

Thus true for this case.
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Case Sending registration: Supposing LP is structurally congruent to the process below
(which belongs to the second subset).

newnewnew Ωaux, ∆, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a([[P ′]]a | Deliverer)
| @a(createcreatecreateZ b = 〈D@SD〉register!!![b s rack] | regBlockC(rack pack Q′)

ininin regBlockP(pack R′)))

In this case, we have:

• By (Lts-L-Create), (Lts-Prl) and (Lts-New), Ψδ, ΩD 
 LP
τ−→ LQ where LQ is

structurally congruent to the process below.

newnewnew Ωaux, ∆, b : AgentZ@s, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a(regBlockP(pack R′) | [[P ′]]a | Deliverer)
| @b(〈D@SD〉register!!![b s rack] | regBlockC(rack pack Q′)))

• By Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), we have:

@a〈D@SD〉register!!![b s rack] �Φ @Dregister!!![b s rack]

where Φ = Ψ, ΩD, Ωaux, ∆, b : AgentZ@s, pack, rack : ^̂̂rw[], since D is a static agent
(ie. D 6∈ mov(Φ)).

• By Theorem 5.4.4 (Transloc Bisim Cong), we have LQ�̇M ′

Ψδ,ΩD
LQ1, where LQ1 is struc-

turally congruent to the process below.

newnewnew Ωaux, ∆, b : AgentZ@s, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon | register!!![b s rack] |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a(regBlockP(pack R′) | [[P ′]]a | Deliverer)
| @bregBlockC(rack pack Q′))

• By [FreeV], applying Lemma 6.2.3, we have LQ1�̇
M ′

Ψδ,ΩD
LQ2, where LQ2 is structurally

congruent to the process below.

newnewnew Ωaux, ∆, b : AgentZ@s, pack, rack : ^̂̂rw[] ininin (
∏

j @bj
cj!!!vj

| @D(Daemon | regReq(b s rack) |
∏

i mesgReq{|Ti|} [ai xi v′i])
| @a(regBlockP(pack R′) | [[P ′]]a | Deliverer)
| @bregBlockC(rack pack Q′))
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• Clearly, LQ ∈MM ′
Ψδ,ΩD

since Ψδ, ΩD ` LQ (by Theorem 4.5.1 (Subj)) and the following
holds:

– [Transloc] M ′ ⊆ agents(Ψδ)/{a}.

– [FreeV] The condition remains unchanged: ({lock, pack, rack} ∪ dom(Ωaux))∩
(fv(P ′, Q′, R′) ∪ fv(

∏
j @bj

cj!!!vj ,
∏

i mesgReq{|Ti|} [ai xi v′i]) = ∅.

Thus true for this case.

Case Message forwarding: Supposing LP can be decomposed as E [LQ] (and clearly
LP ≡ E [LQ]), where

E [·] = newnewnew Ωaux, ∆ ininin (
∏

j 6=1 @bj
cj!!!vj

| @D(Daemon |
∏

i mesgReq{|Ti|} [ai xi v′i])
| [·] | @a([[P ′]]a | currentloc!!!s | Deliverer))

LQ = @a [[〈b@?〉c!!!v]]a

Note that here we pick LP from the first subset, but E [·] can be redefined so that LP belongs
to other subsets. In this case, we have:

• By the definition of [[·]]a, we have: [[Q]]a = 〈D@SD〉message!!! {|T |} [b c v], where T is the
type of v in the context.

• By Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), we have:

@a〈D@SD〉message!!! {|T |} [b c v] �E[Ψδ,ΩD] @Dmessage!!! {|T |} [b c v]

since D is a static agent (ie. D 6∈ mov(E [Ψδ, ΩD])).

• Since D 6∈ mayMove(E [·]), by Theorem 5.4.4 (Transloc Bisim Cong), we have:

E [LQ]�̇M ′

Ψδ,ΩD
E [@Dmessage!!! {|T |} [b c v]]

• By [FreeV], applying Lemma 6.2.3, we have

E [@Dmessage!!! {|T |} [b c v]]�̇M ′

Ψδ,ΩD
E [@DmesgReq({|T |} [b c v])]

• Clearly, E [@DmesgReq({|T |} [b c v])] ∈MM ′
Ψδ,ΩD

since
Ψδ, ΩD ` E [@DmesgReq({|T |} [b c v])] and the following holds

– [Transloc] M ′ ⊆ agents(Ψδ)/{a}.
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– [FreeV] (lock∪ dom(Ωaux))∩ fv(P ′ | 〈b@?〉c!!!v) = ∅ implies (lock∪ dom(Ωaux))∩
fv(mesgReq{|T |} [b c v]) = ∅.

Thus true for this case.

Case Internal communication: We may observe that, by [FreeV], lock, pack, rack and
mack are never involved in any internal communication. The details of this case is similar to
that analysed in the proof of Lemma 6.4.4 (omitted).

Case Input via deliver: Similar to that analysed in the proof of Lemma 6.4.4. Note,
however, that the acknowledgement @Ddack!!![] will not react with Daemon, but be added
to the queue of outgoing messages

∏
j @bj

cj!!!vj .

Case P ′ = P1 | P2 and P1 = iflocaliflocaliflocal 〈b〉c!!!v ininin P ′
1 elseelseelse P ′′

1 with Ψδ, Φaux ` a@s ∧ b@s

and others: We omit these cases, since they are similar to those analysed in the proof of
Lemma 6.4.4.

�
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Appendix D

Correctness Proof

D.1 General Properties

Lemma D.1.1 (Sys str cong preserves well-formedness)

Given that Sys ≡Φ Sys′, Φ ` Sys ok if and only if Φ ` Sys′ ok.

Proof: We shall only demonstrate that if the structural congruence is derived using (Sys-

Str-Local-Dec) then such congruence preserves well-formedness.

Supposing Φ ` eProg(∆; D; A) ok and A(a) = [(newnewnew Θ ininin P ) E] with D = [map mesgQ].
We may derive the following. Φ, ∆ ` map ok, Φ, ∆ ` mesgQ ok, Φ, ∆ ` A ok, ` Φ ok and
dom(A) = dom(map), by (Sys-T-EProg). Φ, ∆ `a newnewnew Θ ininin P , Φ, ∆ `a E ok etc, by (Sys-

T-AState). dom(Θ) ∩ dom(Φ, ∆) = ∅ implies Φ, ∆, Θ `a P , by (LocalNew); moreover,
Θ only declare channel names. Φ, ∆, Θ ` map ok, Φ, ∆, Θ ` mesgQ ok, and Φ, ∆, Θ `
A ⊕ a 7→ [P E], by Lemma 3.7.2 (Type SW). Φ ` eProg(∆, Θ; D; A ⊕ a 7→ [P E]) ok, by
(Sys-T-EProg). Thus true for the left-to-right direction. The righ-to-left direction can be
obtained in a similar manner. �

Lemma D.1.2 (Flattening preserves well-formedness)

Given a valid system context Φ, if Sys ≡Φ Sys′ then F [[Sys]] ≡ F [[Sys′]].

Lemma D.1.3 (Potentially movable agents in F)

Given a valid system context Φ, if Φ ` A ok then mayMove(F [[A]]) ⊆ dom(A).
Moreover, mayMove(@D(Daemon | mesgQ)) = ∅, mayMove(mapS•(map)) = ∅ and
mayMove(mapS(ae, A(ae))(map)) = {ae}

245
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Lemma D.1.4 (Accuracy of location map)

For any Sys = eProg(∆; [map mesgQ]; A), with Φ ` Sys ok, lookupL(a; map) = s implies
Φ, ∆ ` a@s.

Lemma D.1.5 (Subject reduction for IL (7.2.1))

Given a valid system context Φ, if Φ 
 Sys
β−→
Ξ

Sys′ with dom(Ξ) ∩ dom(Φaux) = ∅ then

Φ, Ξ ` Sys′ ok.

Proof: Assuming Φ ` Sys ok with Sys = eProg(∆; [map mesgQ]; A) and Φ 
 Sys
β−→
Ξ

Sys′,

we shall prove that Φ, Ξ ` Sys′ ok by an induction on the transition derivation, demonstrating
some interesting cases.

Case (Sys-Loc-Replic): In this case, the following conditions are satisfied:

• a, c ∈ dom(Φ), A(a) = [(***c???p→Q) | R E] and

• Φ ` c ∈ ^̂̂rT , (Φ, Ξ) ` v ∈ T , dom(Ξ) ⊆ fv(v), Ξ is extensible and dom(Ξ)∩dom(∆) = ∅.

This implies, by (Sys-Loc-Replic), Φ 
 Sys
@ac???v−−−−→

Ξ
Sys′ where

Sys′ = eProg(∆; [map mesgQ]; A⊕ a 7→ [match(p, v)Q | ***c???p→Q | R E])

The following can be deduced. By (Sys-T-EProg), Φ, ∆ ` map ok, Φ, ∆ ` A ok,
Φ, ∆ ` mesgQ ok, ` Φ ok and dom(A) = dom(map). By (Sys-T-AState), Φ, ∆ `a

(***c???v → Q) | R and Φ, ∆ `a E ok. By (Par), Φ, ∆ `a ***c???p → Q and Φ, ∆ `a R. By
(Replic), Φ, ∆ ` p ∈ T . Θ and Φ, ∆, Θ `a Q. dom(Ξ) ∩ dom(∆) = ∅ and ` Φ, Ξ implies
` Φ, ∆, Ξ, by (L-C-Var). By Lemma B.1.9 (Type Match), Φ, ∆, Ξ `a match(p, v)Q. Given
that ` Φ ok and dom(Ξ) ∩ dom(Φaux) = ∅, we have, by Lemma 7.2.2, ` Φ, Ξ ok. By (Sys-

T-AState), Φ, Ξ, ∆ ` A ⊕ a 7→ [match(p, v)Q | ***c???p→Q | R E] ok. By (Sys-T-EProg),
Φ ` Sys′ ok. Thus true for this case.

Case (Sys-Loc-Out): In this case, we pick an injective substitution σ : dom(∆) →
X/dom(Φ, Φaux) in order to prevent the names in ∆ (which might be extruded) from clashing
with names defined in Φaux. We have Sys

α= eProg(∆′; [map′ mesgQ′]; A′), where ∆′ = σ∆,
map′ = σmap, mesgQ′ = σmesgQ and A′ = σA. Assume further that the following condi-
tions are satisfies:

• a, c ∈ dom(Φ), A′(a) = [c!!!v | R E] and

• ∆′ ≡ ∆1, ∆2 and dom(∆′) ∩ fv(v) = dom(∆1).

This implies, by (Sys-Loc-Replic) (and (Sys-Equiv)), Φ 
 Sys
@ac!!!v−−−−→

∆1

Sys′ where

Sys′ = eProg(∆2; [map′ mesgQ′]; A′ ⊕ a 7→ [R E])



D.1. GENERAL PROPERTIES 247

The following can be deduced. By (Sys-T-EProg), Φ, ∆′ ` map′ ok, Φ, ∆′ ` A′ ok, Φ, ∆′ `
mesgQ′ ok, ` Φ ok and dom(A′) = dom(map′). By (Sys-T-AState), Φ, ∆′ `a c!!!v | R and
Φ, ∆′ `a E ok. By (Par), Φ, ∆′ `a c!!!v and Φ, ∆′ `a R. By (Out), Φ, ∆′ ` c ∈ ^̂̂wT

and Φ, ∆′ ` v ∈ T . Given that ` Φ ok, dom(∆1) ∩ dom(Φaux) = ∅ implies, by Lemma
7.2.2, ` Φ, ∆1 ok. By (Sys-T-AState), Φ, ∆′ ` A′ ⊕ a 7→ [R E] ok. By (Sys-T-EProg),
Φ, ∆1 ` Sys′ ok. Thus true for this case.

Case (Sys-Req-Reg): In this case, the following conditions are satisfies:

• A(a) = [(createcreatecreateZ b = P ininin Q) | R FreeA(s)], and b 6∈ dom(Φ, ∆).

This implies, by (Sys-Req-Reg), Φ 
 Sys
τ−→ Sys′ where

Sys′ = eProg(∆; [map mesgQ]; A⊕ a 7→ [R RegA(b Z s P Q)])

The following can be deduced. By (Sys-T-EProg), Φ, ∆ ` map ok, Φ, ∆ ` A ok, Φ, ∆ `
mesgQ ok, ` Φ ok and dom(A) = dom(map). By (Sys-T-AState), Φ, ∆ `a (createcreatecreateZ b =
P ininin Q) | R and Φ, ∆ `a FreeA(s) ok. By (Sys-T-FreeA), Φ, ∆ ` a@s. By (Par),
Φ, ∆ `a createcreatecreateZ b = P ininin Q and Φ, ∆ `a R. Since b 6∈ dom(Φ, ∆), we have ` Φ, ∆, b :
AgentZ@s, by (L-C-Var). By (Create), Φ, ∆, b : AgentZ@s `a P,Q and a 6= b. By
(Sys-T-RegA), Φ, ∆ `a RegA(b Z s P Q) ok. By (Sys-T-AState), Φ, ∆ ` A ⊕ a 7→
[R RegA(b Z s P Q)] ok. By (Sys-T-EProg), Φ ` Sys′ ok. Thus true for this case.

Case (Sys-Proc-Reg): In this case, the following conditions are satisfies:

• A(a) = [R RegA(b Z s P Q)], Sys is idle, and b 6∈ dom(Φ, ∆).

This implies, by (Sys-Proc-Reg), Φ 
 Sys
τ−→ Sys′ where Sys′ denotes the following pro-

cess.

eProg(∆, b : AgentZ@s; [[b s]::::::map mesgQ]; A⊕ a 7→ [Q|R FreeA(s)]⊕ b 7→ [P FreeA(s)])

The following can be deduced. By (Sys-T-EProg), Φ, ∆ ` map ok, Φ, ∆ ` A ok,
Φ, ∆ ` mesgQ ok, ` Φ ok and dom(A) = dom(map). By (Sys-T-AState), Φ, ∆ `a R

and Φ, ∆ `a RegA(b Z s P Q) ok. Since b 6∈ dom(Φ, ∆), we have ` Φ, ∆, b : AgentZ@s,
by (L-C-Var). By (Sys-T-RegA), Φ, ∆ ` a@s, (Φ, ∆, b : AgentZ@s) `b P and (Φ, ∆, b :
AgentZ@s) `a Q. By Lemma 3.7.2 (Type SW), (Φ, ∆, b : AgentZ@s) `b R. By (sys-T-

FreeA), Φ, ∆, b : AgentZ@s `b FreeA(s) and Φ, ∆, b : AgentZ@s `a FreeA(s). By (Sys-T-

AState), Φ, ∆, b : AgentZ@s ` A ⊕ a 7→ [Q|R FreeA(s)] ⊕ b 7→ [P FreeA(s)] ok. Φ, ∆, b :
AgentZ@s ` mesgQ ok, by Lemma 3.7.2 (Type SW). dom(A ⊕ a 7→ [Q|R FreeA(s)] ⊕ b 7→
[P FreeA(s)]) ⊆ dom([b s]::::::map). By (Sys-T-Map), there exists ai, si’s such that

consolidate(map) = [a1 s1]:::::: . . .::::::[an sn]::::::nilnilnil
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with {a1, . . . , an} = agents(Φ, ∆) and, for all j, Φ, ∆ ` aj@sj . Since b 6∈ dom(Φ, ∆), we have:

consolidate([b s]::::::map) = [b s]::::::[a1 s1]:::::: . . .::::::[an sn]::::::nilnilnil

with {b, a1, . . . , an} = agents(Φ, ∆, b : AgentZ@s) and, for all j, Φ, ∆, b : AgentZ@s ` aj@sj ,
by Lemma 3.7.2 (Type SW). By (Sys-T-Map), Φ, ∆, b : AgentZ@s ` [b s]::::::map ok. By
(Sys-T-EProg), Φ ` Sys′ ok. Thus true for this case.

Case (Sys-Comm-Mig): In this case, the following conditions are satisfies:

• A(a) = [R MrdyA(s P )] and a ∈ dom(∆).

This implies, by (Sys-Proc-Reg), Φ 
 Sys
τ−→ Sys′ where Sys′ denotes the following.

eProg(∆⊕ a 7→ s; [[a s]::::::map mesgQ]; A⊕ a 7→ [P |R FreeA(s)])

The following can be deduced. By (Sys-T-EProg), Φ, ∆ ` map ok, Φ, ∆ ` A ok,
Φ, ∆ ` mesgQ ok, ` Φ ok and dom(A) = dom(map). By (Sys-T-AState), Φ, ∆ `a R

and Φ, ∆ `a MrdyA(s P ) ok. By (Sys-T-MtedA), Φ, ∆ ` s ∈ Site, Φ, ∆ `a P . By
(sys-T-FreeA), Φ, ∆⊕ a 7→ s `a FreeA(s). By Lemma B.1.2, Φ, ∆⊕ a 7→ s `a R. By (Sys-

T-AState), Φ, ∆⊕ a 7→ s ` A⊕ a 7→ [P |R FreeA(s)] ok. ` Φ, ∆⊕ a 7→ s, by Lemma B.1.2.
Φ, ∆⊕a 7→ s ` mesgQ ok, by Lemma B.1.2. dom(A⊕a 7→ [P |R FreeA(s)]) ⊆ dom([a s]::::::map)
By (Sys-T-Map), there exists ai, si’s such that

consolidate(map) = [a1 s1]:::::: . . .::::::[an sn]::::::emptymapemptymapemptymap

{a1, . . . , an} = agents(Φ, ∆)

and, for all j, Φ, ∆ ` aj@sj . Assuming a = ak, by the definition of consolidate(·),

consolidate([a s]::::::map) = [a s]::::::[a1 s1]:::::: . . .::::::[ak−1 sk−1]::::::[ak+1 sk+1]:::::: . . .::::::[an sn]::::::emptymapemptymapemptymap

Moreover, {a, a1, . . . , ak−1, ak+1, . . . , an} = agents(Φ, ∆⊕ a 7→ s) and, for all j 6= k,
Φ, ∆@amigrate to s ` aj@sj , by Lemma B.1.2. By (Sys-T-Map), Φ, ∆⊕a 7→ s ` [a s]::::::map ok.
By (Sys-T-EProg), Φ ` Sys′ ok. Thus true for this case.

Inductive Case (Sys-Equiv): In this case, we have Sys1 ≡Φ Sys2, Sys′1 ≡Φ,Ξ Sys′2 and

Φ 
 Sys′1
β−→
Ξ

Sys′2 with dom(Ξ) ∩ dom(Φaux) = ∅ implies, by (Sys-Equiv), Φ 
 Sys1
β−→
Ξ

Sys2. Φ ` Sys1 ok implies Φ ` Sys′1 ok, by Lemma D.1.1. Φ, Ξ ` Sys′2 ok, by the induction
hypothesis. Φ, Ξ ` Sys2 ok, by Lemma D.1.1. Thus true for this case.

Therefore the lemma is proved by induction. �

The following three lemmas state properties of usage disciplines of channels in Φaux in the
translation. Their proofs are straightforward.
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Lemma D.1.6 (Disciplines on daemon interfaces)

Given that Φ is a valid system context, if Φ ` A ok then the names register, migrating,
and message are non-sendable by F [[A]], and are output-only in F [[A]], w.r.t. Φ.

Lemma D.1.7 (currentloc is a local channel)

Given that Φ is a valid system context, if Φ `a [P E] ok then currentloc is a local channel
in F [[[P E]]]a.

Lemma D.1.8 (deliver is uniformly receptive)

Given that Φ is a valid system context, if Φ ` A ok then deliver : dom(A) � F [[A]].

Lemma D.1.9 (Agents are temporarily immobile)

If Sys = eProg(∆; [map mesgQ]; A) is idle and Φ ` Sys ok then

newnewnew Ωaux ininin @D(Daemon|mesgQ) | F [[A]]

is temporarily immobile under lock, w.r.t. ((Φ, ∆, ΩD), ∅).

Proof: Assuming dom(∆) ∩ dom(Φaux) = ∅ (explicit alpha-conversion if necessary), by the
typing rules of IL, Φ, ∆, ΩD ` newnewnew Ωaux ininin @D(Daemon|mesgQ) | F [[A]]. By Lemma D.1.6
and Lemma 6.2.4, we have:

newnewnew Ωaux ininin @D(Daemon|mesgQ) | F [[A]]
∼Φ,∆,ΩD

∏
a∈dom(A)(newnewnew Ωaux ininin (@D(Daemon|mesgQa) | F [[A(a)]]a))

where mesgQa = mesgQ for a unique a ∈ dom(A) and 000 otherwise. By Lemma 6.4.3, if
A(a) 6= [P MrdyA(s P )] then (newnewnew Ωaux ininin (@D(Daemon|mesgQa) | F [[A(a)]]a)) is temporary
immobile under lock w.r.t. ((Φ, ∆, ΩD), ∅), for each a ∈ dom(A). By Lemma 6.4.7 and
Lemma 6.4.8, we prove the lemma. �

D.2 Analysis of F [[·]]

Lemma D.2.1 (Completeness of IL (7.3.3))

Given a valid system context Φ, if Φ 
 Sys
β−→
Ξ

Sys′ and dom(Ξ)∩ dom(Φaux) = ∅ then there

exists LP ′ such that Φ 
 F [[Sys]]
β−→
Ξ

LP ′, and LP ′�̇∅
Φ,ΞF [[Sys′]].

Proof: Consider Sys = eProg(∆′; D′; A′) well-formed wrt Φ. Since F is only defined if
dom(∆′) ∩ dom(Φaux) = ∅, we pick an injective substitution σ : dom(∆′) → X/dom(Φ, Φaux)
and denote ∆ = σ∆′, D = σD and A′ = σA. Clearly we have Sys

α= eProg(∆; D; A) and,
by (L-C-Var), ` Φ, Φaux, ∆. By this alpha-conversion, F [[Sys]] is defined.
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Supposing Φ 
 Sys
β−→
Ξ

Sys′ with dom(Ξ) ∩ dom(∆) = ∅, the transition must be derived by
one of the following cases.

Case (Sys-Loc-IfLocal-T): Supposing A(al) ≡ [P | Q E], A(b) ≡ [R E′] with P =
iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P1 elseelseelse P2; and a 6= b with Φ, ∆ ` al@s ∧ b@s. By (Sys-Loc-

IfLocal-T), we have: Φ 
 Sys
τ−→ Sys′, where

Sys′ = eProg(∆; D; A⊕ al 7→ [P1 | Q E]⊕ b 7→ [c!!!v | R E′])

Assuming Sys is idle (the busy case can be handled in the similar way), let A′ be obtained
by excluding al, b from the domain of A, we have F [[Sys]] ≡ E [LQ], where:

E [·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | mapS•(map) | F
[[
A′]] | [·])

LQ = F [[A(al)]]al
| F [[A(b)]]b

= @al
([[P | Q]]al

| Deliverer) | F [[E]]al
| @b([[R]]b | Deliverer) | F

[[
E′]]

b

= @al
iflocaliflocaliflocal 〈b〉c!!!v thenthenthen [[P1]]al

elseelseelse [[P2]]al

| @al
([[Q]]al

| Deliverer) | F [[E]]al
| @b([[R]]b | Deliverer) | F

[[
E′]]

b

In this case, we have:

• E [Φ] 
 LQ
τ−→ LQ′, by (Lts-L-IfLocal-T), (Lts-Prl) and (Lts-New) where

LQ′ ≡ @al
[[P1]]al

| @al
([[Q]]al

| Deliverer) | F [[E]]al

| @b(c!!!v | [[R]]b | Deliverer) | F
[[
E′]]

b

= @al
([[P1 | Q]]al

| Deliverer) | F [[E]]al

| @b([[c!!!v | R]]b | Deliverer) | F
[[
E′]]

b

= F [[[P1 | Q E]]]al
| F

[[
[c!!!v | R E′]

]]
b

• Φ 
 F [[Sys]] τ−→ E [LQ′], by (Lts-Prl) and (Lts-New).

Clearly, E [LQ′] ≡ E [LQ′′] ≡ F [[Sys′]], so picking LP ′ = E [LQ′] implies the lemma is true for
this case.

Case (Sys-Loc-Tau, Sys-Loc-IfLocal-Same, Sys-Loc-IfLocal-F): Similar to the pre-
vious case.

Case (Sys-Loc-Input): Suppose the following

• A(al) ≡ [(c???p→P ) | Q E] and {al, c} ⊆ dom(Φ);

• Φ ` c ∈ ^̂̂rT , Φ, Ξ ` v ∈ T and dom(Ξ) ⊆ fv(v) with Ξ is extensible; and
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• dom(Ξ) ∩ dom(∆, Φaux) = ∅.

We have, by (Sys-Loc-Input), Φ 
 Sys
@al

c???v
−−−−→

Ξ
Sys′, where

Sys′ = eProg(∆; D; A⊕ al 7→ [match(p, v)P | Q E])

Assuming Sys is idle (the busy case can be handled in the similar way), let A′ be obtained
by excluding al from the domain of A, we have F [[Sys]] ≡ E [LQ], where:

E [·] ≡ newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | mapS•(Ξmap) | F
[[
A′]] | [·])

LQ = F [[A(al)]]

= @al
([[(c???p→P ) | Q]]al

| Deliverer) | F [[E]]al

= @al
c???p→ [[P ]]al

| @al
([[Q]]al

| Deliverer) | F
[[
E

]]
al

In this case, we have:

• Φ, Ξ ` v ∈ T and dom(Ξ)∩dom(∆, Φaux) = ∅ implies E [Φ], Ξ ` v ∈ T , by Lemma 3.7.2.

This means that E [Φ] 
 LQ
@al

c???v
−−−−→

Ξ
LQ′, by (Lts-L-In), (Lts-Prl) and (Lts-New)

where

LQ′ ≡ @al
match(p, v) [[P ]]al

| @al
([[Q]]al

| Deliverer) | F [[E]]al

• Since match(p, v) [[P ]] = [[match(p, v)P ]] (as p ∩ dom(Φaux) = ∅), we have

LQ′ ≡ @al
[[match(p, v)P ]] | @al

([[Q]] | Deliverer) | F
[[
E

]]
al

= F [[[match(p, v)P | Q E]]]al

• Φ 
 F [[Sys]]
@al

c???v
−−−−→

Ξ
E [LQ′], since fv(v) ∩ dom(Φaux, ∆) = ∅ and apply (Lts-Prl) and

(Lts-New).

Clearly, E [LQ′] ≡ F [[Sys′]], picking LP ′ = E [LQ′] implies the lemma is true for this case.

Case (Sys-Loc-Replic): Similar to the previous case.

Case (Sys-Loc-Output): Suppose A(al) ≡ [c!!!v | Q E], {al, c} ⊆ dom(Φ), and ∆ ≡ ∆1, ∆2

with dom(∆) ∩ fv(v) = dom(∆1). We have, by (Sys-Loc-Output), Φ 
 Sys
@al

c!!!v
−−−−→

∆1

Sys′,

where

Sys′ = eProg(∆2; D; A⊕ al 7→ [Q E])
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Assuming Sys is idle (the busy case can be handled in the similar way), let A′ be obtained
by excluding al from the domain of A, we have F [[Sys]] ≡ E [LQ], where:

E [·] ≡ newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | mapS•(Ξmap) | F
[[
A′]] | [·])

LQ = F [[A(al)]]

= @al
([[c!!!v | Q]]al

| Deliverer) | F [[E]]al

= @al
c!!!v | @al

([[Q]]al
| Deliverer) | F [[E]]al

In this case, we have:

• E [Φ] 
 LQ
@al

c!!!v
−−−−→ LQ′, by (Lts-L-Out) and (Lts-Prl) where

LQ′ ≡ @al
([[Q]]al

| Deliverer) | F [[E]]al

• Φ ` Sys ok implies (by various typing rules), fv(v) ∩ dom(Φaux) = ∅, ie. neither
currentloc nor names in Φaux is extruded by this outputting.

• Φ 
 LP
@al

c!!!v
−−−−→

∆1

E ′[LQ′], by (Lts-Open), (Lts-Prl) and (Lts-New), where E ′[·] is

defined as below.

newnewnew Φaux, ∆2 ininin (@D(Daemon | mesgQ) | mapS•(Ξmap) | F
[[
A′]] | [·])

Clearly, E ′[LQ′] ≡ F [[Sys′]], pick LP ′ ≡ E ′[LQ′] implies the lemma is true for this case.

Case (Sys-Req-Reg): Supposing A(ae) ≡ [(createcreatecreateZ b′ = P ′ ininin Q′) | R FreeA(s)] and
b′ 6∈ dom(Φ, ∆). For avoiding name clashes, we pick an injective substitution ρ : {b′} →
X/dom(Φ, ∆, Φaux) and write b = ρb′, P = ρP ′ and Q = ρQ′. This means ` Φ, ∆, Φaux, b :
AgentZ@s, by (L-C-Var). Clearly, Sys

α= eProg(∆; D; Aρ) where Aρ is obtained by alpha-
converting the name b′ and hence: Aρ(ae) = [(createcreatecreateZ b = P ininin Q) | R FreeA(s)]. In this
case, we have, by (Sys-Req-Reg), Φ 
 Sys

τ−→ Sys′, where

Sys′ = eProg(∆; D; A⊕ ae 7→ [R RegA(b Z s P Q)])

Assume (wlog.) that Sys is idle (the case where Sys is busy can be derived similarly). Let
A′ be obtained by excluding ae from the domain of Aρ, and E [·], LQ be defined as follows:

E [·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | mapS•(map) | F
[[
A′]] | [·])

LQ = F [[Aρ(ae)]]

= @ae(
[[
(createcreatecreateZ b = P ininin Q) | R

]]
ae
| Deliverer) | F [[FreeA(s)]]ae

= @ae(
[[
createcreatecreateZ b = P ininin Q

]]
ae
| [[R]]ae

| Deliverer | currentloc!!!s)

Clearly LP = F [[Sys]] ≡ E [LQ]. In this case, we have:
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• Assuming that pack, rack are fresh names, E [Φ] 
 LQ
τ−→ LQ′, by (Lts-L-Out), (Lts-

L-In), (Lts-L-Comm), and (Lts-Prl), where LQ′ is structurally congruent to the
process below.

@aenewnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
(createcreatecreateZ b = 〈D@SD〉register!!![b s rack] | regBlockC(rack pack s P )
ininin regBlockP(pack s Q))

| @ae([[R]] | Deliverer)

• Φ 
 LP
τ−→ LP ′, where LP ′ = E [LQ′] by (Lts-Prl) and (Lts-New).

We now need to verify that LP ′�̇∅
ΦF [[Sys′]]. Let M = mov(E [Φ])/{ae}, we have:

• Since Φ, ∆ ` ae@s (by (Sys-T-FreeA)), applying Lemma 6.3.4, we have E [Φ] 
 LR1
det−−→
M

LR2 where

LR1 = newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
(@aecreatecreatecreateZ b =

〈D@SD〉register!!![b s rack] | regBlockC(rack pack s P )
ininin regBlockP(pack s Q))

LR2 = newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin

(@aeregBlockP(pack s Q)
| @b(〈D@SD〉register!!![b s rack] | regBlockC(rack pack s P )))

• We need to redefine the scope of currentloc, in order to use the temporary immobility
result. By Lemma D.1.7 and applying Lemma 6.2.7, we have

E [LQ′] ∼̇Φ E ′[newnewnew currentloc : ^̂̂rwSite ininin LQ′] where

E ′[·] = newnewnew Φ−
aux, ∆ ininin (@D(Daemon | mesgQ) | mapS•(map) | [·]
| newnewnew currentloc : ^̂̂rwSite ininin F

[[
A′]])

• By Lemma 6.4.4, @ae([[R]] | Deliverer) is temporarily immobile, under currentloc,
wrt (E [Φ],M), applying Lemma 6.4.2, we have:

newnewnew currentloc : ^̂̂rwSite ininin LQ′�̇M
E[Φ]newnewnew currentloc : ^̂̂rwSite ininin LQ1

where

LQ1 = LR2 | @ae([[R]] | Deliverer)

≡ newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin

@ae(regBlockP(pack s Q) | [[R]] | Deliverer)
| @b(〈D@SD〉register!!![b s rack] | regBlockC(rack pack s P ))
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• Now that the temporary immobility is applied, we may now use the “normal” scoping
for currentloc. By Lemma D.1.7 and applying Lemma 6.2.7, we have

E ′[newnewnew currentloc : ^̂̂rwSite ininin LQ1] ∼̇Φ E [LQ1]

• Since D is a static agent at SD (ie. D 6∈ mov(E [Φ], b : AgentZ@s)), by Lemma 6.3.5
and Lemma 6.3.1 (Det Exp), we have:

@b〈D@SD〉register!!![b s rack] �E[Φ],b:AgentZ@s,rack:̂^̂rw[]
@Dregister!!![b s rack]

• By Theorem 5.4.3 (cong property for expansion), we have LQ1�̇
M
E[Φ]LQ2, where:

LQ2 ≡ newnewnew b : AgentZ@s, pack : ^̂̂rw[], rack : ^̂̂rw[] ininin (@Dregister!!![b s rack]
| @ae(regBlockP(pack s Q) | [[R]] | Deliverer)
| @bregBlockC(rack pack s P ))

• By transitivity of expansion relation, LQ′�̇M
E[Φ]LQ2. By Lemma D.1.3,

ae 6∈ mayMove(@DDaemon | mesgQ | mapS•(map) | F
[[
A′]]), applying

Theorem 5.4.3 (cong property for expansion), we have: E [LQ′]�̇∅
ΦE [LQ2].

• Since, by Lemma D.1.6, register is handled by LQ2, F
[[
A′]] and mapS•(map), apply-

ing Lemma 6.2.3, we have: E [LQ2]�̇∅
ΦLP ′′ where:

LP ′′ ≡ newnewnew Φaux, ∆ ininin

(@D(Daemon | mesgQ) | mapS•(map) | F
[[
A′]]

| newnewnew b : AgentZ@s, pack : ^̂̂rw[], rack : ^̂̂rw[] ininin @DregReq(b s rack)
| @ae(regBlockP(pack s Q) | [[R]] | Deliverer)
| @bregBlockC(rack pack s P ))

= newnewnew Φaux, ∆ ininin

(@D(Daemon | mesgQ) | mapS•(map) | F
[[
A′]]

| F [[[R RegA(b Z s P Q)]]]ae
)

Clearly LP ′′ ≡ F [[Sys′]] and hence LP ′�̇∅
ΦF [[Sys′]], by transitivity of expansion relation.

The lemma is true for this case.

Case (Sys-Req-Mig, Sys-Req-Mesg): Similar to the previous case, although considerably
simpler: we neither need alpha-conversion nor the temporaly immobility result. We omit their
details.
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Case (Sys-Proc-Reg): Supposing eProg(∆; D; A) is idle with D = [map mesgQ],
A(ae) = [R RegA(b′ Z s P ′ Q′)], and b′ 6∈ dom(Φ, ∆). In order that F [[Sys]] is defined,
we pick an injective substitution ρ : {b′} → X/dom(Φ, ∆, Φaux) and write b = ρb′, P =
ρP ′ and Q = ρQ′. This means ` Φ, ∆, Φaux, b : AgentZ@s (by (L-C-Var)) and Sys

α=
eProg(∆; D; Aρ) where Aρ is obtained by alpha-converting the name b′ (ie. Aρ(ae) =
[R RegA(b Z s P Q)]). In this case, we have, by (Sys-Proc-Reg) (and (Sys-Equiv)),
Φ 
 Sys

τ−→ Sys′, where Sys′ denotes the system below.

eProg(∆, b : AgentZ@s; [[b s]::::::map mesgQ]; A⊕ ae 7→ [Q|R FreeA(s)]⊕ b 7→ [P FreeA(s)])

Let A′ be obtained by excluding ae from the domain of Aρ and E [·], LQ, LR be defined as
follows.

E [·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | [·] | F
[[
A′]])

LQ = mapS•(map) | F [[Aρ(ae)]]ae

= @Dnewnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map))
| @ae([[R]]ae

|Deliverer) | F [[RegA(b Z s P Q)]]ae

= @Dnewnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map))
| @ae([[R]]ae

|Deliverer)
| newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin (@DregReq(b s rack)
| @bregBlockC(s pack rack P ) | @aeregBlockP(s pack Q))

≡ newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin (LR

| @D(regReq(b s rack)
| newnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map))))

LR = @ae(regBlockP(s pack Q) | [[R]]ae
| Deliverer) | @bregBlockC(s pack rack P )

Clearly F [[Sys]] ≡ E [LQ]. In this case, we have:

• E [Φ] 
 LQ
τ−→ LQ′, by (Lts-L-Out), (Lts-L-In) and (Lts-L-Comm), (Lts-Prl) and

(Lts-New), where LQ′ is the process below.

LQ′ ≡ newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[], b : AgentZ@s ininin LR

| @D(newnewnew m : Map[Agents Site] ininin (makeMap(m; map)
| letletlet[Agents Site] m′ = (m withwithwith b 7→ s) ininin

(lock!!!m′ | 〈b@s〉rack!!![])))

• Pick LP ′ = E [LQ′], we have Φ 
 F [[Sys]] τ−→ LP ′, by (Lts-Prl) and (Lts-New).

We now need to verify that LP ′�̇∅
ΦF [[Sys′]]. Let M = mov(E [Φ])/{ae}.



256 APPENDIX D. CORRECTNESS PROOF

• By Lemma 6.5.2, we have: LQ′�̇M
E[Φ]LQ1 where

LQ1 = newnewnew pack, rack : ^̂̂rw[], b : AgentZ@s ininin (LR | @D〈b@s〉rack!!![]
| @Dnewnewnew m′ : Map[Agents Site] ininin

(makeMap(m′; [b s]::::::map) | lock!!!m′))
= newnewnew pack, rack : ^̂̂rw[], b : AgentZ@s ininin (LR | @D〈b@s〉rack!!![]

| mapS•([b s]::::::map))

• Since E [Φ], b : AgentZ@s ` b@s, by Lemma 6.3.5, we have:

Φ′ 
 @D〈b@s〉rack!!![] det−−−−−−→
mov(E[Φ])

@brack!!![]

where Φ′ = E [Φ], rack : ^̂̂rw[], pack : ^̂̂rw[], b : AgentZ@s. By Lemma 6.4.5,

@bregBlockC(s pack rack P )

is obviously temporary immobile under rack, wrt (Φ′,mov(Φ′)/{b}), applying Lemma
6.4.2, we have:

newnewnew rack : ^̂̂rw[] ininin (@D〈b@s〉rack!!![] | @bregBlockC(s pack rack P ))

�̇mov(Φ′)/{b}
Φ′/rack:̂^̂rw[] newnewnew rack : ^̂̂rw[] ininin (@brack!!![] | @bregBlockC(s pack rack P ))

�̇mov(Φ′)/{b}
Φ′/rack:̂^̂rw[] @biflocaliflocaliflocal 〈ae〉pack!!![] thenthenthen (currentloc!!!s | [[P ]]b | Deliverer)

The latter expansion is derived using Lemma 6.3.7 and using structural congruence to
get rid of rack-binding.

• Since b 6∈ mayMove(mapS•([b s]::::::map), @ae . . .), applying Theorem 5.4.3 (cong property
for expansion), we have LQ1 �̇

M
E[Φ] LQ2, where LQ2 denotes the process below.

newnewnew pack : ^̂̂rw[], b : AgentZ@s ininin mapS•([b s]::::::map)
| @biflocaliflocaliflocal 〈ae〉pack!!![] thenthenthen (currentloc!!!s | [[P ]]b | Deliverer)
| @ae(regBlockP(s pack Q) | [[R]]ae

| Deliverer)

• By Lemma 5.3.1, LQ′�̇M
E[Φ]LQ2. By Lemma D.1.3, we have

ae 6∈ mayMove(@D(Daemon | mesgQ),F
[[
A′]])

Applying Theorem 5.4.3 (cong property for expansion), we have E [LQ′]�̇∅
ΦE [LQ2].
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For the next part of this case, we shall focus on the interaction between parent and child
agents. We now define E ′[·] as follows.

E ′[·] = newnewnew Φ−
aux, ∆, b : AgentZ@s ininin

(@D(Daemon | mesgQ) | mapS•([b s]::::::map) | [·]
| newnewnew currentloc : ^̂̂rwSite ininin F

[[
A′]])

Φ−
aux

def= Φaux/currentloc : ^̂̂rwSite

The redefined scope of currentloc will take care of temporary immobility of ae. By Lemma
D.1.7 and Lemma 6.2.7, E [LQ2]∼̇∅

ΦE ′[LR1], where LR1 is defined as the process below.

LR1 = newnewnew pack : ^̂̂rw[] ininin (LRp | LRc)

LRc = newnewnew currentloc : ^̂̂rwSite ininin

(@biflocaliflocaliflocal 〈ae〉pack!!![] thenthenthen (currentloc!!!s | [[P ]]b | Deliverer))

LRp = newnewnew currentloc : ^̂̂rwSite ininin

(@ae([[R]]ae
| regBlockP(s pack Q) | Deliverer))

Let M ′ = mov(Φ)/{ae, b}, we have:

• Since, by Lemma 6.4.5, LRp is temporary immobile under pack wrt (E [Φ],M). By
Lemma 6.3.3 and (Sys-T-RegA), E ′[Φ] ` a@s ∧ b@s, this implies

E ′[Φ] 
 LRc
det−−→
M ′

LR′
c where

LR′
c = newnewnew currentloc : ^̂̂rwSite ininin

@aepack!!![] | @b(currentloc!!!s | [[P ]]b | Deliverer)

Applying Lemma 6.4.2, we have LR1�̇
M ′

E[Φ]LR2, where

LR2 ≡ newnewnew pack : ^̂̂rw[] ininin (LRp|LR′
c)

• By Lemma 6.3.7, we have LR2�̇
M ′

E ′[Φ]LR3 where

LR3 ≡ newnewnew currentloc : ^̂̂rwSite ininin

(@b(currentloc!!!s | [[P ]]b | Deliverer))
| newnewnew currentloc : ^̂̂rwSite ininin

(@ae([[R]]ae
| [[Q]]ae

| currentloc!!!s | Deliverer))

• By Lemma D.1.7 and Lemma 6.2.7, LR3∼̇∅
ΦLR4 where

LR4 = newnewnew currentloc : ^̂̂rwSite ininin (F [[[P FreeA(s)]]]b | F [[[Q|R FreeA(s)]]]ae
)
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• LR�̇M ′

Φ LR4, by transitivity of expansion relation. By Lemma D.1.3,

ae, b 6∈ mayMove(@D(Daemon | mesgQ) | mapS•([b s]::::::map) | F
[[
A′]])

Applying Theorem 5.4.3 (cong property for expansion), we have E ′[LR]�̇∅
ΦE ′[LR4].

• By Lemma D.1.7 and Lemma 6.2.7, E ′[LR4]∼̇∅
ΦLP ′′ where LP ′′ is as follows.

LP ′′ ≡ newnewnew Φaux, ∆, b : AgentZ@s ininin

(@D(Daemon | mesgQ) | mapS•([b s]::::::map) | F
[[
A′]]

| F [[[P FreeA(s)]]]b | F [[[Q|R FreeA(s)]]]ae
)

Clearly, E [LR′′] ≡ F [[Sys′]] and LP ′�̇∅
ΦLP ′′, by transitivity of expansion relation. Thus the

lemma is true for this case.

Case (Sys-Proc-Mig): Given in Section 7.3.3.

Case (Sys-Comm-Mig): Supposing A(ae) = [Q MrdyA(s P )], we have, by (Sys-Proc-

Mig-Comm-B), Φδ 
 Sys
τ−→ Sys′, where

Sys′ = eProg(∆⊕ ae 7→ s; D; A⊕ ae 7→ [Q|P FreeA(s)])

Let A′ be obtained by excluding ae from the domain of A and define E [·], E ′[·], LQ as follows.

E [·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | [·] | F
[[
A′]])

E ′[·] = newnewnew Φaux, (∆⊕ ae 7→ s) ininin (@D(Daemon | mesgQ) | [·] | F
[[
A′]])

LQ = mapS(ae,A(ae))(map)

= newnewnew migrated : ^̂̂rwSite ^̂̂rw[] ininin
(@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| @ae(migReady(s migrated P ) | [[Q]]ae

| Deliverer))

Clearly, F [[Sys]] ≡ E [LQ]. In this case, we have:

• E [Φδ] 
 LQ
@amigrate to s−−−−−−−−−→ LQ′, by (Lts-L-Mig) and applying (Lts-Prl) and (Lts-

New), where:

LQ′ = newnewnew migrated : ^̂̂rwSite ^̂̂rw[] ininin
(@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| newnewnew ack : ^̂̂rw[] ininin (@ae〈D@SD〉migrated!!![s ack] | LR))

LR = @ae(ack???[]→(currentloc!!!s| [[P ]]ae
) | [[Q]]ae

| Deliverer)
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• Φδ 
 F [[Sys]] τ−→ LP ′, by (Lts-Prl), (Lts-Bound-Mig) and (Lts-New), where LP ′ =
E ′[LQ′].

We now need to prove that LP ′�̇∅
ΦF [[Sys′]]. Let M = mov(E ′[Φ])/{ae}, we have:

• @ae〈D@SD〉migrated!!![s ack] �Φ′ @Dmigrated!!![s ack], by Lemma 6.3.5 and
Lemma 6.3.1 (Det Exp), where Φ′ = E ′[Φ], migrated : ^̂̂rwSite ^̂̂rw[], ack : ^̂̂rw[] (since
D is a static agent). This implies, by Theorem 5.4.4 (Transloc Bisim Cong), that
LQ′�̇M

E ′[Φ]LQ1 where

LQ1 ≡ newnewnew migrated : ^̂̂rwSite ^̂̂rw[], ack : ^̂̂rw[] ininin
(@Dmigrated!!![s ack]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| LR)

≡ newnewnew ack : ^̂̂rw[] ininin
(LR

| newnewnew m : Map[Agents Site] ininin (@DmakeMap(m; map) |
@Dnewnewnew migrated : ^̂̂rwSite ^̂̂rw[] ininin

(migrated!!![s ack] | migProc(ae m migrated))))

• By Lemma 6.3.7, we have

@Dnewnewnew migrated : ^̂̂rwSite ^̂̂rw[]ininin (migrated!!![s ack] | migProc(ae m migrated))
�E ′[Φ],ack:̂^̂rw[],m:Map[Agents Site]

@Dletletlet[Agents Site] m′ = (m withwithwith ae 7→ s) ininin (lock!!!m′ | 〈ae@s〉ack!!![])

This means, by Theorem 5.4.4 (Transloc Bisim Cong), LQ1�̇
M
E ′[Φ]LQ2 where

LQ2 ≡ newnewnew ack : ^̂̂rw[] ininin (LR

| newnewnew m : Map[Agents Site] ininin @D(makeMap(m; map) |
letletlet[Agents Site] m′ = (m withwithwith ae 7→ s) ininin

(lock!!!m′ | 〈ae@s〉ack!!![])))

• By Lemma 6.5.2, we have

newnewnew m : Map[Agents Site] ininin (@D(makeMap(m; map) |
letletlet[Agents Site] m′ = (m withwithwith ae 7→ s) ininin lock!!!m′ | 〈ae@s〉ack!!![]))

�E ′[Φ],ack:̂^̂rw[] newnewnew m′ : Map[Agents Site] ininin (@D(makeMap(m′; [ae s]::::::map) |
lock!!!m′ | 〈ae@s〉ack!!![]))

≡ @D〈ae@s〉ack!!![] | mapS•([ae s]::::::map)
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This implies, by Theorem 5.4.4 (Transloc Bisim Cong), LQ2�̇
M
E ′[Φ]LQ3 where:

LQ3 ≡ mapS•([ae s]::::::map) | newnewnew ack : ^̂̂rw[] ininin (LR | @D〈ae@s〉ack!!![])

• We now need to redefine the scope of currentloc in order to use the temporary im-
mobility result. For this, we define the following.

E ′′[·] = newnewnew Φ−
aux, (∆⊕ ae 7→ s) ininin

(@D(Daemon | mesgQ) | mapS•([ae s]::::::map) | [·]
| newnewnew currentloc : ^̂̂rwSite ininin F

[[
A′]])

By Lemma D.1.7 and Lemma 6.2.7, we have E ′[LQ3]∼̇∅
ΦE ′′[LQ4], where

LQ4 = newnewnew currentloc : ^̂̂rwSite, ack : ^̂̂rw[] ininin (LR | @D〈ae@s〉ack!!![])

• By (Sys-T-MigratingA), we have E ′[Φ] ` ae@s. This implies, by Lemma 6.3.5,

E ′′[Φ], ack : ^̂̂rw[] 
 @D〈ae@s〉ack!!![] det−−→
M

@aeack!!![]

By Lemma 6.4.5, we have newnewnew currentloc : ^̂̂rwSite ininin LR is temporary immobile un-
der ack, wrt. (E ′′[Φ], ack : ^̂̂rw[]),M . Applying Lemma 6.4.2, we have: LQ4�̇

M
E ′[Φ]LQ5

where

LQ5 = newnewnew currentloc : ^̂̂rwSite, ack : ^̂̂rw[] ininin (LR | @aeack!!![])

• By Lemma 6.3.7, we have: LQ5�̇
M
E ′[Φ]LQ6 where:

LQ6 = newnewnew currentloc : ^̂̂rwSite ininin @ae([[P | Q]]ae
| Deliverer | currentloc!!!s)

= newnewnew currentloc : ^̂̂rwSite ininin F [[[P |Q FreeA(s)]]]ae

• By Lemma D.1.3, ae 6∈ mayMove(@D . . . ,F
[[
A′]]), this means E ′′[LQ4]�̇∅

ΦE ′′[LQ6], by
Theorem 5.4.3 (cong property for expansion) and transitivity of expansion.

• By Lemma D.1.7 and Lemma 6.2.7, we have E ′′[LQ6]∼̇∅
ΦE ′[F [[[P |Q FreeA(s)]]]ae

].

Clearly, E ′[F [[[P |Q FreeA(s)]]]ae
] ≡ F [[Sys′]] and LP ′�̇∅

ΦE ′[F [[[P |Q FreeA(s)]]]ae
], by transi-

tivity of expansion. Thus the lemma is true for this case.

Case (Sys-Proc-Mesg): Supposing Sys = eProg(∆; [map mesgQ|mesgReq({|T |} [ae c v])]; A),
Sys is idle with A(ae) = [P E]. This implies, by (Sys-Proc-Mesg), Φδ 
 Sys

τ−→ Sys′,
where

Sys′ = eProg(∆; [map mesgQ]; A⊕ ae 7→ [P |c!!!v E])
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Let E [·], LQ be defined as follows:

E [·] ≡ newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | F [[A]] | [·])

LQ = @DmesgReq({|T |} [ae c v]) | mapS•(map)

= @D(mesgReq({|T |} [ae c v]) |
newnewnew m : Map[Agents Site] ininin (lock!!!m | makeMap(m; map)))

Clearly, E [LQ] ≡ F [[Sys]]. In this case, we have:

• E [Φδ] 
 LQ
τ−→ LQ′, by (Lts-L-Out), (Lts-L-In) and (Lts-L-Comm), and applying

(Lts-Prl) and (Lts-New), where

LQ′ ≡ @Dnewnewnew m : Map[Agents Site] ininin (makeMap(m; map)
| lookuplookuplookup[Agents Site] ae ininin m withwithwith

foundfoundfound(s′)→newnewnew dack : ^̂̂rw[] ininin (〈ae@s′〉deliver!!! {|T |} [c v dack]
| dack???[]→lock!!!m)

notfoundnotfoundnotfound→000)

• Φδ 
 F [[Sys]] τ−→ LP ′, by (Lts-Prl) and (Lts-New), where LP ′ = E [LQ′].

We now need to verify that LP ′�̇∅
ΦF [[Sys′]]. Let M = mov(E [Φ])/{ae}.

• By (Sys-T-Map), ae ∈ dom(map). This means there exists se such that

lookupL(ae; map) = se.

By Lemma 6.5.3, we have LQ′�̇M
E[Φ]LQ1 where

LQ1 = @D newnewnew m : Map[Agents Site] ininin (makeMap(m; map)
| newnewnew dack : ^̂̂rw[] ininin (〈ae@se〉deliver!!! {|T |} [c v dack]

| dack???[]→lock!!!m))

≡ newnewnew dack : ^̂̂rw[] ininin (@D〈ae@se〉deliver!!! {|T |} [c v dack]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m))

• By Lemma D.1.4, lookupL(ae; map) = se implies Φ, ∆ ` ae@se. Applying Lemma 6.3.5,
we have: E [Φ] 
 LQ1

det−−→
M

LQ2 where

LQ2 = newnewnew dack : ^̂̂rw[] ininin (@aedeliver!!! {|T |} [c v dack]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m))
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• By Lemma D.1.9, LR = newnewnew Ωaux, ∆ ininin (@D(Daemon | mesgQ) | F [[A]]) is temporary
immobile under lock, wrt (E [Φ], ΩD, ∅), applying Lemma 6.4.2, we have:

newnewnew ΩD ininin (LR|LQ1) �̇∅
E[Φ],∆ newnewnew ΩD ininin (LR|LQ2)

This implies, by Theorem 5.4.3 (cong property for expansion), E [LQ1]�̇∅
E[Φ]E [LQ2].

• We now need to consider the reaction between the agent ae and the daemon. Let A′

be obtained by excluding ae from the domain of A and define E ′[·], LR′ as follows.

E ′[·] = newnewnew Φaux, ∆ ininin (@D(Daemon | mesgQ) | F
[[
A′]] | [·])

LR′ = F [[A(ae)]]ae

= @ae([[P ]]ae
| Deliverer) | F [[E]]ae

Clearly E [LQ2] ≡ E ′[LQ2|LR′].

• By Lemma D.1.8 and applying Lemma 6.2.6, we have E ′[LQ2|LR′]�̇M
E[Φ]E [LQ3] where

LQ3 = newnewnew dack : ^̂̂rw[] ininin
(@Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m)
| LR′| @ae(〈D@SD〉dack!!![] | c!!!v))

• Since D is a static agent, by Lemma 6.3.5 and Lemma 6.3.1 (Det Exp), we have

@ae〈D@SD〉dack!!![] �E ′[Φ],dack:̂^̂rw[] @Ddack!!![]

Applying Theorem 5.4.4 (Transloc Bisim Cong), we have LQ3 �E[Φ] LQ4 where:

LQ4 = newnewnew dack : ^̂̂rw[] ininin
(@Ddack!!![]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m)
| LR′ | @aec!!!v)
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≡ newnewnew dack : ^̂̂rw[] ininin
(@Ddack!!![]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m))
| @ae([[c!!!v|P ]]ae

| Deliverer) | F [[E]]ae

= newnewnew dack : ^̂̂rw[] ininin
(@Ddack!!![]
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | dack???[]→lock!!!m))
| F [[[c!!!v|P E]]]ae

• By Lemma 6.3.7, we have LQ4 �E[Φ] LQ5 where:

LQ5 = @Dnewnewnew m : Map[Agents Site] ininin (makeMap(m; map) | lock!!!m)
| F [[[c!!!v|P E]]]ae

= mapS•(map) | F [[[c!!!v|P E]]]ae

• By Theorem 5.4.4 (Transloc Bisim Cong) and transitivity of expansion, E ′[LQ3]�̇∅
ΦE ′[LQ5].

Clearly, E ′[LQ5] ≡ F [[Sys′]] and LP ′�̇∅
ΦE [LQ5] by transitivity of expansion, thus the lemma

is true for this case.

Case (Sys-Equiv): Supposing Φ ` Sys1 ok, Φ 
 Sys1
β−→
Ξ

Sys2 and dom(Ξ)∩ dom(Φaux) =

∅; moreover, Sys1 ≡Φ Sys′1 and Sys2 ≡Φ,Ξ Sys′2, we may derive the following. By

(Sys-Equiv), Φ 
 Sys′1
β−→
Ξ

Sys′2. By the induction hypothesis, there exists LP such that

Φ 
 F [[Sys1]]
β−→
Ξ

LP and LP �̇∅
Φ,ΞF [[Sys2]]. Since Sys1 ≡Φ Sys′1 implies, by Lemma D.1.2,

F [[Sys1]] ≡α= F [[Sys′1]] and similarly F [[Sys2]] ≡α= F [[Sys′2]]. This means that, by Theorem
4.5.2 and (Lts-Cong-R), Φ 
 F [[Sys′1]]

β−→
Ξ
F

[[
Sys′2

]]
. Thus true for this case.

Therefore the lemma is proved by induction. �

Lemma D.2.2 (Soundness of IL (7.3.4))

Given a valid system context Φ, if Φ 
 F [[Sys]]
β−→
Ξ

LP and dom(Ξ) ∩ dom(Φaux) = ∅ then

there exists Sys′ such that Φ 
 Sys
β−→
Ξ

Sys′, and LP �̇∅
Φ,ΞF [[Sys′]].

Proof: Consider Sys = eProg(∆′; D′; A′) well-formed wrt Φ. Since F is only defined if
dom(∆′) ∩ dom(Φaux) = ∅, we pick an injective substitution σ : dom(∆′) → X/dom(Φ, Φaux)
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and denote ∆ = σ∆′, D = σD and A′ = σA. Clearly we have Sys
α= eProg(∆; D; A) and,

by (L-C-Var), ` Φ, Φaux, ∆. By this alpha-conversion, F [[Sys]] is defined.

First of all we consider the flattened system according to its idle/busy status:

1. The daemon is idle: In this case, there exists no a ∈ dom(A) such that A(a) =
[P MrdyA(s P )] and F [[Sys]] is as follows.

newnewnew Φaux, ∆ ininin @D(Daemon | mesgQ) | mapS•(map) | F [[A]]

= newnewnew Φaux, ∆ ininin @D(Daemon | mesgQ)
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | lock!!!m)
|

∏
a∈dom(A)(F [[Ea]]a | @a([[Pa]]a | Deliverer))

where, for each a, A(a) = [Pa Ea].

2. The daemon is busy: In this case, there exists a unique ae ∈ dom(A) such that A(ae) =
[P MrdyA(s Q)]. Letting A′ be obtained by excluding ae from the domain of A, F [[Sys]]
is as follows.

newnewnew Φaux, ∆ ininin @D(Daemon | mesgQ) | mapSae,A(ae)(map) | F
[[
A′]]

= newnewnew Φaux, ∆ ininin @D(Daemon | mesgQ)
newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
| @Dnewnewnew m : Map[Agents Site] ininin

(makeMap(m; map) | migProc(ae m migrated))
| @ae(migReady(s migrated Q) | [[P ]]ae

| Deliverer)
|

∏
a∈dom(A)/{ae}(F [[Ea]]a | @a([[Pa]]a | Deliverer))

where, for each a 6= ae, A(a) = [Pa Ea].

Supposing LP = F [[Sys]], Φ ` Sys ok and Φ 
 LP
β−→
Ξ

LQ, by Lemma B.2.3 (Lts Analysis),
the action must either be originated from one of the parallelly-composed components or their
interaction. The fine-grain semantics of Nomadic π, however, prevents interaction between
agents from occurring in one step. This means that the action must be originated from one
of the agents (including the daemon D). The possibilities are as follows.

1. Action originated from the daemon D: Since the replicated inputs in Daemon and
lock are newnewnew-bound at the top level, there is only one way of originating an action.

(a) If Sys is idle then one of the message forwarding request may successfully acquires
lock. This corresponds to the (Sys-Proc-Mesg) analysed in the proof of Lemma
7.3.3.
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2. Action originated from an agent a ∈ dom(A). We first of all observe that Deliverer

and F [[E]]a cannot interact with the environment by an input or output action since
the names deliver, pack, rack, mack are bound in the context. An action can be
originated from an agent in the following ways.

(a) Pa in [[Pa]]a contains an iflocaliflocaliflocal, ififif, letletlet or a pair of an output and a (replicated)
input on the same channel. This corresponds to the rules in Figure 7.6 analysed
in the proof of Lemma 7.3.3.

(b) If Ea is FreeA(s) and Pa contains a createcreatecreate or migrate tomigrate tomigrate to then such a process
may initialise by acquiring the currentloc. This corresponds to (Sys-Req-Reg)
and (Sys-Req-Mig) analysed in the proof of Lemma 7.3.3.

Other interaction between F [[Ea]]a and [[Pa]]a is not possible since pack, rack,
mack are binding in F [[Ea]]a. Interaction between F [[Ea]]a or [[Pa]]a and Deliverer

is also not possible since deliver is not used for outputting in such processes.

(c) If Pa contains a LI output 〈b@?〉c!!!v then such a process may initialise a mes-
sage forwarding request in the daemon. This corresponds to (Sys-Req-Mesg)
analysed in the proof of Lemma 7.3.3.

(d) If Sys is busy and ae is ready to migrate then migReady(s migrated P ) may cause
ae to migrate to s. This corresponds to (Sys-Comm-Mig) analysed in the proof
of Lemma 7.3.3. Note that by ensuring that Φ ` Sys ok, this migration would
not be observable since ae is newnewnew-bound within ∆.

Since all the possible transitions of F [[Sys]] have corresponding transitions of Sys, the lemma
holds.

�

D.3 Analysis of D [[·]]

Lemma D.3.1 (D]−1 is a progressing simulation (7.4.3))

For any Sys, with Φ ` Sys ok, if Φ 
 D] [[Sys]]
β−→
Ξ

LP then there exists Sys′ such that

LP ≡ D] [[Sys′]] and Φ 
 Sys
β

=⇒
Ξ

Sys′.
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Proof: In this part of the proof, we shall validate the following diagram:

Φ 
 D] [[Sys]]

RΦ

β

Ξ
Φ, Ξ 
 D] [[Sys′]]

RΦ,Ξ

Φ 
 Sys
β

Ξ
Φ, Ξ 
 Sys′

where the translocating relation R is defined as follows.

RΦ = {(D] [[Sys]] , Sys) | Φ ` Sys ok}

Proving that R is a Φaux-restricted progressing simulation directly would be hard, since an
action of D] [[Sys]] may require Sys to commit some pending requests before making the
corresponding action. It is sufficient, however, to prove the following

If Sysn with Φ ` Sysn ok is fully-committed and Φ 
 D] [[Sysn]]
β−→
Ξ

LP with

dom(Ξ) ∩ dom(Φaux) = ∅ then there exists Sys′ such that LP ≡ D] [[Sys′]] and
Φ 
 Sysn

β
=⇒

Ξ
Sys′.

Consider Sys with Φ ` Sys ok. Supposing Φ 
 D] [[Sys]]
β−→
Ξ

LP with dom(Ξ)∩ dom(Φaux) =

∅, we may derive the following. By Lemma 7.4.4, D] [[Sys]] ≡ D] [[Norm(Sys)]]. This
means that Φ 
 D] [[Norm(Sys)]]

β−→
Ξ

LP , by Theorem 4.5.2. By Lemma 7.4.4, Φ 
 Sys
τ=⇒

Norm(Sys) and there exists Sys′ such that Φ 
 Norm(Sys)
β

=⇒
Ξ

Sys′ and D] [[Sys′]] ≡ LP ,

by the above claim. This means that Φ 
 Sys
β

=⇒
Ξ

Sys′, by combining the transitions. This
means R is a Φaux-restricted progressing simulation. Hence the lemma, by Lemma B.9.1.

In the rest of this proof, we shall validate the above claim. Supposing Φ ` Sys ok and Sys =
eProg(∆′′; [map′′ mesgQ′′]; A′′) is fully-committed. In order to avoid the names in ∆′′ clashing
with Φaux (especially when they are being extruded by output actions), we pick an injective
substitution σ : dom(∆′′) → X/dom(Φ, Φaux). We have Sys

α= eProg(∆; [map mesgQ]; A),
where ∆ = σ∆′′, map = σmap′′, mesgQ = σmesgQ′′ and A = σA′′.

In this case, we have:

D] [[Sys]] = newnewnew ∆commEff(A) ininin (D] [[mesgQ]] | D] [[A]])

= newnewnew ∆ ininin (D] [[mesgQ]] |
∏

a∈dom(A)

D] [[A(a)]]a)

= newnewnew ∆ ininin ((
∏
i∈I

@aici!!!vi) | (
∏

a∈dom(A)

@aPa))
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where A(a) = [Pa FreeA(sa)] for each a and mesgQ =
∏

i∈I mesgReq{|Ti|} [ai ci vi]. Let

LP = D] [[Sys]] and supposing Φ 
 LP
β−→
Ξ

LQ with dom(Ξ)∩ dom(Φaux) = ∅, this transition
can be derived from the following situations.

Case Output action from @aec!!!v in D] [[mesgQ]]: Supposing ∆ ≡ ∆1, ∆2 where dom(∆)∩
fv(v) = dom(∆1), we have, by (Lts-Open), (Lts-Prl) and (Lts-New), Φ 
 LP

@aec!!!v−−−−→
∆1

LQ,

where

LQ ≡ newnewnew ∆2 ininin (D]
[[
mesgQ′]] | D] [[A]])

In this case, supposing A(ae) = [P FreeA(s)], we have:

• By (Sys-Proc-Mesg), we have: Φ 
 Sys
τ−→ Sys′, where:

Sys′ = eProg(∆; [map mesgQ′]; A⊕ ae 7→ [P |c!!!v FreeA(s)])

• By (Sys-Loc-Out), we have: Φ 
 Sys′
@ac!!!v−−−−→

∆1

Sys′′, where:

Sys′′ = eProg(∆; [map mesgQ′]; A⊕ ae 7→ [P FreeA(s)])

= eProg(∆; [map mesgQ′]; A)

• D] [[Sys′′]] ≡ LQ. Moreover, as clearly dom(∆1) ∩ dom(Φaux) = ∅, by Lemma 7.2.1,
Φ, ∆1 ` Sys′′ ok. This implies (LQ, Sys′′) ∈ RΦ,∆1 .

Thus true for this case.

Case @aec!!!v in D] [[mesgQ]] interacts with an input in
∏

a∈dom(A) @aPa: Similar to the
previous case.

We shall now analyse possible transition of an agent in
∏

a∈dom(A) @aPa. Supposing ae ∈
dom(A) and A(ae) = [P FreeA(s)].

Case (P ≡ c!!!v | Q with {ae, c} ⊆ dom(Φ)): In this case, we have:

D] [[A(a)]] ≡ @aec!!!v | @aeQ

by (Lts-Open), (Lts-Prl) and (Lts-New), Φ 
 LP
@aec!!!v−−−−→

∆1

LQ, where

LQ ≡ newnewnew ∆2 ininin (D] [[mesgQ]] | @aeQ |
∏

a∈dom(A)/{ae}

D] [[A(a)]])

The transition of the system can be analysed as follows:
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• By (Sys-Loc-Out), we have: Φ 
 Sys
@aec!!!v−−−−→

∆1

Sys′, where:

Sys′ = eProg(∆2; [map mesgQ]; A⊕ ae 7→ [Q FreeA(s)])

• D] [[[Q E]]]ae
= @aeQ, by the definition of D].

• D] [[Sys′′]] ≡ LQ. Moreover, as clearly dom(∆1) ∩ dom(Φaux) = ∅, by Lemma 7.2.1,
Φ, ∆1 ` Sys′′ ok. This implies (LQ, Sys′′) ∈ RΦ,∆1 .

Thus true for this case.

Case (P ≡ (c???p→R) | Q with {ae, c} ⊆ dom(Φ)): Similar to the above case. We also omit
situations where P contains iflocaliflocaliflocal, ififif, letletlet, and a pair of output and (replicated) input
on the same channel. The analysis of such cases are similar to that shown above.

Case P ≡ (createcreatecreateZ b = P1 ininin P2) | Q: In this case, we have:

D] [[A(ae)]] ≡ @ae(createcreatecreateZ b = P1 ininin P2) | @aeQ

Since (Sys-T-FreeA) implies Φ, ∆ ` a@s, by (Lts-L-Create) we have:

Φ, ∆ 
ae createcreatecreateZ b = P1 ininin P2
τ−→ newnewnew b : AgentZ@s ininin (@aeP2 | @bP1)

By (Lts-Prl) and (Lts-New), we have: Φ 
 LP
τ−→ LQ, where

LQ ≡ newnewnew ∆ ininin (D] [[mesgQ]] |
∏

a∈dom(A)/{ae}D
] [[A(a)]]

| @ae(Q | (newnewnew b : AgentZ@s ininin @aeP2 | @bP1)))

≡ newnewnew ∆, b : AgentZ@s ininin (D] [[mesgQ]] |
∏

a∈dom(A)/{ae}D
] [[A(a)]]

| @ae(Q|P2) | @bP1)

By (Sys-Req-Reg), we have: Φ 
 Sys
τ−→ Sys′, where:

Sys′ = eProg(∆; [map mesgQ]; A⊕ ae 7→ [Q RegA(b Z s P1 P2)])

By the definition of D], we have:

D] [[[Q RegA(b Z s P1 P2)]]]ae
= newnewnew b : AgentZ@s ininin @ae(P2 | Q) | @bP1

D] [[Sys′]] ≡ LQ. Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, implying (LQ, Sys′) ∈ RΦ. Thus
true for this case.

Case P ≡ (migrate tomigrate tomigrate to s→R) | Q: In this case, we have:

D] [[A(ae)]] ≡ @ae(migrate tomigrate tomigrate to s→R) | @aeQ
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By (Lts-L-Migrate) we have:

Φ, ∆ 
ae migrate tomigrate tomigrate to s→R
@aemigrate to s−−−−−−−−−−→ @aeR

By (Lts-Bound-Mig), (Lts-Prl) and (Lts-New), we have: Φ 
 LP
τ−→ LQ, where LQ is

structurally congruent to the process below.

newnewnew (∆⊕ ae 7→ s) ininin (D] [[mesgQ]] | @ae(Q|R) |
∏

a∈dom(A)/{ae}

D] [[A(a)]])

By (Sys-Req-Mig), we have: Φ 
 Sys
τ−→ Sys′, where:

Sys′ = eProg(∆; [map mesgQ]; A⊕ ae 7→ [Q MtingA(s R)])

By the definition of D], we have:

D] [[[Q MtingA(s R)]]]ae
= @ae(Q | R)

commEff(A⊕ ae 7→ [Q MtingA(s R)]) = ae 7→ s

D] [[Sys′]] ≡ LQ. Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, implying (LQ, Sys′) ∈ RΦ. Thus
true for this case.

Case P ≡ 〈b@?〉c!!!v | Q: In this case, we have:

D] [[A(ae)]] ≡ @ae〈b@?〉c!!!v | @aeQ

By (Lts-L-LI-Send) we have Φ, ∆ 
ae 〈b@?〉c!!!v τ−→ @bc!!!v. By (Lts-Prl) and (Lts-New),
we have: Φ 
 LP

τ−→ LQ, where LQ is structurally congruent to the process below.

LQ ≡ newnewnew ∆⊕ ae 7→ s ininin (D] [[mesgQ]] | @aeQ | @bc!!!v |
∏

a∈dom(A)/{ae}

D] [[A(a)]])

By (Sys-Req-Mesg), we have: Φ 
 Sys
τ−→ Sys′, where:

Sys′ = eProg(∆; [map mesgReq({|T |} [b c v]) | mesgQ]; A⊕ ae 7→ [Q FreeA(s)])

By the definition of D], we have:

D] [[[Q FreeA(s)]]]ae
= @aeQ

D] [[mesgReq({|T |} [b c v]) | mesgQ]] = @bc!!!v | D] [[mesgQ]]

D] [[Sys′]] ≡ LQ. Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, implying (LQ, Sys′) ∈ RΦ. Thus
true for this case.

�
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Lemma D.3.2 (D[ is a strict simulation (7.4.2))

For any Sys with Φ ` Sys ok, if Φ 
 Sys
β−→
Ξ

Sys′ then Φ 
 D[ [[Sys]]
β̂−→
Ξ
D[

[[
Sys′

]]
.

Proof: In this part of the proof, we shall try to validate the following diagram:

Φ 
 Sys

RΦ

β

Ξ
Φ, Ξ 
 Sys′

RΦ,Ξ

Φ 
 D[ [[Sys]]
β̂

Ξ
Φ, Ξ 
 D[ [[Sys′]]

where the translocating relation R is defined as follows:

RΦ = {(D[ [[Sys]] , Sys) | Φ ` Sys ok}

We shall prove that R−1 is a Φaux-restricted strict simulation.

Supposing Φ ` Sys ok and Sys = eProg(∆′′; [map′′ mesgQ′′]; A′′). To avoid the names in ∆′′

clashing with Φaux, we pick an injective substitution σ : dom(∆′′) → X/dom(Φ, Φaux). We
have Sys

α= eProg(∆; [map mesgQ]; A), where ∆ = σ∆′′, map = σmap′′, mesgQ = σmesgQ′′

and A = σA′′. By the definition of D[, we have:

D[ [[Sys]] = newnewnew ∆ ininin D[ [[mesgQ]] | D[ [[A]]

= newnewnew ∆ ininin (
∏
i∈I

@aici!!!vi) | (
∏

a∈dom(A)

D[ [[A(a)]]a)

where A(a) = [Pa FreeA(sa)] for each a and mesgQ =
∏

i∈I mesgReq{|Ti|} [ai ci vi]. Suppose

further that Φ 
 Sys
β−→
Ξ

Sys′ with dom(Ξ) ∩ dom(Φaux) = ∅, we shall prove the claim by an
induction on the transition derivation.

Case (Sys-Loc-Tau): Suppose A(ae) = [P | Q E] with P = (c!!!v | c???p → R) and
Φ, ∆ 
ae P

τ−→ @aeP
′. By (Sys-Loc-Tau), we have: Φ 
 Sys

τ−→ Sys′ where:

Sys′ = eProg(∆; D; A⊕ ae 7→ [P ′ | Q E])

By the definition of D[, we have:

D[ [[A(ae)]]ae
≡ @aeP | @aeQ | D[ [[E]]ae

Letting LP denote D[ [[A]], we have: By (Lts-L-Out), (Lts-L-In) and (Lts-L-Comm),
Φ, ∆ 
ae P

τ−→ @aematch(p, v)R. This implies P ′ ≡ match(p, v)R. By (Lts-Prl) and (Lts-

New), we have: Φ, ∆ 
 LP
τ−→ LQ where:

LQ ≡ newnewnew ∆ ininin (D[ [[mesgQ]] | @ae(P ′ | Q) | D[ [[E]]ae
|

∏
a∈dom(A)/{ae}

D[ [[A(a)]]a)

= newnewnew ∆ ininin (D[ [[mesgQ]] | D[
[[

[P ′ | Q E]
]]

ae
|

∏
a∈dom(A)/{ae}

D[ [[A(a)]]a)
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LQ ≡ D[ [[Sys′]]. Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, implying (LQ, Sys′) ∈ RΦ.
Thus true for this case. The case where P is an ififif, iflocaliflocaliflocal, letletlet and a pair of output and
replicated input on the same channel can be dealt with similarly.

Case (Sys-Loc-Input): Suppose A(ae) = [(c???p → P ) | Q E] with ae, c ∈ dom(Φ), Ξ
is extensible, Φ ` c ∈ ^̂̂rT , Φ, Ξ ` v ∈ T , dom(Ξ) ⊆ fv(v) and dom(Ξ) ∩ dom(∆) = ∅.
We also assume further that dom(Ξ) ∩ dom(Φaux) = ∅. By (Sys-Loc-Input), we have:

Φ 
 Sys
@aec???v−−−−→

Ξ
Sys′ where:

Sys′ = eProg(∆; D; A⊕ ae 7→ [(match(p, v)P ) | Q E])

By the definition of D[, we have:

D[ [[A(ae)]]ae
≡ @aec???p→P | @aeQ | D[ [[E]]ae

Letting LP denote D[ [[A]], we have: Since dom(Ξ) ∩ dom(∆), we have ` Φ, ∆, Ξ and
hence Φ, ∆, Ξ ` v ∈ T , by Lemma 3.7.2 (Type SW). By (Lts-L-In), Φ, ∆ 
ae c???p→P

c???v−−→
Ξ

@aematch(p, v)P . By (Lts-Prl) and (Lts-New), we have: Φ, ∆ 
 LP
τ−→ LQ where:

LQ ≡ newnewnew ∆ ininin (D[ [[mesgQ]]
| @ae((match(p, v)P ) | Q) | D[ [[E]]ae

|
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

= newnewnew ∆ ininin (D[ [[mesgQ]]
| D[ [[[(match(p, v)P ) | Q E]]]ae

|
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

LQ ≡ D[ [[Sys′]]. Moreover assuming dom(Ξ) ∩ dom(Φaux) = ∅ implies, by Lemma 7.2.1,
Φ, Ξ ` Sys′ ok, that (LQ, Sys′) ∈ RΦ,Ξ. Thus true for this case.

Case (Sys-Loc-Output): Similar to the previous case.

Case (Sys-Req-Reg): Supposing A(ae) = [P | Q FreeA(s)] with P = (createcreatecreateZ b =
P1 ininin P2) and b 6∈ dom(Φ, ∆). By (Sys-Req-Reg), we have: Φ 
 Sys

τ−→ Sys′ where:

Sys′ = eProg(∆; D; A⊕ ae 7→ [Q RegA(b Z s P1 P2)])

By the definition of D[, we have:

D[ [[A(ae)]]ae
≡ newnewnew b : AgentZ@s ininin @aeP | @aeQ

Letting LP denote D[ [[A]], we have:

• By (Lts-L-Create), we have: Φ, ∆ 
ae P
τ−→ newnewnew b : AgentZ@s ininin (@aeP2 | @bP1),

since Φ, ∆ ` ae@s (by (Sys-T-FreeA)).
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• By (Lts-Prl) and (Lts-New), we have: Φ, ∆ 
 LP
τ−→ LQ where:

LQ ≡ newnewnew ∆ ininin (D[ [[mesgQ]] |
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a

| @aeQ | newnewnew b : AgentZ@s ininin (@aeP2 | @bP1))

≡ newnewnew ∆ ininin (D[ [[mesgQ]] |
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a

| newnewnew b : AgentZ@s ininin (@ae(Q | P2) | @bP1))

= newnewnew ∆ininin (D[ [[mesgQ]] |
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a

| D[ [[[Q RegA(b Z s P1 P2)]]]ae
)

• LQ ≡ D[ [[Sys′]] Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, which implies (LQ, Sys′) ∈
RΦ.

Thus true for this case.

Case (Sys-Req-Mig): Supposing A(ae) = [P | Q FreeA(s)] and P = (migrate tomigrate tomigrate to s→R).
By (Sys-Req-Mig), we have: Φ 
 Sys

τ−→ Sys′ where:

Sys′ = eProg(∆; D; A⊕ ae 7→ [Q MtingA(s R)])

By the definition of D[, we have:

D[ [[A(ae)]]ae
= @ae(P | Q) | D[ [[FreeA(s)]]ae

≡ @aeP | @aeQ

= D[ [[[Q MtingA(s R)]]]ae

This implies D[ [[Sys′]] = LP . Thus true for this case.

Case (Sys-Req-Mesg): Supposing A(ae) = [P | Q E], P = 〈b@?〉c!!!v and Φ, ∆ ` v ∈ T .
By (Sys-Req-Mesg), we have: Φ 
 Sys

τ−→ Sys′ where:

Sys′ = eProg(∆; [map mesgReq({|T |} [b c v]) | mesgQ]; A⊕ ae 7→ [Q E])

By the definition of D[, we have:

D[ [[A(ae)]]ae
≡ @aeP | @aeQ | D[ [[E]]ae

Letting LP denote D[ [[A]], we have:

• By (Lts-L-LI-Send), we have: Φ, ∆ 
ae P
τ−→ @bc!!!v.
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• By (Lts-Prl) and (Lts-New), we have: Φ, ∆ 
 LP
τ−→ LQ where:

LQ ≡ newnewnew ∆ ininin (D[ [[mesgQ]] | (@aeQ | D[ [[E]]ae
| @bc!!!v)

|
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

= newnewnew ∆ ininin (D[ [[mesgReq({|T |} [b c v]) | mesgQ]] | D[ [[[Q E]]]ae

|
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

• LQ ≡ D[ [[Sys′]] Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, which implies (LQ, Sys′) ∈
RΦ.

Thus true for this case.

Case (Sys-Proc-Reg): Supposing Sys is idle and A(ae) = [R RegA(b Z s P Q)]. By
(Sys-Proc-Reg), we have: Φ 
 Sys

β−→
Θ

Sys′ where Sys′ denotes the following.

eProg(∆, b : AgentZ@s; [[b s]::::::map mesgQ]; A⊕ ae 7→ [Q | R FreeA(s)]⊕ b 7→ [P FreeA(s)])

We may derive the following:

D[ [[Sys]] = newnewnew ∆ ininin (D[ [[mesgQ]] | D[ [[A(ae)]]ae
|

∏
a∈dom(A)/{ae}

D[ [[A(a)]]a)

= newnewnew ∆ ininin (D[ [[mesgQ]] |
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a

| newnewnew b : AgentZ@s ininin (@ae(Q | R) | @bP ))

≡ newnewnew ∆, b : AgentZ@s ininin (D[ [[mesgQ]]
| (@ae(Q | R) | @bP ) |

∏
a∈dom(A)/{ae}D

[ [[A(a)]]a)

≡ newnewnew ∆, b : AgentZ@s ininin (D[ [[mesgQ]]
| D[ [[[Q | R FreeA(s)]]]ae

| D[ [[[P FreeA(s)]]]b |
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

= D[
[[
Sys′

]]
Thus true for this case.

Case (Sys-Proc-Mig): Supposing Sys is idle and A(ae) = [Q MtingA(s P )]. By (Sys-

Proc-Mig), we have: Φ 
 Sys
β−→
Θ

Sys′ where:

Sys′ = eProg(∆; D; A⊕ ae 7→ [Q MrdyA(s P )])

By the definition of D[, we have:

D[ [[A(ae)]]ae
= @aeQ | @aemigrate tomigrate tomigrate to s→P

= D[ [[[Q MrdyA(s P )]]]ae
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This implies D[ [[Sys′]] = LP . Thus true for this case.

Case (Sys-Comm-Mig): Supposing A(ae) = [Q MrdyA(s P )]. By (Sys-Proc-Mig-

Comm), we have: Φ 
 Sys
β−→
Θ

Sys′ where:

Sys′ = eProg(∆@aemigrate to s; [[ae s]::::::map mesgQ]; A⊕ ae 7→ [P | Q FreeA(s)])

By the definition of D[, we have:

D[ [[A(ae)]]ae
= @aeQ | @aemigrate tomigrate tomigrate to s→P

Letting LP denote D[ [[A]], we have:

• By (Lts-L-Mig), we have: Φ, ∆ 
ae migrate tomigrate tomigrate to s→P
migrate to s−−−−−−−→ @aeP .

• By (Lts-Bound-Mig), (Lts-Prl) and (Lts-New), we have: Φ, ∆ 
 LP
τ−→ LQ where:

LQ ≡ newnewnew (∆⊕ ae 7→ s) ininin (D[ [[mesgQ]]
| (@aQ | @aP ) |

∏
a∈dom(A)/{ae}D

[ [[A(a)]]a)

= newnewnew (∆⊕ ae 7→ s) ininin (D[ [[mesgQ]]
| D[ [[[P | Q FreeA(s)]]]ae

|
∏

a∈dom(A)/{ae}D
[ [[A(a)]]a)

• LQ ≡ D[ [[Sys′]]. Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, which implies (LQ, Sys′) ∈
RΦ.

Thus true for this case.

Case (Sys-Proc-Mesg): Supposing Sys is idle and mesgQ ≡ mesgReq({|T |} [ae c v]) |mesgQ′

with A(ae) = [P E]. By (Sys-Proc-MesgQ), we have: Φ 
 Sys
β−→
Θ

Sys′ where:

Sys′ = eProg(∆; [map mesgQ′]; A⊕ ae 7→ [P | c!!!v E])

By the definition of D[, we have:

D[ [[mesgQ]] | D[ [[A(ae)]]ae
= @aec!!!v | D[

[[
mesgQ′]] | @aeP | D[ [[E]]ae

= D[
[[
mesgQ′]] | D[ [[[P | c!!!v E]]]ae

This implies D[ [[Sys′]] = LP . Moreover, by Lemma 7.2.1, Φ ` Sys′ ok, which implies
(LP, Sys′) ∈ RΦ. Thus true for this case.

�
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In J. Wiedemann and P. Hájek, editors, Proceedings of MFCS ’95, volume
969 of Lecture Notes in Computer Science, pages 479–488. Springer, 1995. To
appear in Mathematical Structures in Computer Science. Full version available
electronically.

[San96a] Davide Sangiorgi. Bisimulation in higher-order process calculi. Journal of
Information and Computation, 131:141–178, 1996. Available as Rapport de
Recherche RR-2508, INRIA Sophia-Antipolis, 1995. An early version appeared
in Proceedings of PROCOMET’94, pages 207–224. IFIP. North Holland Pub-
lisher.

[San96b] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informat-
ica, 33:69–97, 1996. Earlier version published as Report ECS-LFCS-93-270,
University of Edinburgh. An extended abstract appeared in the Proceedings of
CONCUR ’93, LNCS 715.

[San99] Davide Sangiorgi. The name discipline of uniform receptiveness. Theoretical
Computer Science, 221(1–2):457–493, 1999. An abstract appeared in the Pro-
ceedings of ICALP ’97 , LNCS 1256, pages 303–313.

[Sew97] Peter Sewell. On implementations and semantics of a concurrent programming
language. In Mazurkiewicz and Winkowski [MW97], pages 391–405.

[Sew98] Peter Sewell. Global/local subtyping and capability inference for a distributed
pi-calculus. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Pro-
ceedings of ICALP ’98, volume 1443 of Lecture Notes in Computer Science,
pages 695–706. Springer, July 1998. Full version as Technical Report 435,
Computer Laboratory, University of Cambridge.



292 BIBLIOGRAPHY

[Sew00] Peter Sewell. A brief introduction to applied π. Technical Report 498, Computer
Laboratory, University of Cambridge, Cambridge, UK, August 2000.

[SM92] D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. In W. R.
Cleaveland, editor, Proceedings of CONCUR’92, volume 630 of Lecture Notes
in Computer Science, Stony Brook, New York, 24–27August 1992. Springer-
Verlag.

[Smi97] Mark Smith. Formal Verification of TCP and T/TCP. PhD thesis, MIT De-
partment of Electrical Engineering and Computer Science, September 1997.

[Smo94] Gert Smolka. A foundation for higher-order concurrent constraint program-
ming. In J.-P. Jouannaud, editor, Proceedings 1st International Conference of
Constraints in Computational Logics, volume 845 of Lecture Notes in Computer
Science, pages 50–72. Springer, 1994. Available as Research Report RR-94-16
from DFKI Kaiserslautern.

[Smo95a] G. Smolka. The definition of kernel Oz. In A. Podelski, editor, Constraints:
Basics and Trends, volume 910 of Lecture Notes in Computer Science, pages
251–292. SpringerVerlag, Berlin, 1995.

[Smo95b] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Com-
puter Science Today, pages 324–343. Springer-Verlag, Berlin, 1995.

[SV99] Peter Sewell and Jan Vitek. Secure composition of insecure components. In Pro-
ceedings of CSFW 99: The 12th IEEE Computer Security Foundations Work-
shop (Mordano, Italy), pages 136–150. IEEE Computer Society, June 1999.

[SV00] Peter Sewell and Jan Vitek. Secure composition of untrusted code: Wrappers
and causality types. In Proceedings of CSFW 00: The 13th IEEE Computer
Security Foundations Workshop., pages 269–284. IEEE Computer Society, July
2000. Full versions with title Secure Composition of Untrusted Code: Wrappers
and Causality Types appears as Technical Report 478, Computer Laboratory,
University of Cambridge, 1999.

[SWP99] Peter Sewell, Pawel Wojciechowski, and Benjamin Pierce. Location indepen-
dence for mobile agents. In H.E. Bal, B. Belkhouche, and Luca Cardelli, edi-
tors, Proceedings of ICCL ’98, Workshop on Internet Programming Languages
(Chicago, IL, USA, May 13, 1998), volume 1686 of Lecture Notes in Computer
Science. Springer, September 1999. Full version with title Location-Independent



BIBLIOGRAPHY 293

Communication for Mobile Agents: a Two-Level Architecture appeared as Tech-
nical Report 462, Computer Laboratory, University of Cambridge, April 1999.

[SY97] Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobility. In
Prodeedings of FMOODS’97, Canterbury, July. IFIP, Chapman and Hall, 1997.

[TLG92] B. Thomsen, L. Leth, and A. Giacalone. Some issues in the semantics of Facile
distributed programming. In Proceedings of REX Workshop Semantics: Foun-
dations and Applications, volume 666 of Lecture Notes in Computer Science.
Springer, 1992.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In Montanari
and Sassone [MS96], pages 278–298.

[TLP+93] Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo, Andre Kramer,
Fritz C. Knabe, and Alessandro Giacalone. Facile antigua release programming
guide. Technical Report ECRC-93-20, European Computer Industry Research
Centre, Munich, Germany, December 1993.

[Tof91] Chris Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD the-
sis, Laboratory for Foundations of Computer Science, University of Edinburgh,
February 1991. Published as ECS-LFCS-91-140.

[Tsc94] C. F. Tschudin. An Introduction to the MØ Messenger Language. Technical
Report Cahier du CUI No 86, University of Geneva, Switzerland, 1994.

[TSS+97] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A sur-
vey of active network research. IEEE Communications, pages 80–86, January
1997.

[Tur96] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, LFCS, University of Edinburgh, June 1996. CST-126-96 (also
published as ECS-LFCS-96-345).

[US01] Asis Unyapoth and Peter Sewell. Nomadic Pict: Correct communication infras-
tructure for mobile computation. In Proceedings of POPL ’01 [ACM01], pages
116–127.

[Vas94] Vasco Thudichum Vasconcelos. A process-calculus approach to typed concurrent
objects. PhD thesis, Keio University, 1994.



294 BIBLIOGRAPHY

[VC98] Jan Vitek and Giuseppe Castagna. Towards a calculus of secure mobile com-
putations. In IEEE Workshop on Internet Programming Languages, Chicago,
Illinois, May 1998.

[VC99] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations.
In In Internet Programming Languages, 1999.

[vG90] R. J. van Glabbeek. The linear time – branching time spectrum. In J. C. M.
Baeten and J. W. Klop, editors, Proceedings of CONCUR’90, LNCS 458, pages
278–297. Springer-Verlag, 1990.

[vG93] R. J. van Glabbeek. The linear time – branching time spectrum II (the seman-
tics of sequential systems with silent moves). In Proceedings of CONCUR ’93,
pages 66–81, 1993.

[Vic94] Björn Victor. A Verification Tool for the Polyadic π-Calculus. Licentiate thesis,
Department of Computer Systems, Uppsala University, Sweden, May 1994.
Available as report DoCS 94/50.

[Vic98] Björn Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. PhD thesis, Dept. of Computer Systems, Uppsala University, Swe-
den, June 1998.
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labelled transition, 53
late, 58
reduction, 50
typed, 48

site, 17
site map, 25
source language, 25, 119
structural congruence, 48
substitution, 43

type preserving, 43
system, 122

busy, 127
idle, 127

target language, 25, 119
temporary immobility, 107
translocating derivative, 106
translocating indexed relation, 74
translocating path, 106
type, 18

base types, 18
extensible, 19
located type context, 19
type variables, 18
typechecking, 33
typing judgement, 33

type context, 19
closed, 61
congruence, 20
extensible, 19

ground, 44

valid relocator, 74
valid system context, 129
value, 20
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