
1

Switchlets and Resource-Assured MPLS Networks
May 2000

Richard Mortier, Rebecca Isaacs, and Keir Fraser
Systems Research Group, University of Cambridge Computer Laboratory, UK

Abstract—
MPLS (Multi-Protocol Label Switching) is a technology

with the potential to support multiple control systems, each
with guaranteed QoS (Quality of Service), on connectionless
best-effort networks. However, it does not provide all the ca-
pabilities required of a multi-service network. In particular,
although resource-assured VPNs (Virtual Private Networks)
can be created, there is no provision for inter-VPN resource
management. Control flexibility is limited because resources
must be pinned down to be guaranteed, and best-effort flows
in different VPNs compete for the same resources, leading to
QoS crosstalk.

The contribution of this paper is an implementation
on MPLS of a network control framework that supports
inter-VPN resource management. Using resource partitions
known as switchlets, it allows the creation of multiple VPNs
with guaranteed resource allocations, and maintains isola-
tion between these VPNs. Devolved control techniques per-
mit each VPN a customised control system.

We motivate our work by discussing related efforts and
example scenarios of effective deployment of our system.
The implementation is described and evaluated, and we ad-
dress interoperability with external IP control systems, in
addition to interoperability of data across different layer 2
technologies.

Keywords— Multi-Protocol Label Switching, Virtual Pri-
vate Network, switchlet, Tempest, IP, ATM, interoperability

I. INTRODUCTION

A multi-service network has to meet the diverse QoS
requirements of hard real-time, soft real-time, and data
traffic in a cost-effective, flexible and efficient manner.
Monolithic, general-purpose network control systems have
proved to be ill-suited to the task of managing such net-
works — cases in point are the poor real-time support
in IP, and the heavyweight signalling protocols of ATM.
Attempts to coerce these control systems into supporting
multiple services add complexity, and do not address the
long-term problem of currently unknown future services.
We believe that in a truly multi-service network the data
and control planes must be separate so that multiple con-
trol systems may coexist. This enables applications’ ser-

Richard Mortier acknowledges the support of an EP-
SRC CASE award in association with BT. Email first-
name.lastname@cl.cam.ac.uk

vice requirements to met by the control system best suited
to the task. Resource partitioning between control systems
at the lowest level is a requirement for the delivery of QoS
guarantees to applications.

We have previously proposed the Tempest as a network
control framework achieving these aims. We have de-
scribed our implementation of the Tempest on ATM [1],
[2], a technology which naturally lends itself to a clean
separation between the network’s data and control planes.
In this paper we present an implementation of the Tempest
over MPLS, and explore interoperability between Tempest
and non-Tempest domains within a control system called
ALASCA1.

Our MPLS implementation partitions network resources
at the lowest level through differentiated packet forward-
ing. This allows it to support resource-guaranteed VPNs,
each with its own control system, over networks offering
neither QoS guarantees nor connection-oriented service,
such as Ethernet. Furthermore, the Tempest framework
allows the reservation of unused resources for future con-
nections, the reallocation of resources between VPNs, and
global resource management between VPNs. The result is
a platform also suitable for the realization of other efforts
to introduce QoS in networks, such as DiffServ (Differen-
tiated Services) and IntServ (Integrated Services).

Outline of Paper

In the following section we review MPLS and the Tem-
pest, and other related work. In Section III we make the
conceptual framework more concrete by describing some
example scenarios: support for the IETF’s DiffServ and
IntServ architectures, provision of differentiated service
for requests in a cluster-based web server, and support for
aggregate resource reservation in the Internet.

Section IV describes our MPLS implementation for the
Linux kernel, detailing how label and resource partitioning
is achieved, and discussing how we deal with packets en-
tering the Tempest domain from external sources. We also
present ALASCA, a Tempest-style implementation of an
LDP (Label Distribution Protocol) which enables connec-
tivity with external systems.

�
A Little Autonomous System Control Architecture.

2

An evaluation of our implementation is given in Sec-
tion V, and interoperability issues arising from the imple-
mentation are discussed in Section VI. Finally, Section VII
contains a brief summary and suggestions for future work.

II. BACKGROUND

A. Multi-Protocol Label Switching

MPLS [3] is a framework for forwarding based on a
short, fixed-length label in the packet header. It divorces
route determination from the forwarding mechanism, en-
abling more complex treatment of traffic streams than is
possible in current IP networks. Packets may follow paths
determined by considerations other than the pure hop-by-
hop destination-routed model of IP.

When a packet enters the network, its FEC (Forwarding
Equivalence Class) is determined and a label assigned ac-
cordingly. This label specifies the path along which the
packet will be forwarded; from this point, the network
need only perform lightweight label switching operations
at each node, until the packet reaches the end of the path.
A packet may be classified into a FEC by a variety of
means, ranging from simple destination-based classifica-
tion, analogous to the current IP routing model, to classi-
fication based more generally on the packet’s headers or
content.

The label is either inserted into the layer 2 header if
fields are available, or the packet is encapsulated by a
special-purpose shim header. Switching points may con-
sist of software controlling well-known switch technolo-
gies, such as ATM or Frame Relay, or may be custom built
to support MPLS. At a switch2 the label serves to index
into a LIB (Label Information Base), a table containing
the next forwarding hop and a new label.

Switches construct their LIBs using an LDP, which may
be classified according to how they create their LIB en-
tries:
Request-driven Creation based on the messages of a con-
trol protocol such as RSVP [4], or traditional ATM sig-
nalling.
Topology-driven Creation based on information derived
from layer 3 routing protocols, such as BGP, OSPF, or the
generic MPLS-LDP [5].
Traffic-driven Creation based on information gathered by
monitoring the traffic streams being switched, as with, for
example, IP Switching [6].

The separation in MPLS of these three network func-
tions — packet classification, packet forwarding and la-
bel distribution — simplifies the data path, and allows
�
The term switch is henceforth assumed to refer either to a switch, an

LSR (Label Switched Router), or a router.

greater differentiation between packets. Service differ-
entiation at a range of packet aggregation granularities
is supported, as is additional functionality such as traffic
engineering. MPLS also provides a platform for build-
ing resource-assured VPNs, and hence supporting multiple
control systems with resource partitioning.

However, MPLS on its own is not sufficient for a multi-
service network. In addition to resources for packet for-
warding, such as buffer space and bandwidth, the provi-
sion of resource-assured VPNs requires partitioning of the
label space. The lack of this facility in MPLS limits the
way resource may be guaranteed to each network control
system, and the freedom afforded a control system to ma-
nipulate its resource allocation. A further problem is that
inter-VPN resource management is not supported: since a
VPN’s resource allocation as a whole is only expressible as
the sum of the resource allocations of its paths, resources
cannot be guaranteed for the future, other than by pinning
down a path — in effect associating each label with a pre-
determined QoS.

As an example, consider a scenario where a service
provider offers a VPN service, each VPN having a topol-
ogy and guaranteed resource allocation. Each customer
implements internal VPN resource management by assign-
ing various QoS capabilities to paths in their VPN, in-
cluding one best-effort path. This soaks up the unused
resources within a VPN, and so it should be possible to
improve service on this path by increasing the size of the
resource allocation to its owning VPN. Conversely, if re-
sources are removed from an otherwise unchanged VPN,
only the resources available for use by the best-effort path
in that VPN should reduce. Other VPNs and their internal
best-effort paths should not be affected.

This behaviour can be implemented within MPLS, but
requires the LDP to participate in network-wide resource
partitioning. We believe that this is infeasible, especially
as there may be many LDPs operating independently in
the network. The resources associated with a VPN should
be under the complete control of the owner of the VPN,
and their management should not require co-operation be-
tween VPN owners. We consider the capability for both
inter- and intra-VPN resource management, as provided
by the Tempest, to be essential.

B. The Tempest

The tight coupling of management and control function-
ality with network hardware leads to a closed and restric-
tive environment. Due to their monolithic nature, stan-
dardised control systems are usually heavyweight and un-
wieldy, stifling the quick development and deployment of
new services. Furthermore, tightly integrating the network

3

control software and internal network elements makes up-
grades and bug fixes difficult and costly.

Open signalling, where control of the network is de-
volved from the internal network elements to general-
purpose workstations, is a partial solution. Switch func-
tionality is encapsulated in an open control interface, ac-
cessible by third parties who may be neither the users of
the application or network service, nor the manufacturers
of the hardware. Although a useful mechanism for the
deployment of non-standard network control protocols, it
does not provide a satisfactory solution to the problem of
inflexible and monolithic control software. By its very na-
ture, a single general-purpose control system cannot al-
ways be the best solution in a multi-service network. Op-
erations required by one type of control system may not
be suitable for another, and new types of operation may
be required as hardware and user demands evolve. At the
same time multiple control systems within a network can-
not be relied upon to cooperate. This requires the network
to provide a mechanism for partitioning between control
systems.

The Tempest is a network control framework that pro-
vides resource partitioning and open signalling to address
these issues. It is based on the switchlet concept [7], where
the resources of individual switches are subdivided into
logically separate partitions. Each switchlet is presented
to its owning control system via an open control interface,
giving the illusion that the control system is managing an
entire switch. This allows multiple control systems to co-
exist on a single physical network, whilst providing them
with fine-grained control of the resources they have been
allocated.

Sets of switchlets are combined to form VPNs, each
with exclusive access to its share of the network resources.
This allows multiple control systems to operate simultane-
ously, and means that no single system need be prescribed
for all users; multiple instances of the same control system
may however control separate VPNs. Although general-
purpose control systems will suffice for many users, others
are able to run service-specific control systems tailored to
their individual needs, should they wish.

The creation, deletion and modification of switchlets is
managed in the Tempest by the divider. One divider op-
erates for each node in the network, and executes off the
network hardware, possibly on a general-purpose worksta-
tion, and ideally in a resource-controlled environment such
as that provided by the Nemesis operating system [8]. It
may be co-located with the network node itself, remov-
ing the overhead of communicating with the node, but the
switching hardware and the partitioning functionality of
the divider remain logically distinct. The divider polices

divider

Ariel

401
3

5

createSwitchlet(spec)

ctx_id=createContext(qos_spec)
createConnection(
 3,0,401,5,0,402,ctx_id)

mgmt

402

Control
System

MPLS

Fig. 1. Control system interactions with the divider manage-
ment and Ariel interfaces. The packet is switched according
to the connection set up through the control interface created
via the divider.

invocations on switchlet interfaces to ensure that there is
no interference between control systems. In-band policing
and shaping mechanisms are used to enforce partitioning
in the data path.

Fig. 1 is a schematic showing a control system, Tempest
divider, and an MPLS switch. The control system, or an
entity acting on its behalf, invokes createSwitchlet()
on the divider’s management interface. This results in a
switchlet, shown in grey, with a switch control interface
made available to the control system. The interface used in
the Tempest is called Ariel and was developed locally [1],
[2]. In the diagram the control system makes two Ariel
invocations: createContext(), which constructs a de-
scription of a particular QoS, and createConnection()
which creates the specified connection and associates it
with the QoS description identified by the context iden-
tifier. In the Tempest MPLS implementation, connection
establishment results in a suitable LIB entry being created,
shown in Fig. 1 by an incoming packet emerging from the
designated out-port with the specified out-label.

C. Related Work

MPLS is under active development as a set of standards.
The IETF MPLS working group [9] is producing standards
for the MPLS framework and architecture, and discussing
issues of label distribution, encapsulation formats for a va-
riety of layer 2 technologies, inter-operation with existing
networks, and operations and maintenance. Provision of
IP over ATM has been extensively addressed by a variety
of approaches, many of which have been subsumed into
the work of the MPLS working group. Of particular rel-
evance is the work addressing provision of VPNs on an
IP backbone using MPLS for packet forwarding and BGP
for route distribution [10]. Labels are distributed as VPN
routes. Within the backbone, routers do not maintain rout-

4

ing tables for every VPN, instead making use of paths es-
tablished via MPLS. As is the case in the Tempest, label
space is partitioned in order to ensure isolation between
VPNs. However the concept of general resource partition-
ing to guarantee QoS to individual VPNs is not addressed.

Open signalling and control has become a widely-
accepted mechanism for provision of VPNs in multi-
service networks. The XBind project [11] produced a sys-
tem similar to the Tempest in many ways, but with empha-
sis on providing abstractions to the service provider and
user, rather than partitioning the resources at a low-level,
and giving the provider and user complete freedom within
their partition.

QoS for the Internet is being addressed by the IETF via
its IntServ, and latterly DiffServ, proposals. IntServ has a
“classical” view of QoS, providing RSVP as a signalling
system for the setup of QoS-assured paths. DiffServ takes
a more coarse-grained approach, suggesting that scalabil-
ity considerations make provision of QoS to aggregates of
traffic more reasonable; this allows simple service differ-
entiation to be provided. It relies on policing at the edges
and over-provisioning to ensure that service level agree-
ments are met. Both these approaches have merit and are
also actively undergoing standardisation. We claim in Sec-
tion III-A that the system presented in this paper is capable
of supporting both IntServ and DiffServ.

III. MOTIVATION

Having described the background and some related ef-
forts, we now motivate our work further by presenting ex-
ample scenarios where the resource management facilities
available within our framework might be exploited.

A. Traffic Engineering: DiffServ and IntServ

The resource management facilities of the Tempest
can be used to support the IETF’s DiffServ [12] and
IntServ [13] architectures. The presence of connections
with resource guarantees is naturally aligned with the
IntServ model, and resource reservation using an RSVP
control system has previously been implemented on a
Tempest network [1].

DiffServ is supported by allowing FECs to be installed
that examine the DiffServ codepoint and assign packets to
separate paths within a VPN, or even to separate VPNs,
based on the desired class of service. The Tempest allows
multiple VPNs to be constructed over the same physical
network. Each of these VPNs may support different lev-
els of service for the same codepoint, allowing customers
to choose their service provider based on the price/service
combinations offered. At the same time, each provider can
offer a full range of differentiated services. As a simple ex-

ample, consider two providers,
���

and
���

, both offering
differentiated services over a single Tempest network.

���
may support the expedited forwarding service, while

���
supports the assured forwarding service; both must sup-
port the best-effort service. They will both have service
level agreements with their customers concerning the pro-
portions of traffic that they expect to carry at the respective
service levels.

In a non-Tempest VPN, there is no way to distinguish
the best-effort traffic of

���
from the best-effort traffic of� �

. However, in a Tempest-MPLS network,
� �

can at-
tempt to offer a higher level of service for the best-effort
traffic, by requesting a larger VPN from the physical net-
work operator. Thus, whilst service level agreements with
both

���
and

���
may state that half the traffic presented

will be given the respective higher levels of service, and
half will be treated as best-effort, the best-effort traffic
presented to

� �
should receive a higher level of service

than the best-effort traffic presented to
�	�

. Section V-A
demonstrates this type of situation.

B. Web Server Clusters

Cluster-based web servers are commonly used to in-
crease request throughput and to provide service differen-
tiation between client requests. Protection between classes
of service on the server nodes has previously been ad-
dressed [14]. Here we consider providing that same pro-
tection within the network — in a geographically dis-
tributed cluster, service degradation as a result of network
congestion may be as significant as resource starvation at
the nodes.

The desired service differentiation can be achieved by
creating a VPN for each service class, ensuring that each
service receives guaranteed network resources. It is then
possible to dynamically adjust the relative resource alloca-
tions to VPNs should the pattern of client requests alter.

Ingress routers assign every client request packet to a
VPN according to policies specific to the web server. Ex-
amples of attributes that may determine which service
class a packet belongs to are source address, allowing pref-
erential treatment of certain customers, and information in
the HTTP header, allowing differentiation between differ-
ent types of requests. The control systems of the VPNs
then route the packets to the appropriate node in the net-
work, and can coordinate to perform load balancing and
ensure fault tolerance by re-routing when appropriate.

C. Internet Aggregate Reservation

Service providers multiplex access to the core network
for their customers and therefore have information about
the current demands customers are placing on the network.

5

In addition, through pricing mechanisms, they have infor-
mation about the value customers currently place on net-
work service — estimates of the current utility functions of
customers. There will be cases where they wish to provide
higher levels of service to customers than current resource
competition mechanisms in the core network allow. The
framework we present provides an ideal mechanism for
them to do so.

A provider purchases a lightweight VPN over the MPLS
core. They then run a control system providing IP con-
nectivity, such as ALASCA presented in Section IV-C,
over this VPN. This effectively reserves them part of the
public Internet, guaranteeing that their customers will re-
ceive better service, whilst retaining complete IP connec-
tivity with the rest of the network. This reservation also
takes place without requiring detailed traffic engineering
knowledge from individual customers, without explicitly
knowing customers’ utility functions, and without requir-
ing support for end-to-end QoS; customers simply per-
ceive a more lightly loaded Internet. Knowing the current
demand enables the provider to translate this higher level
of service, and any associated costs, into charges to their
customers.

IV. IMPLEMENTATION

Our implementation consists of two distinct parts: a
mechanism to deal with IP packets entering the Tempest
domain from an external switch, and an implementation
of MPLS on Linux providing the necessary low-level re-
source partitioning. Packet filters are proposed in Sec-
tion IV-A to deal with the former, and our implementation
of the latter is described in Section IV-B. ALASCA, a sys-
tem enabling interoperability with a non-Tempest domain,
is described in Section IV-C.

A. Packet Classification

Before packets can be forwarded through the network,
their label, and thus outgoing path, must be decided at the
ingress node. We believe that this should be separated into
two filtering stages, each packet being processed by at least
one packet filter, as depicted in Fig. 2.

The VPN filter, owned and installed by the Tempest ser-
vice provider, identifies the VPN to which a packet be-
longs. In standard MPLS terms this is FEC assignment
with fixed granularity. Performance of this initial filter is
critical as it must act on every incoming packet. This is es-
pecially true at the border of a domain, where packets be-
longing to a large number of different VPNs may attempt
to enter the Tempest domain. It is therefore in the interests
of the service provider to express this filter very simply.

label
filter

assign labels
to packets

(VPN specific)

label
filter

assign labels
to packets

(VPN specific)

VPN
filter

classify
packets
to VPNs

packet

to next hop

to next hop

labelled packet

Fig. 2. Filters at the ingress to a Tempest-MPLS domain. Be-
fore forwarding, incoming unlabelled packets are first clas-
sified to a VPN, and then assigned labels according to a filter
installed by the control system of that VPN.

This filter may make use of information contained in
the packet header, such as source and destination address,
DiffServ codepoint, VLAN tag or even layer 4 or other
application specific information. Implementation of this
filter would ideally be in hardware, and switching routers
that can filter on layer 4 attributes in hardware at wire
speed are now available. Since our implementation is on
Linux and entirely in software, we use a simple destina-
tion address filter. Each VPN is allocated a private address
space (an IP subnet), which can be reused as VPNs are
created and destroyed.

The purpose of the label filter is to allocate labels to
packets. This is essentially a routing decision, and there-
fore determined by the control system owning the VPN.
We make use of dynamically installed packet filters, cre-
ated based on arbitrary policy, and possibly comprising
many further sub-filters. Filters for demultiplexing of
packets have been used for some time [15], [16]; more re-
cently, interest has grown in filter processing, such as that
performed by firewalls and layer 4 switching [17].

We extended our Ariel interface to include a method
for installing packet filters: specializeIngressMap-

ping(). The control system defines its label assignment
filter using the chosen packet filter language, and this is
dynamically installed into the MPLS stack at the appropri-
ate point. The presence of this filter is not always nec-
essary, as there may be only one path to choose from.
To provide robustness in the face of malicious users and
packet filter code, the node on which the filters are in-
stalled should provide some form of resource containment.
This would prevent the owner of one VPN damaging ser-
vice to other VPNs by loading packet filters that consume
excessive amounts of processor resources.

B. Packet Forwarding

The principle component of the implementation is a
Linux kernel module, which operates at the lowest levels
of the networking code and processes all incoming MPLS
frames. It also passes frames to and from the IP stack at

6

marked with
TC index

Output queuing
Traffic control

Input
demultiplexing

marked with
realm identifier

IP header
reconstructed

MPLS
forwarding

IP stack

ingress path

egress path

forwarding path

Fig. 3. Paths that a packet may take through the Linux network-
ing architecture at an ingress, egress, or forwarding node.

ingress and egress nodes in a path. A high-level view of
the relationship of MPLS with other components of the
Linux networking stack is shown in Fig. 3. In this section
we describe the operation of this module, which supports
both Ethernet and ATM.

Both locally generated IP packets and those arriving
from other non-MPLS nodes are passed to the MPLS mod-
ule after traversing the standard Linux netfilter mechanism
which allows packet-processing functions to hook packets
at key points in the protocol stack. Packet classification
is implemented using the ability of these netfilter mech-
anisms to mark packets with a realm identifier. This is
stored as part of a routing table entry; deciding whether an
IP packet should be placed onto a path thus forms a sim-
ple extension of the normal routing process. After passing
through the routing code, an ingress table is indexed with
the packet’s realm identifier if it was given one. If a match
is found, it tells us to which path the packet belongs, al-
lowing an MPLS frame to be created from the packet. If
no match is found, the packet is dropped; if the packet re-
ceived no realm identifier originally, it is simply routed as
normal.

At intermediate switches in a path, MPLS frames are re-
ceived into the module in two ways. Ethernet frames are
received via a previously installed packet handler which
passes on all frames of the correct Ethernet data-link type.
ATM frames received on MPLS-mapped VPI/VCI pairs
are automatically passed on. On receiving an MPLS frame
to be label switched, the LIB is accessed, using a combi-
nation of the frame’s port and label. The method of deter-
mining the port and label for a given frame depends on the
network type. For ATM, the incoming label is the VPI/VCI
pair on which the frame was received, and the port is the
interface on which it was received. To extend the concept
of a connection to Ethernet, we define a port to be a (lo-
cal interface, remote interface) pair. The local interface
is uniquely identified by its Linux device index, and the
remote interface by its six-octet MAC address.

Accessing the LIB with the (port, label) pair returns an
entry containing information such as the output port, out-
put label, and output QoS details. If a matching entry is
found, then the incoming layer 2 headers are stripped from

the frame and the outgoing header information prepended.
If no match is found, the frame is dropped.

Recent versions of the Linux kernel include support for
differentiated packet forwarding based on a flexible traffic
control architecture [18]. We make use of this to provide
QoS guarantees to paths. The architecture consists of three
primary component types: queueing disciplines, classes,
and filters. Instances of queueing disciplines are created
within classes, and provide the basic mechanism by which
QoS is provided. Packets are assigned to classes based
on the result of filtering the packet using its TCI (Traffic
Classification Index).

We use these mechanisms as follows: a TCI is stored as
part of each LIB entry, and the kernel module associates a
TCI with each frame as it is switched. When a connection
with QoS is created, it causes the creation of a filter, and a
class containing an instance of the token bucket queueing
discipline. When a frame is switched it is filtered on its
TCI to place it into the correct queue. If the path provides
no QoS guarantees the TCI will be zero and the frame will
traverse a low-priority best-effort FIFO.

We do not use the ATM interface’s built-in support for
QoS as most cards do not fully implement it. Rather,
we create a dummy ‘atm mpls’ device for all MPLS-
on-ATM frames, and specify best-effort connections to the
ATM interface. MPLS-on-ATM frames then pass through
the same traffic control code as those destined for Ethernet
devices.

When a control system requests an MPLS switchlet, it
specifies a label range for each port. Connection setup re-
quests made through the switchlet’s open interface are po-
liced by the divider to ensure that only resources within
the switchlet’s specification are used. Note that the switch
control interface is unchanged, except for the addition of
methods to handle the ingress and egress of packets, de-
scribed in the previous section. The interface between the
Tempest and the Linux module supports methods to add
and remove entries in the LIB, and to create new index fil-
ters, token bucket queues, and routing entries with unique
realm identifiers.

Our implementation of MPLS was written specifically
to support the Tempest and is incomplete with respect to
the current IETF draft specifications [3]. In particular, it
neither supports label stacking nor includes an LDP; la-
bel distribution supporting interoperability is dealt with by
ALASCA, described in the following section. The im-
plementation conforms to the drafts in all other respects,
and is unique in that it can provide QoS for all paths, and
its switching plane operates over both Ethernet and ATM.
Section V-A contains a performance evaluation.

7

C. Label Distribution: ALASCA

In this section we present ALASCA, a control system
that translates external routing information into connectiv-
ity within and through a Tempest domain. There are two
principle component types in ALASCA:
The Domain Manager takes care of internal connectivity
and resource management.
A Protocol Manager functions as a translator for external
control systems. It interfaces between the external system
and the Domain Manager, ensuring that the required con-
nectivity is maintained within the Tempest domain, and ad-
vertising relevant routing information to the external sys-
tem.

Fig. 4 depicts the structure of ALASCA, and the opera-
tions performed on receiving notification of a new subnet
from an external IP domain. We now describe the com-
ponents in more detail, and then discuss the advantages of
ALASCA over MPLS using a standard LDP to establish
connections across domain boundaries.

The Protocol Manager must potentially interface with
many different external control systems, such as BGP,
OSPF or RSVP. Consequently there are multiple types of
Protocol Manager, one per protocol, and a domain may
have multiple instantiations of any given type around its
borders. A Protocol Manager is instantiated at a domain
ingress/egress router, where external control information
must be dealt with.

Where multiple VPNs intersect at the same edge node,
each may require an instance of a Protocol Manager for the
same protocol. These may then wish to peer with the same
protocol entity in the external network (e.g. with the same
BGP peer). This is made possible by the association of dif-
ferent IP addresses with virtual interfaces for the machine
on which the Protocol Managers are running. The external
routing entity then perceives the separate VPNs as com-
pletely separate autonomous systems, and operation of the
protocol can continue as normal3.

The Domain Manager implements all routing and con-
trol functionality for the Tempest domain it manages. It
manages the switchlets — forming the VPN — that the
control system has been allocated, and uses information
from the Protocol Managers to drive routing and connec-
tion setup decisions. When new reachability information
is received, the Domain Manager attempts to form routes
across the VPN, and creates the paths where such routes
exist. If this is successful, an egress mapping is installed
at the receiving node to allow traffic routed through the
newly-created path to be correctly injected into the exter-

This is true in the case of OSPF and BGP, and any protocol that

operates over IP; other routing protocols may require other solutions.

nal network. Finally, an ingress filter is installed at the
other edge nodes, as described in Section IV-A. An analo-
gous process takes place when an external peer withdraws
a route.

The core functionality of ALASCA — the establish-
ment of connections across a Tempest domain — could
also be achieved with the use of a standard LDP. We chose
to develop a non-standard system in order to exploit the
more advanced functionality that is possible with the Tem-
pest. For example, a Protocol Manager may recover statis-
tics from the edge-switch it is associated with in order
to perform traffic-driven label distribution, or to perform
admission control for request-driven distribution, such as
provided by RSVP, or even for higher-layer protocols such
as TCP [19].

Similarly, the Domain Manager may aggregate statistics
from the switches in its domain, in order to bill customers,
or to provide load information to Protocol Managers, in
order to better support policies such as load balancing. A
Domain Manager may also implement advanced routing
algorithms to provide QoS routing facilities throughout its
domain, or to provide route caching and fail-over for ro-
bustness.

V. EVALUATION

In the first part of this section we show that our imple-
mentation performs reasonably by measuring performance
in the control plane and in the data plane. We then demon-
strate that inter-VPN resource mechanisms function as ex-
pected by isolating a best effort flow in one VPN from the
effects of resource allocation changes in another. Finally
we measure the cost of path setup using ALASCA. Scal-
ability and robustness are discussed in the second part of
this section.

A. Baseline Performance

The Tempest architecture is implemented over SPARC
machines running Solaris 2.7, and PCs running Linux-
2.3.99-pre5. The test network used in this work con-
sists of three FORE ATM switches, a number of ATM
video sources and sinks, and three PCs with 100Mbps
switched Ethernet, and in two cases 155Mbps ATM inter-
faces. As described in Section IV-B, our MPLS implemen-
tation takes the form of a Linux kernel module and allows
paths to be set up linking any combination of Ethernet and
ATM interfaces.

To provide baseline performance figures, we measured
connection setup/teardown times for the ATM switches us-
ing SNMP as the switch control protocol4 , and for the
�
SNMP is used as the underlying switch control protocol in most

8

control network data network
Key

createConnections

Protocol
Manager

Protocol
Manager

Control Layer

Data Layer

External IP
Domains
(control)

External IP
Domains
(control)

External IP
Domains

(data)

External IP
Domains

(data)

1
subnet advert
received

2
DM informed
of new subnet

Routing CAC

5
other PMs
informed

4
path calculated
and created

6
new routes
advertised

7
data traffic
flows on path

traffic
statistics

traffic
statistics

Federation

3
routing; CAC; etc
performed

Domain
Manager

Fig. 4. An overview of the basic operation of ALASCA. The left-hand Protocol Manager receives a subnet advert from the control
system in the external IP domain. The pertinent information contained in this is then passed to the Domain Manager, which
calculates a route and sets up a path in its VPN. It then informs the other edge Protocol Managers that they may now advertise
a route to this new subnet, to their respective external peers. Finally, data traffic may flow along the created path.

MPLS switches. The MPLS times were be significantly
faster than for ATM, at around 350 � s compared to ap-
proximately 7500 � s. This difference is largely due to the
much faster CPUs of the PCs compared to the SPARCs,
and the fact that the divider effectively runs “on-switch”
for the MPLS switches rather than “off-switch” as for the
ATM switches. Similarly, throughput was measured for a
path and found to be almost identical to that without MPLS
(UDP transfer attains 93Mbps goodput point-to-point over
a path traversing a mixture of Ethernet and ATM links, and
121Mbps goodput point-to-point over a path traversing
only ATM links), as was “ping-pong” latency. Although
one does not expect significant performance improvements
by using label switching with such simple networks and
low bandwidths, it is reassuring that performance is not
reduced. The table of Fig. 5 shows the QoS implemen-
tation performing as expected. The figures are given for
data throughput of UDP over connections with contracts
as specified; account should therefore be taken of protocol
processing and the other overheads involved.

To demonstrate inter-VPN resource allocation, we per-
formed a test where the resource allocation to an entire
VPN is altered. The topology is shown in Fig. 6, with
two VPNs, both containing a guaranteed connection and
two best-effort connections. VPN-A is initially allocated
40Mbps, and its guaranteed connection allocated 25Mbps.
VPN-B is initially allocated 10Mbps, and its guaranteed

implementations of the Tempest Ariel interface. A basic GSMP imple-
mentation also exists, and work is progressing on support for GSMP
v3.

Contract [min, max] Achieved (Mbps)
(Mbps) 1 Conn. 5 Conns. 10 Conns. 50 Conns.

50 46.43 – – –
25 23.53 – – –
10 9.32 [9.26, 9.31] – –
5 4.85 [4.63, 4.69] [4.60, 4.64] –
2 2.00 [1.93, 1.94] [1.89, 1.93] –
1 1.00 [1.00, 1.02] [0.97, 0.98] [0.92, 0.94]

Fig. 5. Table showing contracted and achieved bandwidths for
MPLS connections created over Ethernet. Values are given
for a single connection, and for five, ten, and fifty connec-
tions each with a separate contract.

connection allocated 8Mbps. The test then alters the guar-
anteed connection in VPN-A after 20s, from 25Mbps to
35Mbps. After 40s, the total VPN-B allocation is in-
creased from 10Mbps to 30Mbps, and finally after 60s, the
same allocation is decreased to 20Mbps.

The results are given in Fig. 7, showing achieved UDP
goodput averaged over 500ms, against time. The initial
20s portion of the graph shows that the guaranteed connec-
tions are receiving the bandwidth allocated to them, and
the total of the guaranteed and two best-effort connections
in each VPN matches the total allocation to each VPN.
The portion of the graph between 20s and 40s shows the
guaranteed connection in VPN-A receiving its new higher
allocation, and the two best-effort connections in VPN-
A receiving correspondingly lower allocations; VPN-B is
unaffected. The portion of the graph between 40s and
60s shows the allocation to VPN-B being increased from

9

MPLS MPLS

VPN-A

VPN-B
switchletswitchlet

switchletswitchlet

Key
guaranteed
connection

best effort
connection

control data

Fig. 6. The topology for the inter-VPN allocation test. VPN-
A is initially allocated 40Mbps, and has three connec-
tions set up, one a 25Mbps guaranteed connection, the
other two best-effort connections. VPN-B is initially allo-
cated 10Mbps, and also has three connections setup, one an
8Mbps guaranteed connection, and the other two best-effort.

0

5

10

0

5

15

20

25

0 10 20 30 40 50 60 70

VPN-A: best effort (1)
VPN-A: best effort (2)

VPN-A: guaranteed

VPN-B: guaranteed

VPN-B: best effort (1)

VPN-B: best effort (2)

10

35

30

ba
nd

wi
dt

h
(M

bp
s)

time (s)

Fig. 7. Results for the inter-VPN allocation test. The topology
is given in Fig. 6. After 20s, the allocation to the guaran-
teed connection in VPN-A was increased from 25Mbps to
35Mbps. After 40s, the total allocation to VPN-B was in-
creased from 10Mbps to 30Mbps, and then after 60s, this
allocation was decreased, from 30Mbps to 20Mbps.

10Mbps to 30Mbps. VPN-A is unaffected, as is the guar-
anteed connection in VPN-B; consequently, the best-effort
connections in VPN-B use the newly allocated bandwidth.
Similarly, when the allocation to VPN-B is reduced from
30Mbps to 20Mbps after 60s, VPN-A and the guaranteed
connection in VPN-B are unaffected, the best-effort con-
nections in VPN-B now reducing to fit within its new allo-
cation.

A prototype of ALASCA, the LDP system, was imple-
mented using a Python interface to the Tempest. Using the
topology shown in Fig. 8 we measured the length of time
to establish and then withdraw a route across the network.
This is a 6-node network, with 2 edge MPLS nodes, 1 in-
ternal MPLS node bridging between ATM and Ethernet,
and 3 internal ATM switch nodes (two FORE ASX-200s
and one FORE ASX-1000). The components of ALASCA
ran on three separate Linux PCs, communicating using the
Python implementation of OmniORB [20]. The average

ATM

MPLSATMMPLS

ATMMPLS
ASX1000

ASX200

ASX200

eth-ATM

loc-eth

ATM-loc

X

Y

Domain Boundary

Fig. 8. The test network used to obtain the path setup time. A
single test consists of a subnet being advertised at , a path
being created from � to , an ingress mapping installed at
� and an egress mapping installed at , then the mappings
being removed and finally the path being removed. This is
repeated 100 times.

time from an edge node first receiving notification of a new
subnet, the path for the other edge node being calculated
and set up, the egress and ingress mappings installed and
the route then being withdrawn, and the path correspond-
ingly torn down and ingress and egress mappings removed,
was 41ms. Noting that this is a prototype implementation,
we believe that this is reasonable.

B. Scalability and Robustness

Whilst it is not possible to fully address scalability in
a prototype implementation, we believe that our system
should perform adequately in this regard. The lower lay-
ers of the MPLS implementation — the label switching
functionality added to the Linux kernel — will scale at
least as well as the IP routing functionality in the stan-
dard Linux distribution. The prototype LDP, ALASCA, is
built over a CORBA implementation, using the C++ and
Python variants of OmniORB [20]. We believe that it is
capable of being extended to control large networks, either
by sub-dividing domains as they become too large and then
using interoperability techniques discussed in Section VI-
A, or by distributing the implementation of the Domain
Manager. How large a domain a single Domain Manager
may reasonably control depends on the complexity of the
protocols being considered, the stability of route informa-
tion the network (the Internet) with which the ALASCA
domain was interoperating, and the method by which the
nodes are being controlled.

The current implementation creates a path to the ingress
node from each edge node per subnet; in many situations
this is likely not to be an appropriate policy for path cre-
ation. For example, in highly connected domains, one
might rather choose to multiplex traffic from multiple sub-
nets onto single paths, dependent on the requirements ex-
pressed by the external protocol. Similarly, it is likely that
a full implementation would take advantage of some of
the flexibility offered by this scheme, and implement path

10

redundancy and fail-over for robustness. More advanced
routing schemes including QoS routing might also be ap-
propriate. Scalability of particular routing protocols is be-
yond the scope of this paper.

VI. INTEROPERABILITY

Interoperability between the Tempest and standard ATM
control systems has previously been considered [1], [21],
[22]. Similarly, the MPLS working group requires that its
solutions are deployable within the context of the current
Internet. This section considers the problems of interop-
erability between Tempest and non-ATM systems in two
parts — interoperability of control and interoperability of
data.

A. Interoperability: Control

Interoperability of control is concerned with translation
of connectivity information between domains. At the same
time, ease of network management and network efficiency
benefits by extending paths as far as possible; unfortu-
nately, extending them across trust boundaries is difficult
using standard LDPs. Packets are likely to require re-
assembly and reclassification at domain edges. Such sys-
tems provide no simple mechanism for enabling an adja-
cent domain to safely control a subset of the resources in
the boundary switch.

The basic operation of ALASCA deals with cases where
information being provided by external systems is used
to provide IP connectivity and even QoS routing within
the local domain. ALASCA also allows paths to be ex-
tended across domain boundaries through the use of a
special Protocol Manager. This negotiates with a corre-
sponding Protocol Manager in a neighbouring domain, and
if successful the switchlet on the switch at the interface
between the VPNs is shared between the Domain Man-
agers. This means that when connections are created at
that switch, they may be continued through the switch into
the neighbouring domain. This is depicted in Fig. 9 and
contrasts with the requirement for paths to be terminated
and their packets reclassified into separate paths at each
VPN boundary.

ALASCA provides interoperability with the Internet for
applications using IP but running within a VPN. This in-
teroperability is transparent to the user-application; how-
ever, applications wishing to make use of the features of
the Tempest may do so. They may use a service-specific
control system, appropriate to the particular application,
or class of applications. Such a control system can then
achieve interoperability with other networks relatively eas-
ily, by reusing the Protocol Managers from ALASCA and
either extending or reimplementing the Domain Manager

Protocol
Manager

Domain
Manager

Protocol
Manager

Domain
Manager

ingress/egress
remapping

path before
negotiation

path after
negotiation

path switched
straight through

1 2IP stack IP stack

control network
Key

LSPs

Fig. 9. An example of cooperation between Tempest domains.
Traffic uses the upper path before negotiation, requiring in-
tervention from the IP stacks, and the lower fully switched
path after negotiation.

with appropriate admission control, routing or other poli-
cies.

B. Interoperability: Data

Interoperability of data refers to the problems asso-
ciated with the forwarding of data packets into and out
of Tempest domains, and between different layer 2 tech-
nologies within a Tempest domain. MPLS is intended to
support multiple layer 3 protocols over a variety of label
switching technologies. The draft standards cover a vari-
ety of encapsulations, over ATM, Frame Relay, and PPP
for instance, in addition to a generic encapsulation.

Our implementation supports both ATM and Ethernet,
and provides an identical control interface for both styles
of network. This provides straightforward means to bridge
between ATM and Ethernet networks, and can easily be
extended to other layer 2 technologies. Since the control
interface presented is independent of the layer 2 technol-
ogy, there is no reason for the control system to be aware
of this; it merely controls a set of switchlets.

Mechanisms for dealing with the reception of unlabelled
packets into a Tempest domain were dealt with in Sec-
tion IV-A. Emission of packets from a Tempest domain
into another Tempest or non-Tempest MPLS domain is
straightforward. If a path has been constructed between
the domains, the packets are placed onto this path as
usual. When emitting packets into a non-MPLS domain
the MPLS control system must be made aware that cer-
tain switches will have to strip the label from the packet
and construct the correct layer 2 header for a packet of
this type. For example, MPLS might be used to carry IPX
rather than IP, and if an egress switch is emitting traffic
onto an Ethernet, it must construct the correct Ethernet
header for IPX.

Our implementation achieves this by the association of
a type with the termination of a path. When a path ter-

11

minates at a port, an egress mapping is created which al-
lows the terminating switch to construct the required layer
2 header, perform cell-to-packet reassembly, and so on.
The Tempest control interface was extended with the cre-
ateEgressMapping() method to enable this.

VII. SUMMARY AND FURTHER WORK

We presented an implementation over MPLS of the
Tempest, a framework permitting domain-wide resource
management between resource-assured VPNs. A new
MPLS kernel module for Linux supporting traffic shaping
and policing, and operating over both Ethernet and ATM
networks was described and evaluated. Issues pertaining to
interoperability were explored, and ALASCA, an example
control system supporting cross-domain connectivity was
described. We showed that our implementation ensures
network isolation between VPNs, and that it performs rea-
sonably well.

There is scope for further work, including interoperabil-
ity, the deployment of the filters at the ingress router, more
efficient and accurate support for QoS in Linux, and of
QoS provisioning across boundaries. Determining how
general the initial VPN assignment filter can be, while still
being computationally feasible, is of interest, as are pos-
sible optimisations, such as combination of filters. The
interoperability and scalability provided by ALASCA has
yet to be tested with realistic external traffic patterns, and
the negotiation of QoS parameters across domain bound-
aries has also to be considered.

However, we believe that this combination of MPLS
and the Tempest allows infrastructure to be built which
supports hard partitioning of the network resources into
VPNs. It permits customer-specific signalling systems to
run over these VPNs, whilst reducing the scale of the net-
work operator’s management problem to the order of the
number of VPNs, rather than the number of flows.

VIII. ACKNOWLEDGMENTS

We wish to acknowledge the implementors of the Linux
and the netfilter code in particular. We would like to thank
Paul Barham, Tim Harris, Ian Leslie, Ian Pratt, and Timo-
thy Roscoe for their comments. The MPLS Linux kernel
module is available from http://www.cl.cam.ac.
uk/Research/SRG/netos/netx/.

REFERENCES

[1] S. Rooney, J.E. van der Merwe, S. Crosby, and I. Leslie, “The
Tempest: A framework for safe, resource-assured programmable
networks,” IEEE Communications Magazine, vol. 36, no. 10, pp.
42–53, Oct. 1998.

[2] J.E. van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The

Tempest—a practical framework for network programmability,”
IEEE Network Magazine, vol. 12, no. 3, pp. 20–28, May 1998.

[3] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol la-
bel switching architecture,” Internet Draft, Aug. 1999, Work in
progress. Expires Feb 00.

[4] L. Zhang, S. Deering, and D. Estrin, “RSVP: A new resource
ReSerVation protocol,” IEEE Network Magazine, vol. 7, no. 5,
Sept. 1993.

[5] B. Jamoussi et al., “Constraint-based LSP setup using LDP,” In-
ternet Draft, Sept. 1999, Work in progress. Expires Mar 00.

[6] P. Newman, G. Minshall, and T. Lyon, “IP switching: ATM under
IP,” IEEE/ACM Transactions on Networking, vol. 6, no. 2, pp.
117–129, Apr. 1998.

[7] J.E. van der Merwe and I. Leslie, “Switchlets and dynamic virtual
ATM networks,” in Integrated Network Management V, Aurel
Lazar, Roberto Saracco, and Rolf Stadler, Eds., San Diego, USA,
May 1997, IFIP & IEEE, pp. 355–368, Chapman & Hall.

[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation
of an operating system to support distributed multimedia applica-
tions,” IEEE Journal on Selected Areas in Communications, vol.
14, no. 7, pp. 1280–1297, Sept. 1996.

[9] IETF, “MPLS working group,” http://www.ietf.org/
html.charters/mpls-charter.html, July 2000.

[10] E. Rosen and Y. Rekhter, “BGP/MPLS VPNs,” RFC2547, Mar.
1999.

[11] Aurel A. Lazar, “Programming telecommunication networks,”
IEEE Network Magazine, pp. 8–18, September/October 1997.

[12] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated services,” RFC2475,
May 1998.

[13] J. Wroclawski, “The use of RSVP with IETF integrated services,”
RFC2210, Sept. 1997.

[14] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves:
A mechanism for resource management in cluster-based network
servers,” in Proceedings of ACM SigMetrics 2000, Santa Clara,
CA, USA, June 2000, pp. 90–101.

[15] J.C. Mogul, R.F. Rashid, and M.J. Accetta, “The packet filter: An
efficient mechanism for user-level network code,” in Proceedings
of the 11th Symposium on Operating Systems Principles (ACM
SIGOPS), Austin, Texas, USA, Nov. 1987.

[16] D.R. Engler and M.F. Kaashoek, “DPF: Fast, flexible message
demultiplexing using dynamic code generation,” Computer Com-
munication Review, vol. 26, no. 4, pp. 53–59, Oct. 1996, Proceed-
ings of SIGCOMM August 1996.

[17] P. Gupta and N. McKeown, “Packet classification on multi-
ple fields,” Computer Communication Review, vol. 29, no. 4,
pp. 147–160, Oct. 1999, Proceedings of SIGCOMM September
1999.

[18] W. Almesberger, J.H. Salim, and A. Kuznetsov, “Differentiated
services on Linux,” in GLOBECOM: General Conference, Dec.
1999, vol. 01b, pp. 831–836.

[19] R. Mortier, I. Pratt, C. Clark, and S. Crosby, “Implicit admission
control,” IEEE Journal on Selected Areas in Communications,
Q4 2000, to appear.

[20] AT&T Research Labs, “Omniorb v2 support page,” http://
www.uk.research.att.com/omniORB/, July 1998.

[21] S. Rooney, The Structure of Open ATM Control Architectures,
Ph.D. thesis, Cambridge University Computer Laboratory, UK,
Feb. 1998, Available as Technical Report No. 451.

[22] H. Bos, “Application-specific policies: Beyond the domain
boundaries,” in Integrated Network Management VI, Morris Slo-

12

man, Subrata Mazumdar, and Emil Lupu, Eds., Boston, USA,
May 1999, IFIP & IEEE, pp. 827–840, Chapman & Hall.

13

APPENDIX

MPLS ON LINUX: USERS’ GUIDE

I. INTRODUCTION

Multiprotocol Label Switching (MPLS) is a networking technology that provides an architecture for applying ATM-
style switched paths to any number of different network technologies (even connectionless ones, such as Ethernet).
Further discussion of the MPLS architecture and framework can be found in a number of IETF working drafts.

II. MPLS CONCEPTS, AND HOW TO USE THEM

‘mpls’ is a simple command line utility for creating and deleting MPLS ports, switch paths, ingress mappings, and
egress mappings. Each of these is described in more detail, together with some higher-level detail and explanation, in
the following sections.

A. Specifying ports

In our MPLS implementation, ports serve a number of purposes:
� As the destination of a switch mapping, they specify which local network interface an MPLS frame should be trans-
mitted on.
� On a broadcast network, such as Ethernet, they also specify the next-hop MAC-layer address.
� Each port has its own label space associated with it. For instance label 200 on port 0 and label 200 on port 1 are
entirely independent.

There are currently three types of port that can be defined: local, ATM, and Ethernet. We describe each of these
separately in turn.

A.1 ATM

These are conceptually the simplest to understand. An ATM port is uniquely specified by a local ATM interface
index. When transmitting MPLS frames via an ATM port, the label is stored in the AAL5 encapsulation header as the
VPI/VCI pair. The VPI/VCI pair is constructed from a 32-bit MPLS label by mapping the most significant 16 bits of
the label to the VPI, and the least significant 16 bits to the VCI.

A.2 Ethernet

Since Ethernet is a broadcast network, a port is uniquely defined by a (local network interface, remote network
interface) pair. The local interface is specified by its device name, and a remote interface is defined by its MAC address.

Since the Ethernet link-layer header contains no equivalent of an ATM label field, MPLS frames transmitted on
Ethernet have a small shim header inserted between the Ethernet header and the network-layer header. The shim header
has the format described in the IETF draft specification for MPLS label encapsulation. Note that this format constrains
Ethernet labels to 20 bits: the most significant 12 bits of a local label are ignored.

A.3 Local

Local ports are useful as dummy ports to which ingress mappings can be bound. An ingress mapping maps from
some protocol-specific set (also known as a forwarding equivalence class, or FEC) of packets to the ingress of an LSP,
specified as an input port and label. The output port and label, and other parameters such as traffic classifier, are looked
up in the switching table. See the section on creating ingress mappings for more information.

A.4 Example port creations

The following are some example port creations. In the case of the Ethernet example, note that we must specify both
the local interface name and the remote MAC address.

mpls ap 0 l # Port 0 is Local
mpls ap 1 e eth0 00:10:b5:05:26:0b # Port 1 is Ethernet
mpls ap 2 a 0 # Port 2 is ATM, interface 0

14

B. Switch mappings

If we wished to create a new mapping from port 2, label 20, to port 4, label 35, we would issue the following
command:

mpls as 2 20 4 35 # ’as’ == Add Switch mapping

Things become more complicated if we wish to specify some quality-of-service (QoS) constraints on packets travers-
ing an LSP. Recent versions of the Linux kernel support differentiated forwarding of packets based on a flexible archi-
tecture of filters, classes and queuing disciplines. In particular, it is possible to filter outgoing packets based on a special
traffic classification index which can be specified as part of an MPLS switch table entry. The index filter can be used to
pass packets to different traffic classes based on the value of this index. Each class may be associated with a different
queuing discipline supporting differing forwarding constraints (eg. limiting transmission bandwidth).

As an example of this, suppose we wish to limit the above mapping to a sustained traffic rate of 30Mbps, using a
token bucket algorithm. The following set of cryptic commands would do the job, assuming port 4 is an Ethernet port
bound to local interface eth0:

tc q a dev eth0 root handle 10: cbq bandwidth 30Mbit avpkt 1500
tc c a dev eth0 parent 10:0 classid 10:1 cbq bandwidth 30Mbit rate 30Mbit maxburst 20 avpkt 1500
tc c a dev eth0 parent 10:1 classid 10:100 cbq bandwidth 30Mbit rate 30Mbit maxburst 20 avpkt 1500
tc q a dev eth0 parent 10:100 tbf limit 65536 burst 2048 rate 30Mbit
tc f a dev eth0 parent 10:0 protocol mpls prio 100 handle 151 tcindex classid 10:100
mpls as 2 20 4 35 151 # Output class index is 151

The commands ‘tc’ and ‘ip’ (which is used later when defining ingress mappings) are both included in Alexei
Kuznetsov’s iproute2 package. The latest version of the iproute2 package should be downloaded5 and then patched
with the iproute2-patchfile included with the MPLS for Linux distribution. The patch updates ‘tc’ to be MPLS-
aware — without it the above example will not work!

C. Ingress mappings

NOTE: Currently only IPv4 ingress mappings are supported!
An ingress mapping is required at the first LSR in an LSP. By specifying constraints on higher-level protocol fields,

it declares which packets belong to the LSP and will be routed via MPLS rather than the standard routing code.
In the case of IP packets, the existing Linux routing code is used to classify packets. When creating new routing table

entries, it is possible to specify a realm to which packets matching that entry belong. This realm is stored in a special
field of the packet’s descriptor 6 where it can be referenced during later stages of packet processing.

So, creating an IP ingress mapping consists of three steps:
� Declare a new routing entry which matches packets which belong to the new LSP. Specify a unique realm for packets
which match this entry.
� Declare a new MPLS ingress mapping, which specifies which input port and connection packets with the new realm
identifier map to.
� Declare a new MPLS switch mapping, which takes the input port and label to the output port and label.

For example, suppose we wish to tunnel all packets destined for subnet 128.232.8.0/24 through an LSP, the first hop
of which will be on port 2, bound to local interface eth0, with label 20. Suppose also that port 0 is a specially-created
local port which has label 30 unbound. The following thee commands would be required:

mpls ai 100 0 30 # map realm 100 to port 0, label 30
mpls as 0 30 2 20 # map port 0, label 30, to port 2, label 20
ip route add 128.232.8.0/24 dev eth0 realms 100

D. Egress mappings

NOTE: Currently only IPv4 egress mappings are supported!
An egress mapping is required at the final LSR in an LSP. Such a mapping specifies, for a given input port and label,

the protocol stack that packets on that LSP should be handed off to (IPv4, for example). There may also be some number
�
It’s available from ftp://ftp.inr.ac.ru/ip-routing/iproute2-current.tar.gz.�
The Linux kernel calls these descriptors skbuffs

15

of protocol-specific parameters associated with an egress mapping. In the case of IPv4, the local input interface that we
wish to tell the IP stack that the LSP packets are received on must be specified. This is because the Linux fast routing
code creates a hash value which includes this interface.

As an example, suppose we wish to pass to the IPv4 stack all packets we receive on port 2 that have label 30. The IP
stack should think that the packets were received on local interface eth0:

mpls ae 2 30 eth0 # Pass port 2, label 30, to IPv4 stack

III. ACCESSING MPLS VIA NETLINK SOCKETS

The MPLS module can also be configured directly from your own programs by creating a special netlink socket.
mplslib.c demonstrates how to create such a socket and use it to communicate with the MPLS kernel module.
In most cases I would recommend that you use this file, together with mpls.h, within your own applications, as it
provides a simple and clean alternative to using the arcane netlink interface directly.

For lower-level details, the function netlink rcv skb in the new kernel file net/mpls/mpls.c is the place to
look to find precisely how the control messages are interpreted. Each of the netlink command types requires additional
information in the command-specific portion of the message. This information is specified in structures which are
defined in the new kernel file include/linux/mpls.h.

IV. LABEL STACKING EXTENSION

The label stacking extension was added by Phil Quiney (pquiney@nortelnetworks.com) to support an in
house project that needed it.

The MPLS module is able to support basic label stacking in the following scenarios:
� At ingress the LER is able to push more than one label.
� At an intermediate LSR, the label stack can be popped and an additional label stack pushed.
� At the egress LER the label stack can be completely popped and the packet delivered as normal.
� An additional feature allows an LSR to pop the stack a number of times and use an inner label to forward the packet.
This was intended to allow simulation of tunnels where ’penultimate hop pop’ by a tunneled through LSR was not
available.
� An output label of 0 (zero) for a given port/label has additional meaning when the LSR receives a packet with
more than one label. As pushing the zero would be illegal the LSR instead does nothing and effectively performs the
’penultimate hop pop’.

A. Compilation Options

The file include/linux/mpls.h has additional compile time flags defined as follows:
� LABEL STACKING - comment out to remove label stacking support
� LABEL STACK DEPTH - set to number of labels you need in the stack. Note that increasing this value will increase
the memory overhead of every skbuff that is allocated!

Additionally, net/mpls/mpls.c has an optional macro, LSTACK TRC, to enable trace debugging of the label
stacking code.

B. Example Label Stack Operations

mpls as 1 20 2 36:37 # Push 36 then 37 when switching
mpls ds 1 20 # delete the above
mpls al 2 30 1 # When this label is received pop it

& forward based on label underneath
mpls dl 2 30 # delete the above
mpls as 1 20 2 0 # Pop label 20 & either push 0 if

label is ’bos’ or simply forward
if not - thus ’penultimate hop pop’

16

C. Proc file changes

If available the file /proc/net/mpls has been changed to display the label stack on switch entries as well as those
set to perform the ’pop only’ function. I (pquiney) take full responsibility for breaking the neatness of the output....

V. IP FRAGMENTATION

The first attempt at IP Fragmentation was added by Phil Quiney (pquiney@nortelnetworks.com) to support
an in house project that needed it (yes the same one as above).

An IP Fragmentation mechanism has been implemented which works by ensuring that there is always space for
LABEL STACK DEPTH shim headers plus the data of the packet to fit in the MTU of the link. This is checked for
when the packet has no labels on it which allowed the re-use of an existing kernel function and avoided some complex
pointer manipulation. In practice this will mean that it will only be checked for at the ingress (LER). It does assume,
however, that the MTU across the MPLS network is the same (or greater) than at the ingress. For ’lab networks’, this is
unlikely to be a problem.

The code was derived from existing kernel code (function: ip fragment) which has the advantage of being tested and
working. There was a module load problem with an unresolved reference to ’ip options fragment’. The current fix is to
copy the code for this function verbatim. It would be useful if this was resolved ’properly’ as it will need extra work to
make sure any further changes to this function in the kernel are also applied to the local copy.

A. Compilation Options

The file include/linux/mpls.h has an additional compile time flag IP FRAGMENT which, if defined, com-
piles in the code for IP fragmentation. If this is set then an additional message will be displayed when the module is
loaded - to the effect that IP Fragmentation is enabled.

VI. ENHANCED INGRESS FILTERING

An enhanced replacement for the Ingress Mappings described above allows packets to be mapped onto an LSP based
on the so-called 5-Tuple Match. This match works on combinations of source address, destination address, source port,
destination port and protocol. To enable this the kernel should be built with the CONFIG NET CLS TCINDEX flag set.
(this is under ’Network Options’/’QoS and/or fair queueing’ as ’TC index classifier’). Note that although it offers to be
built as a module you should build it in to the kernel. This is because it dosen’t work as a module - at least with kernel
2.3.99pre7. The module loaded, the filter could be configured but no packets were matched. The same configuration
applied to a ’built in’ version works fine.

An extra message appears when the mpls module is loaded which indicates that the 5-Tuple support is present in the
code.

A. Sample Configuration

A sample configuration is shown below. The filter does not need all the match entries in order to work, you can
for example match on only source and destination address. The value it ’marks’ the packet with is used instead of the
’realms’ value to ’ip route add’. Setting up the ’realm’ is not required if using the 5-Tuple match filter.

#!/bin/sh

Change this to pick up path to ’tc’
TC=/path_to_tc/tc
#change this to be the ingress device
DEVICE=eth1
Simplify this with a macro
TCP="ip protocol 6 0xff"

Ingress filter to give a tcindex of 100 - replacing the realms 100
via ’ip route add’ used previously
$TC qdisc add dev $DEVICE handle ffff: ingress

17

Add filter for 5 tuple match
Note that flowid is in hex 64H = 100
Match based on source address 10.10.0.100/32
destination address 10.11.0.100/32
source port 20
destination port 1234
protocol TCP
$TC filter add dev $DEVICE parent ffff: protocol ip prio 1 u32 \
match ip dst 10.11.0.100/32 \
match ip src 10.10.0.100/32 \
match $TCP \
match ip sport 20 0xffff \
match ip dport 1234 0xffff \
police rate 10Mbit burst 900k drop flowid :64

View filter with
$TC filter ls dev eth1 parent ffff:
Delete filter with
$TC filter del dev eth1 parent ffff: protocol ip prio 1

B. Bogus tc index values

In testing the 5-Tuple code with tracing switched on it has been noticed that the ’classifier’ represented by the tc index
occasionaly appears to be set to a random non-zero value. This would imply that the skb structure is not ’clean’ - I don’t
believe it can be a filter match as when packets match the filter the tc index is ’as expected’. The filter is the only thing
that is supposed to be using the tc index field as far as I know.

However this could lead to some strange side effects if the bogus value happened to be the same as a value that a filter
produces. You will get packets switched to the LSP which shouldn’t be although packet retransmit should cope.

