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Abstract. Manna and Waldinger’s theory of substitutions and unifica-
tion has been verified using the Cambridge LCF theorem prover. A proof
of the monotonicity of substitution is presented in detail, as an exam-
ple of interaction with LCF. Translating the theory into LCF’s domain-
theoretic logic is largely straightforward. Well-founded induction on a
complex ordering is translated into nested structural inductions. Cor-
rectness of unification is expressed using predicates for such properties
as idempotence and most-generality. The verification is presented as a
series of lemmas. The LCF proofs are compared with the original ones,
and with other approaches. It appears difficult to find a logic that is
both simple and flexible, especially for proving termination.
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1 Introduction

Manna and Waldinger have derived a unification algorithm by proving that its spec-
ification can be satisfied, to illustrate their technique for program synthesis [17].
They present the proof in detail so that it can be mechanized. The proof, which
also constitutes a verification of the unification algorithm, relies on a substantial
theory of substitutions, consisting of twenty-three propositions and corollaries. Us-
ing the interactive theorem prover LCF [12], I have verified both the unification
algorithm and the theory of substitutions.

The project has grown too large to describe in a single paper. This paper is a
survey, discussing the main aspects and mentioning papers where you can find more
details. The proof is not entirely beautiful. A surprisingly diverse series of problems
appeared; some were clumsily solved. I hope to honestly report the difficulties of
mechanizing mathematics.

There are few other accounts of large, machine-assisted proofs in the literature.
One is the monumental verification of an entire mathematics textbook in the AU-
TOMATH system [16]. Boyer and Moore have proved a number of difficult theorems
using their theorem prover [2, 3].

Although this paper may be read independently, you are advised to read Manna
and Waldinger (henceforth MW). I occasionally refer to particular sections of their
paper, for example (MW §5). Beware of differences in notation, variable names, and
data structures.

The remaining sections present

2. an overview of unification and related concepts;

3. the principles of the LCF theorem prover;

4. differences between MW’s informal proof and the LCF one;

5. sample definitions of data types and functions;

6. a detailed proof: the monotonicity of substitution;

7. formalizing the unification algorithm and its statement of correctness;

8. concluding remarks about good and bad aspects of the proof, and prospects
for the future.

2 Overview of unification

Consider expressions consisting of variables such as x or y, constants such as A or
B, and function applications such as F [A] or G[A;x]. Regard a variable x as an
empty slot that may be filled with any expression, so long as every occurrence of
x gets the same expression. Then two expressions are unifiable if they become the
same after replacing some of their variables by expressions.
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For example, the two expressions G[A;x] and G[y;F [y]] are unified by the sub-
stitution {x → F [A]; y → A}, since both become G[A;F [A]]. This substitution is
called a unifier , and can be shown to be the most general possible. A similar pair
of expressions, G[x;x] and G[y;F [y]], cannot be unified. For any two expressions,
the unification algorithm either produces their most general unifier, or reports that
no unifier exists. Unification plays a central role in theorem-proving, polymorphic
type-checking [19], the language Prolog [8], and other areas of artificial intelligence
[7].

Note: If t is an expression such that t = F [t], then putting t for both x and
y unifies G[x;x] and G[y;F [y]]. This t can be written as the infinite expression
F [F [F [· · ·]]], which can easily be formalized in LCF. However, allowing infinite ex-
pressions would be a drastic departure from MW’s theory.

The underlying theory of substitutions involves a surprising number of functions,
relations, and other notions. In the following list, the LCF name of a function is
given in UPPER CASE; the theory includes

• the variables function (VARS OF), which gives the set of variables contained
in an expression;

• the occurs-in relation (OCCS), which determines whether one expression oc-
curs within another;

• the domain function, which gives the set of variables affected by a substitution;

• the range function, which gives the set of variables that a substitution may
introduce;

• the function to apply a substitution to an expression (SUBST);

• the composition of substitutions (THENS);

• instances of substitutions;

• most-general and idempotent substitutions;

• the function to unify two expressions (UNIFY).

The diagram illustrates the relationships among the concepts. The hierarchy in
the LCF proof is considerably more complex: dozens of small theories with many
interdependencies. Even finite sets, at the bottom of the diagram, involve several
LCF theories to specify the set operations and prove the relationships among them.

3



correctness

UNIFY

failure THENS

idempotence
generality

equality of substitutions
agreement

domain and range
monotonicity

variables︷ ︸︸ ︷
SUBST OCCS VARS OF︸ ︷︷ ︸

ASSOC
substitutions

expressions finite sets

3 Overview of LCF

LCF is an interactive, programmable theorem prover for Scott’s Logic of Computable
Functions. There are several versions of LCF. Cohn has used Edinburgh LCF to prove
the equivalence of two semantic definitions of a simple programming language [10].
Mulmuley has used it to automate existence proofs for inclusive predicates, a highly
technical aspect of compiler verification [20]. Gordon has extended Cambridge LCF
for reasoning about hardware, and proved the correctness of a small computer [14].
This section introduces the principles; tutorials have appeared elsewhere [12, 13].
The unification proof uses Cambridge LCF.

3.1 The logic PPLAMBDA

Theorems are proved in the logic PPLAMBDA, which provides the usual predicate
calculus formulas, such as conjunctions P ∧Q, disjunctions P ∨Q, existentials ∃x.P ,
and logical equivalences P ⇐⇒ Q [22]. Theorems are proved via inference rules for
introducing and eliminating connectives. In this natural deduction style, a theorem
may depend on assumptions: writing [P ;Q] ` R means that R is a theorem under
the assumptions P and Q. A theorem with no assumptions is written ` R.

A term t may be a constant C, a variable x, an abstraction λx.t, or a combination
t1 t2. Every term has a type, and t : α means that the term t has type α. In the
semantics of PPLAMBDA, each type denotes a domain (complete partial ordering)
instead of a set. Every type includes the “undefined” element ⊥, which stands for
the result of a nonterminating computation.

If α and β are types, then α → β is the type of continuous functions from α to
β. A function with argument types α1 and α2 and result type β is often given the
curried type α1 → (α2 → β), abbreviated as α1 → α2 → β.

The type α × β is the Cartesian product of types α and β; for every t : α and
u : β, the pair (t, u) belongs to α× β.

4



The type tr contains the truth values TT, FF, and ⊥, where TT means true, FF
means false, and ⊥ means undefined. My formalization defines functions AND, OR,
and NOT for truth values. These are distinct from the logical connectives ∧, ∨, and
¬. The infix function = denotes a computable equality test, which is distinct from
logical equality, ≡.

The type tr represents the kind of truth values that programs often manipulate;
logical truth represents provable statements about programs. There are opposing
views on how to eliminate this annoying two-tiered notion of truth. Gordon’s Higher
Order Logic [15] treats arbitrary propositions as truth values. Boyer and Moore [2]
allow only computable expressions as formulas, a constructive approach that goes
far beyond the demands of intuitionists [18].

The conditional t⇒ t1 | t2, where t has type tr , satisfies

TT⇒ t1 | t2 ≡ t1
FF⇒ t1 | t2 ≡ t2
⊥ ⇒ t1 | t2 ≡ ⊥

PPLAMBDA allows reasoning about denotational semantics, higher-order func-
tions, infinite data structures, and partial functions. Functional programs can be
stated as equations involving lambda expressions. Reasoning about total (always
terminating) functions is difficult. Functions must be proved total, and computa-
tions proved to terminate, where traditional logics make this implicit. This wastes
time and effort of both user and computer. The ugliest reasoning involves flatness .
A flat type, roughly speaking, is one with no partially defined elements. Examples
are the types of natural numbers and finite lists, but not functions or unbounded
streams. It is essential to prove flatness in order to use certain functions, such as
equality.

PPLAMBDA includes axioms for the fixed-point theory of computation, but not
for common data structures like lists. LCF allows you to extend the logical frame-
work, building hierarchies of theories. If you create a theory nat of the natural
numbers, then you and other users can build new theories on top of nat .

3.2 The meta-language ML

PPLAMBDA is embedded in LCF’s meta-language, ML, which is a functional pro-
gramming language related to Landin’s ISWIM [4]. ML data types include the usual
int and bool , and also term, form, and thm, whose values are PPLAMBDA terms,
formulas, and theorems. An axiom is a constant of type thm; an inference rule is a
function mapping theorems to theorems. Type-checking ensures that a theorem can
only be obtained by applying inference rules to axioms.

ML provides simple data structures. A list of elements (of the same type) is writ-
ten [x1; . . . ;xn]; a tuple of elements (of possibly differing types) is written x, y, . . . , z.
We shall mostly see lists of theorems or assumptions. If P,Q1, . . . , Qn are formulas,
then the goal of proving P under the assumptions Qi is represented as the pair
([Q1; . . . ;Qn], P ). The type thm can be viewed as an abstract type: its elements are
represented by goals, but access to the representation is restricted.
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ML provides a simple form of exception handling. Any expression can signal
failure, which propagates through enclosing expressions and function calls until it
is trapped , whereupon an alternative expression is evaluated. For instance, the
inference rule for Modus Ponens is the function MP, of type thm → thm → thm. It
fails if the first argument is not an implication, or if the second argument is not the
antecedent of the first:

P =⇒ Q P

Q

LCF is programmable: all commands can be invoked as ML functions. LCF
itself contains over five thousand lines of ML, implementing rewriting functions,
subgoaling functions (tactics and tacticals), commands for reasoning about recursive
data structures, etc. By writing more ML you extend and tailor LCF to the task at
hand, perhaps producing a system as large as Mulmuley’s [20].

3.3 Goal-directed proof

Most LCF proofs are conducted backwards, reducing goals to simpler subgoals. A
tactic is a function which, given a goal g, returns a list of subgoals [g1; . . . ; gn], along
with a function for proving g as a theorem once the subgoals have been proved.

For example, the inference rule for conjunction introduction,

P Q

P ∧Q ,

is provided by the ML function CONJ, which has type thm → thm → thm. The
corresponding tactic is CONJ TAC. Given a goal ([R1; . . . ;Rn], P ∧ Q), the tactic
returns the list of goals [([R1; . . . ;Rn], P ); ([R1; . . . ;Rn], Q)], along with a function
that calls CONJ. Normally we keep the assumptions implicit and simply say that
CONJ TAC reduces P ∧ Q to the goals P and Q. The tactic fails if the goal is not
a conjunction.

The “discharge rule” for implication introduction,

[P ] Q

P =⇒ Q
,

is provided by the ML function DISCH. The corresponding tactic is DISCH TAC,
which reduces P =⇒ Q to the goal of proving Q under the assumption P plus any
previous assumptions.

Functions, and hence tactics, are first-class values in ML. Tactics can be combined
into more powerful ones using operators called tacticals , such as THEN, ORELSE,
and REPEAT. If tac1 and tac2 are tactics, then tac1 THEN tac2 is a tactic that
applies tac1 to its goal, and applies tac2 to the resulting subgoals. The tactic
tac1 ORELSE tac2 returns the subgoals given by tac1, applying tac2 if tac1 fails.
The tactic REPEAT tac applies tac repeatedly to the goal and its subgoals.

Gordon’s tutorial on ML [13] describes how to implement inference rules and
tactics for a simple logic. For reading this paper, it is all right if you equate the
tacticals THEN, ORELSE, and REPEAT with the notions of sequencing, alternation,
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and repetition. Cambridge LCF contains additional tacticals for iteration and han-
dling assumptions, and tactics for each inference rule and other reasoning primitives
[23]. Nearly any tactic can be expressed in terms of other tactics and tacticals,
without requiring low-level ML code that explicitly builds lists of subgoals. Cam-
bridge LCF uses same approach for rewriting: simplifiers are expressed in terms of
rewriting primitives and operators for combining them [21].

3.4 Recursive data structures

PPLAMBDA can express theories of a variety of common data structures, such as the
natural numbers, lists and trees. Data structures can be infinite (lazy) or finite, and
mutually recursive; sometimes you can impose equational constraints and produce
a quotient type [24]. The rule of structural induction is derived from PPLAMBDA’s
rule of fixed-point induction.

Many recursive data types can be described as a set of constructor functions, each
taking a number of arguments of specified types. This determines the constants,
types, and axioms needed to define the type in a PPLAMBDA theory. The construc-
tion of the theory and the derivation of induction can be invoked through Cambridge
LCF commands; examples appear below. These commands are descended from the
structural induction package written by Milner for Edinburgh LCF [9]. In a similar
spirit, the Boyer-Moore theorem prover provides a command for defining a new data
structure by introducing a number of functions [2].

4 Differences between the formal and informal
theories

A key question about any mechanical theorem prover is: how comfortably does it
accomodate a mathematician’s informal reasoning? LCF can handle the proofs of
Manna and Waldinger (MW), but not as originally stated. The LCF proofs differ in
the underlying logic and in the data structure for expressions. In my first attempt
to formalize their proof, I also used a different data type for sets and substitutions.

MW’s theory fits together tightly. On most occasions when I made even a slight
change in the statement of a theorem, this caused surprising problems later. As there
were false attempts using mutually recursive expressions, and using lists instead of
sets, large parts of the theory were verified two or three times. Some of the early
proofs were repeated many times, and now are nicely polished. It is interesting
that both of the major false starts involved the choice of data structures. The final
proof closely resembles MW’s, except in the data structure for expressions and the
continual fiddling with ⊥.

MW’s aim is deductive synthesis – deriving a program from a proof that its
specification can be satisfied. My proof does not synthesize a program; I state
the unification algorithm and then prove it. Conducting MW’s proof in a logic of
constructive type theory would synthesize a correct program [18].
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4.1 Logical framework

MW’s proof is presented in an ordinary first-order logic, with several fundamental
differences from PPLAMBDA:

• variables range over sets, not domains;

• all functions are total, while PPLAMBDA allows partial functions and func-
tionals;

• there are no types, while PPLAMBDA has a polymorphic type system;

• the induction principle is well-founded induction, while PPLAMBDA uses struc-
tural and fixed-point induction.

PPLAMBDA’s explicit handling of termination is a nuisance for functions that
obviously terminate. The LCF formalization is cluttered with theorems about the
termination of simple functions, not found in MW. On the other hand, the termi-
nation of the unification algorithm is a deep theorem that depends on the partial
correctness of the algorithm. PPLAMBDA accepts unification as a partial function,
so that the necessary lemmas can be proved.

4.2 Data structure for expressions

MW define the unification algorithm for so-called l-expressions. An expression is
either a constant, a variable, or a function application f · [l1; . . . ; ln], containing a
list of expressions. An l-expression is either an expression or a list of l-expressions.
Lists are built up, in Lisp style, from the empty list [] using the “cons” operator ◦.
Thus [l1; . . . ; ln] abbreviates l1 ◦ (· · · ◦ (ln ◦ [])).

MW mention both “l-expressions” and “lists of l-expressions,” which suggests
that there are two mutually recursive types, not a single type. In the first attempt,
I spent several months deriving the mutual induction rule and implementing an
LCF program for defining mutually recursive data structures. After proving a few
theorems in the framework, I realized that a simpler data structure would shorten
the proofs without sacrificing generality.

There is no need to provide both constant and function symbols. Nor do we need
lists of expressions, which MW use as argument lists of functions. In the lambda-
calculus, a function can have only one argument; the effect of multiple arguments is
achieved by currying , where a function returns a function as its result. Instead of
writing G[A;x], we can write (G(A))(x).

These considerations lead us to the data structure used in the LCF proofs. A
term is either

a constant such as A, B, F , or G, or

a variable such as x or y, or

a combination such as (t1t2), where t1 and t2 are terms.
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I call these structures “terms” because they are similar to PPLAMBDA terms,
and continue to use the word “expression” when discussing MW’s theory. Let us hope
this will not cause confusion. If you would like to see a more familiar representation
of expressions, take these terms to denote binary trees or Lisp S-expressions.

4.3 Sets and substitutions

To show that a function f always terminates, it suffices to show that for any call
f(x), the argument y in each recursive call f(y) is smaller than x in some well-
founded ordering [2]. Most commonly, y is a substructure of x. Expressed as a
recursive function on terms, unification involves a call where the arguments may
become bigger than the original terms. When this happens, the set of variables in
the terms can be shown to decrease. The proof that unification terminates relies
on a well-founded ordering involving both terms and sets. MW reason extensively
about finite sets of variables.

It seems clear that any statement about finite sets can be translated in terms of
lists, using Lisp-like functions to implement set operations. Thus APPEND repre-
sents union, MEMBER represents the membership predicate, etc. This representa-
tion complicates proofs. The union of sets satisfies several algebraic laws:

a ∪ b = b ∪ a commutative
a ∪ a = a idempotent

(a ∪ b) ∪ c = a ∪ (b ∪ c) associative
a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) distributive

Of these, APPEND enjoys only the associative law. The other list operations fare
little better.

I reformulated MW’s theory using lists and verified most of it. Reasoning about
lists was so awkward that I did not attempt the final section of the proof (§21),
where MW introduce the well-founded ordering. So I had to revert to sets. It was
not obvious how to define sets in PPLAMBDA, particularly as they would have to
allow proof by structural induction. Once I worked this out, it was straightforward
to define the familiar set operations, and prove their properties. A fundamental one
is extensionality :

(a = b) ⇐⇒ (∀x. x ∈ a⇐⇒ x ∈ b).
Finite sets are a quotient type — they can be defined as equivalence classes of finite
lists, where the order and multiplicity of elements is ignored. The equivalence rela-
tion can be stated as two equations, taking care to avoid inconsistencies concerning
the derivation of structural induction from fixed-point induction [24].

If successful, unification produces a substitution, such as {x → F [A]; y → A}.
The obvious representation of a substitution is a list of pairs: [(x, F [A]); (y, A)].
However, MW impose additional requirements on substitutions. They forbid trivial
ones like {x → x}, and ambigous ones like {x → A;x → B}. Furthermore, MW
state that two substitutions are equal if they agree on all expressions. They rely
heavily on this definition of equality, making it impractical to carry out their proofs
using lists of pairs.
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This type seems harder to define than sets, as it requires error values. My formal-
ization allows all substitutions. It identifies {x→ x} with the empty substitution {}.
It resolves ambiguous substitutions by identifying {x→ A;x→ B} with {x→ A}.
Regrettably, the order of elements matters in this case; substitutions are not sets of
pairs. However, this formalization simplifies MW’s theory; their subtraction function
(MW §8) is not needed.

4.4 The induction principle

MW’s logic provides for induction on any well-founded ordering. I know of no LCF
derivation of this extremely general principle. Boyer and Moore use well-founded
induction, but in a restricted form that can be reduced to one or more appeals
to induction on the natural numbers [2]. Most of MW’s inductive arguments are
ordinary structural induction. Their one difficult well-founded induction can be
reformulated as two structural inductions: one on the natural numbers, one on
terms.

Well-founded induction provides a clear and concise notation for an inductive
argument. Using their ordering ≺un, MW prove several theorems of the form
(t, t′) ≺un (u, u′). In my simulation of well-founded induction on ≺un, these be-
come large formulas containing multiple occurrences of t, t′, u, and u′.

5 Constructing theories in LCF

Until now we have been discussing LCF proofs in a general sense. Now let us examine
the commands used to define some data types and functions in the formalization.
One LCF theory defines terms; another defines substitutions. Function definitions
reside on various theories. The theory hierarchy is a directed acyclic graph, reflecting
the dependencies and other relationships among the functions and types. If theory
A depends on theory B, then B is called a parent of A, and must be declared to
LCF when A is created.

5.1 Expressions

The data structure for expressions, the PPLAMBDA type term, consists of constants ,
variables , and combinations of terms. The formalization requires types const and
var for constant and variable symbols. We can start a new LCF theory and store
these types by issuing the commands

new theory ‘term’;;
new type 0 ‘const’;;
new type 0 ‘var’;;
new type 0 ‘term’;;

Nothing more need be said about const and var . A single command introduces
a recursive structure on term:
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struct axm (“: term”, ‘strict’,
[‘CONST’, [“c : const”];
‘VAR’, [“v : var”];
‘COMB’, [“t1 : term”; “t2 : term”]] );;

This causes LCF to declare the constructor functions with appropriate types:

CONST : const → term
VAR : var → term

COMB : term → term → term

It asserts axioms stating that these are distinct, one-to-one, and so forth [24].
To exclude infinite terms, the constructor functions are all strict : for instance,
CONST⊥ ≡ ⊥.

The LCF tactic STRUCT TAC derives structural induction for any type defined
using struct axm. On a goal ∀t. P (t), induction on the term t produces four subgoals:
t may be undefined; t may be a constant or variable; t may be the combination of
t1 and t2, which satisfy induction hypotheses. The subgoals include assumptions
that the substructures are defined. The induction tactic for terms corresponds to
the rule

P (⊥)
[c 6≡ ⊥] P (CONST c)
[v 6≡ ⊥] P (VAR v)

[P (t1); P (t2); t1 6≡ ⊥; t2 6≡ ⊥] P (COMB t1t2)

∀t. P (t)

5.2 A recursive function on expressions

MW define the occurs-in relation on two expressions, where t occurs in u if t is
a subexpression of u. In my formalization, the reflexive form of this relation is
called OCCS EQ and the anti-reflexive form is called OCCS. These can be defined as
mutually recursive functions taking arguments of type term and returning a truth-
valued result. They are declared in a new theory called OCCS. By making them
infix functions, we can write t OCCS u instead of OCCS t u:

new theory ‘OCCS’;;
new curried infix (‘OCCSEQ’, “: term → term → tr”);;
new curried infix (‘OCCS’, “:term → term → tr”);;

We can define OCCS and OCCS EQ via two axioms. The command new axiom
stores a named formula as an axiom of the current theory.

new axiom (‘OCCSEQ’,
“ ∀t u. t OCCS EQ u ≡ (t = u) OR (t OCCS u)”);;
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new axiom (‘OCCS CLAUSES’,
“∀t. t OCCS ⊥ ≡ ⊥ ∧

(∀c. c 6≡ ⊥ =⇒ t OCCS (CONST c) ≡ FF) ∧
(∀v. v 6≡ ⊥ =⇒ t OCCS (VAR v) ≡ FF) ∧
(∀t1t2. t1 6≡ ⊥ =⇒ t2 6≡ ⊥ =⇒
t OCCS (COMB t1t2) ≡ (t OCCS EQ t1) OR (t OCCS EQ t2))”); ;

The definition of OCCS consists of four equations, which exhaust all possible
inputs. This is reminiscent of programming in Prolog [8] or HOPE [6], and has be-
come standard LCF style [9]. Burstall recommended it long ago, in his still timely
discourse on how to formulate and prove theorems by structural induction [5]. Such
function definitions are easy to read because they present actual patterns of compu-
tation. They are ready for use as rewrite rules, providing symbolic execution. The
old-fashioned approach requires conditional expressions involving discriminator and
destructor functions.

The numerous definedness assertions , such as c 6≡ ⊥, prevent the left sides of
the equations from overlapping. If omitted, c ≡ ⊥ would give the contradiction

⊥ ≡ t OCCS ⊥ ≡ t OCCS (CONST c) ≡ FF .

These essential assertions can be hidden with the help of special quantifers, but still
must be manipulated in proofs.

In order to allow structural induction on expressions, MW take as an axiom
that the relation OCCS is well-founded, implying that it is anti-reflexive and anti-
symmetric. Structural induction is derived differently in LCF, where OCCS is just
another function. Either way, OCCS is a partial ordering. In LCF it can be proved
to be anti-reflexive, anti-symmetric, and transitive, by induction on terms. In fact,
OCCS is related to the less-than relation on the natural numbers, whose partial
ordering properties have essentially the same LCF proofs.

5.3 Substitutions

For MW, a substitution is an abstract type, represented as a set of pairs. Given a
substitution, the apply function transforms one expression into another, using the
substitution to replace variables by expressions (MW §5). The function traverses
both expressions (to build new ones) and substitutions (to find variables). My
formalization splits these roles into separate functions ASSOC and SUBST.

Substitutions can be defined independently from terms. I use a postfix type
operator alist, taking two type arguments. If α and β are types, then (α, β)alist is
a type of association lists of the form

{key1 → val1; · · · ; keyn → valn},

where keyi : α and vali : β for i = 1, . . . n. The constructors are

ANIL : (α, β)alist
ACONS : α→ β → (α, β)alist→ (α, β)alist

,
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where ANIL stands for the empty substitution {}, while ACONS extends an existing
substitution. If key : α and val : β, then

ACONS key val {key1 → val1; · · · ; keyn → valn}
≡ {key → val; key1 → val1; · · · ; keyn → valn} .

The function call ASSOC nilval key s searches the substitution s for the given
key, and returns the associated value. If the key is not present, ASSOC returns the
argument nilval. Its theory depends on parent theories of alists, equality, and truth
values:

new theory ‘ASSOC’;;
new parent ‘alist’;;
new parent ‘eq’;;
new parent ‘tr’;;
new constant (‘ASSOC’, “: β → α→ (α, β)alist→ β”);;

Its definition is again a conjunction of clauses, one for each kind of input:

new axiom (‘ASSOC CLAUSES’,
“∀nilval : β. ∀key′ : α.

ASSOC nilval key′ ⊥ ≡ ⊥ ∧
ASSOC nilval key′ ANIL ≡ nilval ∧
(∀key val s. key 6≡ ⊥ =⇒ val 6≡ ⊥ =⇒ s 6≡ ⊥ =⇒

ASSOC nilval key′ (ACONS key val s) ≡
(key′ = key)⇒ val | ASSOC nilval key′ s)”); ;

SUBST is an infix function; the invocation t SUBST s applies the substitution s
to the term t. If t is a constant, it is returned; if t is a variable, it is looked up in s;
if t is a combination, then SUBST calls itself on the two subterms. SUBST is defined
using the functional TERM REC for structural recursion on terms. Such functionals
appear throughout the formalization, but could be removed easily. I wish to avoid
digressing into this area, which Burge [4] describes with many examples:

new theory ‘SUBST’;;
new parent ‘TERM REC’;;
new parent ‘ASSOC’;;
new curried infix (‘SUBST’, “: term→ (var, term)alist→ term ”);;
new axiom (‘SUBST’,

“∀ts. t SUBST s ≡ TERM REC(CONST, (λv.ASSOC(VAR v)v s), COMB) t ”);;

Since TERM REC can be seen as a generalization of the APL reduce operator,
it is not surprising that SUBST has a one-line definition. For most reasoning it is
preferable to have a definition of SUBST in the form used for OCCS and ASSOC,
namely a conjunction of equations. Here the equations are not taken as an axiom,
but proved as a theorem, using rewriting to unfold TERM REC. The prove thm
command applies a tactic to a formula, storing the resulting theorem if successful.
The tactic is just a call to REWRITE TAC, a standard rewriting tactic. Sorry for
omitting the details; we shall see more substantial proofs shortly.
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prove thm (‘SUBST CLAUSES’,
“∀s. ⊥ SUBST s ≡ ⊥ ∧

(∀c. c 6≡ ⊥ =⇒ (CONST c) SUBST s ≡ CONST c) ∧
(∀v. v 6≡ ⊥ =⇒ (VAR v) SUBST s ≡ ASSOC(VAR v)v s) ∧
(∀t1t2. t1 6≡ ⊥ =⇒ t2 6≡ ⊥ =⇒

(COMB t1t2) SUBST s ≡ COMB(t1 SUBST s)(t2 SUBST s))”,
REWRITE TAC [SUBST; TERM REC CLAUSES]);;

6 The monotonicity of substitution

An elementary theorem of Manna and Waldinger (MW §5) asserts that substitution
is monotonic relative to the occurs-in relation. If the expression t occurs in u,
then applying any substitution s preserves this relationship, so t SUBST s occurs
in u SUBST s. This section presents the machine proof using smaller steps than
necessary, to illustrate the internal and external workings of LCF. The first step is
to invoke LCF and create a new theory to hold theorems about monotonicity. Its
parents are the theories of functions SUBST and OCCS:

new theory ‘mono’;;
new parent ‘SUBST’;;
new parent ‘OCCS’;;

Now that LCF knows the types of OCCS and SUBST, we can state the mono-
tonicity of substitution as the goal. The interactive subgoal package keeps track of
the current goal and others, both solved and unsolved.

set goal([],
“∀s. s 6≡ ⊥ =⇒ ∀t. t 6≡ ⊥ =⇒
∀u. t OCCS u ≡ TT =⇒ (t SUBST s) OCCS (u SUBST s) ≡ TT”); ;

A little thought reveals that structural induction on the variable u will open up
the recursive definitions of OCCS and SUBST. If we type

expand (STRUCT TAC ‘term’ [] “u”);;

then LCF prints four subgoals, with assumptions underneath in square brackets:
t OCCS (COMB t1t2) ≡ TT =⇒ (t SUBST s) OCCS ((COMB t1t2) SUBST s) ≡ TT

[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT;
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT]

t OCCS (VAR v) ≡ TT =⇒ (t SUBST s) OCCS ((VAR v) SUBST s) ≡ TT
[s 6≡ ⊥; t 6≡ ⊥; v 6≡ ⊥]

t OCCS (CONST c) ≡ TT =⇒ (t SUBST s) OCCS ((CONST c) SUBST s) ≡ TT
[s 6≡ ⊥; t 6≡ ⊥; c 6≡ ⊥]

t OCCS ⊥ ≡ TT =⇒ (t SUBST s) OCCS (⊥ SUBST s) ≡ TT
[s 6≡ ⊥; t 6≡ ⊥]
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As usual, induction has given goals that can be simplified by unfolding function
definitions. The LCF tactic ASM REWRITE TAC uses a list of theorems to rewrite
the goal [21]. The axiom OCCS CLAUSES is a conjunction containing several rewrite
rules, one for ⊥ and one for each term constructor:

` t OCCS ⊥ ≡ ⊥
` c 6≡ ⊥ =⇒ t OCCS (CONST c) ≡ FF
` v 6≡ ⊥ =⇒ t OCCS (VAR v) ≡ FF
` t1 6≡ ⊥ =⇒ t2 6≡ ⊥ =⇒

t OCCS (COMB t1t2) ≡ (t OCCS EQ t1) OR (t OCCS EQ t2)

(A theorem of the form A1 =⇒ · · · =⇒ An =⇒ t ≡ u is an implicative rewrite; the
rewriting tactic replaces t by u whenever it can prove every Ai.)

The ⊥ subgoal is the first one to tackle. Rewriting can transform its antecedent,
t OCCS ⊥ ≡ TT, to the contradiction ⊥ ≡ TT, solving the goal. We need only type

expand (ASM REWRITE TAC [OCCS CLAUSES]);;

whereupon LCF prints the remaining three subgoals. The CONST and VAR ones
are solved similarly. The only remaining subgoal, for terms of the form COMB, has
no trivial proof by contradiction. We will have to unfold the function SUBST; the
goal also involves OCCS EQ, via the COMB clause for OCCS. Expanding with the
tactic

ASM REWRITE TAC [OCCS CLAUSES; OCCSEQ; SUBST CLAUSES]

produces

((t = t1) OR (t OCCS t1)) OR ((t = t2) OR (t OCCS t2)) ≡ TT =⇒
(t SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT

[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT]

Why doesn’t the tactic unfold the . . . OCCS (COMB . . .) in the consequent? It
can not prove the antecedents of the COMB rule for OCCS without a theorem stating
that SUBST is total. Forgetting to include enough rewrite rules is a common error.
It is particularly puzzling when a totality theorem has been left out. Nor should you
include all the rewrite rules you have, for this can slow down the rewriting tactic and
blow up the goal to enormous size. Here I deliberately omitted SUBST TOTAL to
prevent the unfolding of the consequent. For the time being, let’s worry just about
the antecedent.

It is helpful to replace the function OR by the connective ∨ whenever possible,
via the theorem OR EQ TT IFF:

` p 6≡ ⊥ =⇒ (p OR q ≡ TT ⇐⇒ p ≡ TT ∨ q ≡ TT)
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The theorem EQUAL IFF EQ allows replacing the function = by the predicate
≡. It holds for any flat type α, requiring an ugly formulation that I will not discuss
in detail:

` FLAT(⊥ : α) =⇒ ∀x y : α. x 6≡ ⊥ =⇒ y 6≡ ⊥ =⇒ ((x = y ≡ TT) ⇐⇒ x ≡ y)

These theorems involve the connective ⇐⇒ ; they are formula rewrites, for
replacing a formula by an equivalent formula. Given these theorems, plus totality
theorems to prove their antecedents, ASM REWRITE TAC removes every OR and
= from the goal:

ASM REWRITE TAC [OR EQ TT IFF; EQUAL IFF EQ;
TERM FLAT UU; OCCS TOTAL; EQUAL TOTAL; OR TOTAL]

The result is

((t ≡ t1 =⇒(t1 SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT)∧
(t OCCS t1 ≡ TT=⇒ (t SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT))∧

(t ≡ t2 =⇒(t2 SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT)∧
(t OCCS t2 ≡ TT=⇒ (t SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT)

[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT;
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT]

The rewriting tactic has returned a conjunction, not a disjunction. It has re-
peatedly applied the De Morgan law that (P ∨ Q) =⇒ R is equivalent to (P =⇒
R) ∧ (Q =⇒ R), causing a case split. In the implication t ≡ t1 =⇒ · · ·, it has used
the antecedent to replace t by t1 in the consequent. Repeatedly applying CONJ TAC
and DISCH TAC breaks apart the conjunctions and implications:

REPEAT (CONJ TAC ORELSE DISCH TAC)

Here are two of the four subgoals. The other two are similar, but have t2 instead
of t1 in the last assumption.

(t SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT
[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT;
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT;
t OCCS t1 ≡ TT]

(t1 SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT
[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT;
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT
t ≡ t1]

We can approach the second goal by opening up the · · · OCCS (COMB · · ·) in
the consequent, including SUBST TOTAL this time:
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ASM REWRITE TAC [OCCS CLAUSES; OCCSEQ; SUBST TOTAL]

Replacing OR by ∨ and = by ≡ solves the resulting goal; omitting those rules
lets us see the intermediate stage:

(((t1 SUBST s) = (t1 SUBST s)) OR ((t1 SUBST s) OCCS (t1 SUBST s)))OR
(((t1 SUBST s) = (t2 SUBST s)) OR ((t1 SUBST s) OCCS (t2 SUBST s))) ≡ TT

[s 6≡ ⊥; t 6≡ ⊥; t1 6≡ ⊥; t2 6≡ ⊥;
t OCCS t1 ≡ TT =⇒ (t SUBST s) OCCS (t1 SUBST s) ≡ TT;
t OCCS t2 ≡ TT =⇒ (t SUBST s) OCCS (t2 SUBST s) ≡ TT;
t ≡ t1]

Try convincing yourself that the other goal is solved similarly. The induction
hypothesis, an implicative rewrite, replaces one of operands of OR by TT. Unfolding
OR and = finishes the proof. Once all the subgoals have been solved, the subgoal
package assembles the bits of the proof, printing the intermediate and final theorems.

...... ` ((t = t1) OR (t OCCS t1)) OR ((t = t2) OR (t OCCS t2)) ≡ TT =⇒
(t SUBST s) OCCS (COMB(t1 SUBST s)(t2 SUBST s)) ≡ TT

...... ` ((t = t1) OR (t OCCS t1)) OR ((t = t2) OR (t OCCS t2)) ≡ TT =⇒
(t SUBST s) OCCS ((COMB t1t2) SUBST s) ≡ TT

...... ` (t OCCS EQ t1) OR (t OCCS EQ t2) ≡ TT =⇒
(t SUBST s) OCCS ((COMB t1t2) SUBST s) ≡ TT

...... ` t OCCS (COMB t1t2) ≡ TT =⇒
(t SUBST s) OCCS ((COMB t1t2) SUBST s) ≡ TT

` ∀s. s 6≡ ⊥ =⇒ ∀t. t 6≡ ⊥ =⇒
∀u. t OCCS u ≡ TT =⇒ (t SUBST s) OCCS (u SUBST s) ≡ TT

I have tried to illustrate how the interactive search for a proof might proceed.
After all, the purpose of LCF is not to impose some unwieldy formalism onto our
intuitions, but to aid in the discovery of correct proofs. MW do not present the proofs
of most of their theorems about substitutions; I rediscovered them with LCF’s help.

The proof can be greatly shortened. Supplying all the rewrite rules above, a
single call to the tactic ASM REWRITE TAC handles all the rewriting. The tactic
does not require the goal to be broken up by calling CONJ TAC or DISCH TAC
beforehand. Using the tactical THEN, the shortened proof can be stated as the
composite tactic

STRUCT TAC ‘term’ [] “u” then
asm rewrite tac

[occs clauses; occseq; subst clauses;
or eq tt iff; equal iff eq; term flat uu;
occs total; equal total; subst total;
or total]);;

Many LCF proofs consist of nothing but induction followed by rewriting, though
few work out this nicely. The proof that OCCS is transitive begins similarly, but
some of the equalities are the wrong way round for rewriting, requiring extra steps
to reorient them.
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7 The unification algorithm in LCF

Let us pass by the rest of the theory of substitutions, and concentrate on unification
itself. After defining the composition of substitutions, and formalizing a notion of
failure, the unification algorithm can be stated as a recursive function. I presume
that you have seen enough details of LCF; the remaining examples emphasize logical
aspects of the formalization, comparing it with the proof by Manna and Waldinger
(MW). Again, beware of differences in notation.

For quantifying over defined values, let ∀D x. P abbreviate ∀x. x 6≡ ⊥ =⇒ P ,
and let ∃D x. P abbreviate ∃x. x 6≡ ⊥ ∧ P . Implicit universal quantifiers (over free
variables in formulas) cover defined values only. This hides irrelevant clutter about
⊥.

7.1 Composition of substitution

Many implementations of unification build up a substitution one variable at a time
[7]. MW verify a simpler algorithm involving the operation of composing two sub-
stitutions. My symbol for composition is the infix operator THENS (by analogy
with the tactical THEN). If r and s are substitutions, then MW (§6) define the
composition r THENS s to be the substitution satisfying, for all expressions t,

t SUBST (r THENS s) ≡ (t SUBST r) SUBST s .

This “definition” does not show that such a substitution exists or is unique.
In my formalization, the equation holds for variables by construction, and then is
shown to hold for all expressions. I now prefer a simpler definition of THENS, taking
as axioms two theorems of the formalization:

ANIL THENS s ≡ s
(ACONS v t r) THENS s ≡ ACONS v(t SUBST s)(r THENS s)

The second equation generalizes the Addition-Composition Proposition (MW §8).
You should be careful with definitions by recursion equations; since substitutions are
not constructed uniquely from ANIL and ACONS, equations may be inconsistent.

7.2 A formalization of failure

When a pair of expressions cannot be unified, MW’s unification algorithm returns
the special symbol ‘nil.’ My proof uses a simple polymorphic data type for failure.
If α is a type, then the type (α)attempt includes the value FAILURE, and also
SUCCESSx for every x : α. The LCF command to define attempt is simply

struct axm (“:(α)attempt”, ‘strict’,
[‘FAILURE’, []; ‘SUCCESS’, [“x : α”]]);;

A computation that sometimes returns a value of type α and sometimes fails
can be formalized as a PPLAMBDA term of type (α)attempt. The flow of control
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may depend on whether a computation fails or succeeds. We need to be able to test
for the value FAILURE, then taking appropriate action, and to test for any value of
the form SUCCESSx, then performing a calculation that may depend on x. This
control structure is formalized as the function

ATTEMPT THEN : (α)attempt→ (β × (α→ β))→ β,

which satisfies

ATTEMPT THEN FAILURE (fail , succ) ≡ fail
ATTEMPT THEN (SUCCESSx) (fail , succ) ≡ succ x

Intuitively, evaluating ATTEMPT THEN z (fail , succ) consists of evaluating z.
If z fails, then fail is evaluated; if z returns SUCCESSx, then the function invocation
succ x is evaluated. A typical use of ATTEMPT THEN appears in the next section.

7.3 Unification

My definition of the unification algorithm looks different from MW’s (§15), though
it is essentially the same. Given a pair of terms, it considers all cases; either term
may be a constant, variable, or combination. It is defined using an infix operator
for unifying a variable with a term:

ASSIGN : var → term→ ((var, term)alist) attempt

A variable may be unified with any term not containing it:

v ASSIGN t ≡ ((VAR v) OCCS t)⇒ FAILURE | SUCCESS(ACONS v t ANIL)

Unification is also written as an infix operator:

UNIFY : term→ term→ ((var, term)alist) attempt

A constant can be unified with itself, or with a variable:

(CONST c) UNIFY (CONST c′) ≡ c = c′ ⇒ SUCCESS(ANIL) | FAILURE
(CONST c) UNIFY (VAR v) ≡ v ASSIGN (CONST c)
(CONST c) UNIFY (COMB t u) ≡ FAILURE

Unification with a variable is already taken care of:

(VAR v) UNIFY t ≡ v ASSIGN t

Unifying a combination with a constant or variable is handled easily:

(COMB t1t2) UNIFY (CONST c) ≡ FAILURE
(COMB t1t2) UNIFY (VAR v) ≡ v ASSIGN (COMB t1t2)

The hard case is the unification of the combination COMB t1t2 with another,
COMBu1u2. First unify the left sons t1 and u1. If this fails, then return FAILURE;
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otherwise apply the unifier, s1, to the right sons t2 and u2. If the resulting terms
cannot be unified then return FAILURE; otherwise use the unifier, s2, to return the
answer s1 THENS s2:

(COMB t1t2) UNIFY (COMBu1u2) ≡
ATTEMPT THEN (t1 UNIFY u1)

(FAILURE,
λs1.ATTEMPT THEN ((t2 SUBST s1) UNIFY (u2 SUBST s1))

(FAILURE, λs2. SUCCESS(s1 THENS s2)))

7.4 Properties of substitutions and unifiers

Stating the correctness of unification requires an elaborate set of concepts. My
formalization defines most of these as predicate symbols, with theories about the
properties of each.

A substitution s unifies the terms t and u if applying it makes them identical:

UNIFIES(s, t, u) ⇐⇒ (t SUBST s) ≡ (u SUBST s)

The substitution s1 is more general than s2 whenever s2 can be expressed as an
instance of s1 composed with some other substitution r:

MORE GEN(s1, s2) ⇐⇒ ∃D r. s2 ≡ s1 THENS r

A unifier s of terms t and u is most general whenever it is more general than
any other unifier of t and u:

MOST GEN UNIFIER(s, t, u) ⇐⇒
UNIFIES(s, t, u) ∧ (∀D r. UNIFIES(r, t, u) =⇒ MORE GEN(s, r))

Two terms cannot be unified if there exists no substitution that unifies them:

CANT UNIFY(t, u) ⇐⇒ ∀D s. ¬UNIFIES(s, t, u)

A substitution s is idempotent whenever s THENS s ≡ s. For the induction step
of the verification to go through, the algorithm must produce only most-general,
idempotent unifiers:

BEST UNIFIER(s, t, u) ⇐⇒ (MOST GEN UNIFIER(s, t, u) ∧ s THENS s ≡ s)

Not every pair of terms t and u can be unified. A best try at unification is either
a failure, if no unifier exists, or else is a success giving a “best unifier:”

BEST UNIFY TRY(z, t, u) ⇐⇒
z ≡ FAILURE ∧ CANT UNIFY(t, u) ∨
∃D s. z ≡ SUCCESS s ∧ BEST UNIFIER(s, t, u)

These predicates allow the concise formulation of theorems. The Most-General
Unifier Corollary (MW §12) becomes

MOST GEN UNIFIER(s, t, u) ⇐⇒ ∀D r.(UNIFIES(r, t, u) ⇐⇒ MORE GEN(s, r)).
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The Variable Unifier Proposition, which MW (§12) prove in detail, is

(VAR v) OCCS t 6≡ TT =⇒ MOST GEN UNIFIER(ACONS v t ANIL, VAR v, t).

The statement of correctness is

BEST UNIFY TRY(t UNIFY u, t, u).

7.5 Special cases of the correctness of unification

After presenting the theory of substitutions, MW state the correctness of the unifica-
tion algorithm as a single theorem whose proof covers sixteen pages. I have broken
this into lemmas. For instance, it is impossible to unify two distinct constants, or
unify a constant with a combination. The LCF proofs are trivial, using rewriting to
unfold the definitions of the predicates:

c1 6≡ c2 =⇒ CANT UNIFY(CONST c1, CONST c2)

CANT UNIFY(CONST c, COMB t u)

Proving that ASSIGN correctly tries to unify a variable v with a term t involves
case analysis on whether v occurs in t. Rewriting solves both cases:

BEST UNIFY TRY(v ASSIGN t, VAR v, t)

These results are enough to show that UNIFY is correct when one operand is a
constant, by case analysis on the other operand:

BEST UNIFY TRY((CONST c) UNIFY t, CONST c, t)

MW take seven pages to discuss the unification of one combination with another
(MW §20). The results can be summarized as three theorems about the unification
of COMB t1t2 with COMBu1u2. Perhaps t1 and u1 cannot be unified:

CANT UNIFY(t1, u1) =⇒ CANT UNIFY(COMB t1t2, COMBu1u2)

Perhaps they can be unified, but t2 and u2 cannot be:

BEST UNIFIER(s, t1, u1) =⇒
CANT UNIFY(t2 SUBST s, u2 SUBST s) =⇒
CANT UNIFY(COMB t1t2, COMBu1u2)

Perhaps both unifications succeed:

BEST UNIFIER(s1, t1, u1) =⇒
BEST UNIFIER(s2, t2 SUBST s1, u2 SUBST s1) =⇒
BEST UNIFIER(s1 THENS s2, COMB t1t2, COMBu1u2)

These last two proofs use rewriting to unfold definitions, alternating with simple
tactics like DISCH TAC for breaking up the goal. Both proofs use a tactical for
grabbing an assumption, which is instantiated in a particular way, and moved into
the goal to be rewritten. Despite occasional ugly steps, the proofs of all the theorems
mentioned in this section consist of only about two dozen tactic invocations in total.
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7.6 The well-founded induction

MW prove the correctness of unification by well-founded induction on pairs of ex-
pressions (MW §21). The well-founded ordering ≺un is expressed as a lexicographic
combination involving the set of variables contained in a pair, and the occurs-in re-
lation between expressions. The pair (t1, u1) preceeds (t2, u2) if the set of variables
in (t1, u1) is a proper subset of the set of variables in (t2, u2), or if these sets are the
same, and t1 occurs in t2. The unification algorithm terminates because, for every
recursive call, it either reduces the set of variables contained in its arguments, or
leaves this set the same while reducing the size of its arguments. I have formalized
these ideas differently from MW.

The shrinking of the set of variables is expressed as a reduction in cardinality.
The function CARDV denotes the number of distinct variables in a pair of terms.
(Boyer and Moore would call CARDV a measure function [2].) It refers to several
functions involving finite sets: VARS OF, for the set of variables in a term, CARD,
for cardinality, and the infix function UNION:

CARDV(t, u) ≡ CARD((VARS OF t) UNION (VARS OFu))

The occurs-in relation concerns whether one term occurs in another at any depth.
The correctness proof requires this only at depth one, where t occurs in COMB tu
and COMBut. This allows formalizing the induction without using OCCS.

The Head Ordering Proposition justifies the first recursive call in UNIFY. Its
formalization uses the infix function LT, which is the less-than relation for the natural
numbers:

CARDV(t1, u1) ≡ CARDV(COMB t1t2, COMBu1u2) ∨
CARDV(t1, u1) LT CARDV(COMB t1t2, COMBu1u2) ≡ TT

If the second disjunct holds, then the set of variables in (t1, u1) is smaller than the
set of variables in (COMB t1t2, COMBu1u2). If the first disjunct holds, then the
sets of variables have the same size, and t1 occurs in COMB t1t2. MW’s version of
the theorem, mixing my notation with theirs, is

(t1, u1) ≺un (COMB t1t2, COMBu1u2) .

The Tail Ordering Proposition justifies the second recursive call, when the first
has succeeded:

BEST UNIFIER(s, t1, u1) =⇒
(t2 SUBST s ≡ t2 ∧
CARDV(t2, u2 SUBST s) ≡ CARDV(COMB t1t2, COMBu1u2)) ∨

CARDV(t2 SUBST s, u2 SUBST s) LT CARDV(COMB t1t2, COMBu1u2) ≡ TT

Either the idempotent unifier s has no effect on the term t2, or it eliminates a variable
of t2 or u2. Incidentally, most of the arcane theory of idempotent substitutions is
needed solely for proving the Tail Ordering Proposition. MW’s formulation is much
neater:

BEST UNIFIER(s, t1, u1) =⇒
(t2 SUBST s, u2 SUBST s) ≺un (COMB t1t2, COMBu1u2)
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Induction over certain well-founded relations can be reduced to structural in-
duction [25]. Note how ≺un is built up from simpler relations. Induction over the
lexicographic combination of two relations gives rise to nested inductions. Induction
over the “immediate” occurs-in relation (of which OCCS is the transitive closure)
is simply structural induction. The complication is that ≺un involves the less-than
relation on the natural numbers, via the measure function CARDV. This requires
structural induction over the natural numbers, and correctness must be stated as

∀D t u.CARDV(t, u) LT n ≡ TT =⇒ BEST UNIFY TRY(t UNIFY u, t, u) .

The first step is natural number induction on n. Rewriting solves the ⊥ and 0
base cases. In the case for n + 1, the induction hypothesis asserts that UNIFY is
correct for any two terms that contain fewer than n distinct variables. The next
step is structural induction on the term t. Rewriting solves the ⊥, constant, and
variable base cases. In the combination case, t has the form COMB t1t2; two new
induction hypotheses assert that UNIFY is correct when the left operand is t1 or t2.

In case analysis on u, the ⊥, constant, and variable cases are again easy to
prove. The only remaining case is where both t and u are combinations. Further
case analyses consider whether unification succeeds in the first recursive call, then
the second. The Head and Tail Ordering Propositions allow appeals to the three
induction hypotheses, after yet more case analysis. Things are simpler for MW,
thanks to ≺un: their single induction hypothesis is easily instantiated using their
forms of these Propositions.

The LCF proof is uncomfortably large: about two dozen tactic invocations, with
complex combinations of tacticals, tactics, and inference rules. It appears feasible
to implement an LCF package for well-founded induction, so that this proof would
resemble MW’s.

The antecedent involving CARDV is easy to remove. For any t and u, the number
CARDV(t, u) is less than CARDV(t, u) + 1. Finally we get

BEST UNIFY TRY(t UNIFY u, t, u) .

8 Concluding comments

This LCF verification should certainly increase our confidence in the proof by Manna
and Waldinger (MW). I found only a few errors, too trivial to list. We have seen
only one complete proof, of the monotonicity of substitution. While its two-tactic
LCF proof is surprisingly short, few proofs involve more than a dozen tactics; other
proof checkers may require hundreds of commands to prove comparable theorems
[11, 16]. Cohn has found that a six-tactic proof of parser correctness causes LCF
to perform about eight hundred inferences [9]. Many LCF proofs are shorter than
MW’s detailed verbal proofs.
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8.1 Logics of computation

Although parts of this proof expose weaknesses in LCF’s automatic tools, the main
cause of difficulty is termination. The logic PPLAMBDA is flexible enough to allow
proving the termination of UNIFY, but at the cost of explicitly reasoning about ⊥
everywhere. PPLAMBDA is most appropriate for proofs in denotational semantics
[10, 20, 26]. Newer logics avoid ⊥ and provide higher-order functions and quantifiers,
but have no straightforward way of handling the unusual recursion of UNIFY [15, 18].

In a logic of total functions, there is a general approach to proving the termination
of a function f(x). Define the function f ′(x, n) to make the same recursive calls as
f(x), decrementing the bound n; if n drops to zero, f ′ returns the special token
BTM. Then f ′(x, n) always terminates. To show that f(x) terminates, find some n
such that f ′(x, n) differs from BTM. Boyer and Moore [3] use this approach to reason
about partial functions like Lisp’s EVAL. Though this concrete view of termination
has a natural appeal, the bound n appears to complicate proofs.

MW’s logic has only total functions; they avoid the termination problem by
synthesizing UNIFY instead of verifying it. They essentially prove

∀D t u. ∃D z. BEST UNIFY TRY(z, t, u),

and then their methods produce a total function UNIFY. In Martin-Löf’s Intuition-
istic Type Theory [18], proving ∀x. ∃y. P (x, y) always produces a computable, total
function f and a theorem ∀x. P (x, f(x)). This logic appears to be ideally suited for
program synthesis [1].

8.2 Other work

Eriksson has synthesized a unification algorithm from a specification in the first-
order predicate calculus [11]. The algorithm is expressed in Prolog style [8], as Horn
clauses proved from axioms defining unification. The method guarantees partial
correctness, since anything that can be proved from the Horn clauses can also be
proved from the specification. Total correctness requires proving that the existence
of output follows logically from the Horn clauses; these should be executed on a
complete Horn clause interpreter, not the sort that loops given P =⇒ P .

The derivation is simplified by not considering termination; also, Eriksson’s al-
gorithm does not report when two expressions cannot be unified. There is no need
for well-founded induction or the theory of idempotent substitutions. Eriksson’s
theorems seem equivalent to those of section 7.5 that do not involve CANT UNIFY.
He has developed the proofs by hand in complete detail (a total of 2500 inference
steps) and verified them by machine. This attractively simple scheme for program
synthesis would obviously benefit from a more powerful theorem prover, such as
LCF or Gordon’s similar system, HOL [15].

8.3 Future developments

Cambridge LCF was developed as part of this verification. I began this proof using
Edinburgh LCF, but soon felt a need for improvements, notably the logical symbols
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∨ and ∃. The unification proof was an excellent benchmark for judging the merits
of tactics and simplifiers: the most useful tools became part of Cambridge LCF.

Theories developed for one LCF proof have rarely been used for others; I do
not know of any other use for idempotent substitutions. On the other hand, every
LCF proof teaches us something about methods. The unification proof requires an
understanding of many kinds of structural induction [24]. Deriving its well-founded
induction rule involves a new set of techniques that has become one of my research
interests [25]. SokoÃlowski’s proof of the soundness of Hoare rules uses powerful
generalizations of goals and tactics [26]. The constant accumulation of techniques
means that future proofs can be more ambitious than this one.

Acknowledgements: In such a large project, it is hard to remember everyone who
helped. M.J.C. Gordon was always available for discussion and questions. G. P. Huet
and G. Cousineau invested considerable effort in the implementation of Cambridge
LCF. I had valuable conversations with R. Burstall, R. Milner, and R. Waldinger.
W.F. Clocksin and I.S. Dhingra read drafts of this paper; a referee made detailed
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editor, Tools and Notions for Program Construction (Cambridge University
Press, 1982) 163–185.

[14] M. J. C. Gordon, Proving a computer correct with the LCF LSM hardware
verification system, Report 42, Computer Lab., University of Cambridge (1983).

[15] M. J. C. Gordon, Higher Order Logic: description of the HOL proof generat-
ing system, Report (in preparation), Computer Lab., University of Cambridge
(1984).

26



[16] L. S. van Benthem Jutting, Checking Landau’s ‘Grundlagen’ in the AUTOMATH
system, PhD Thesis, Technische Hogeschool, Eindhoven (1977).

[17] Z. Manna, R. Waldinger, Deductive synthesis of the unification algorithm, Sci-
ence of Computer Programming 1 (1981) 5–48.
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