Technical Report R

Number 5

Computer Laboratory

Parrot — A replacement for TCAM

P. Hazel, A.].M. Stoneley

April 1976

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1976 P. Hazel, A.J.M. Stoneley

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

The terminal driving software and hardware for the Cambridge TSO

(Phoenix) system is described. TCAM and the IBM communications
controller were replaced by a locally written software system and a

PDP-11 complex. This provided greater flexibility, reliability,
efficiency and a better "end-user" interface than was possible under a
standard IBM system.

P. Hazel
A.J.M. Stoneley

April 1976

Contents

Introduction

The new 370/165 - PDP-11 Interface

The 370/165 System - Parrot

The PDP-]1l System

4.4

4.5

4.6

4.7

Hardware

Software

Store Management

Timing Facilities

Interface to the 370/165 Channel
User Processes

Terminal Handling

Glossary of IBM Terminology

17

17

18

18

18

20

22

24

1 Introduction

The main computing engine of the Cambridge University Computing
Service is an IBM 370/165 with an MVT* supervisor. One of the main
means of access to the system is the Phoenix online system, which is
based on TSO. In particular, those parts of the system concerned with
swapping and sharing of time (TSC and the RCTs) are essentially as
provided, whilst those parts concerned with the individual user (the
Terminal Monitor Program, Editor, sundry utilities and the dynamic
allocation routines) have been replaced.

The primary aim of the Phoenix system is to provide editing and job
submission facilities for a large number of people, rather than to
provide actual computing power for a few.: To this end a large number of
terminals must be active in a highly interactive fashion. We currently
have over 200 connected terminals, of which any 80 may be logged on at
any time. All these terminals, as well as various other devices, are
connected to a PDP-1l1 system, which in turn is connected to the IBM 2870
multiplexor channel through_a DX-11 interface. The 370/165 is aware
only of the active terminals, which are selected for it from the 200
available by the PDP-11.

In the initial system (1972) the system software in the 370/165 was
totally unaware of the PDP-11. TSO was connected to TCAM in the
standard fashion and TCAM thought it was connected to half duplex
Teletypes via a 2703 transm1551on contrcl unit. The PDP-1l emulated the
2703 in all necessary respects. The reasons for this were of two
classes: reasons for not having a real 2703 and reasons for pretending
that we had. In the former class, the most prominent reason was cost.

A bank of 2703s providing hardware connections for a projected 300
terminals would have been very expensive, and indeed this number is
beyond the addressing range of a single channel. Other reasons were
that we would have been restricted to devices which IBM chose to
acknowledge and that the performance of IBM multiplexors of that era
left much to be desired. They were no more than multiplexors and devoid
of intelligence, leaving such requirements to TCAM. We required
substantially greater flexibility, both in types of device and in
facilities such as local line editing and escape character input. We
also required facilities such as paper tape readers and punches which
are unrelated to TSO. The choice of interface, the emulation of a 2703
driving Teletypes, was based on the need for independence of particular
IBM operating systems.

*[There is a glossary of IBM terminology at the end of this report]

April 1976 T.R.5 1

In that system, which survived for about three years, TCAM believed
it was in contact with a fixed number of half duplex Teletypes, all of
which could be logged on at the same time. 1In fact it was connected to
devices of various types, all disguised by the PDP-11. All device
dependent code was thus removed to the PDP-11, including character code
translation (TCAM character translation was bypassed). As far as TCaM
was concerned, all its terminals could be logged on at once and so the
size and complexity of the TCAM MCP was that appropriate to the maximum
number of terminals logged-on, rather than the total array.

In the course of time various causes for dissatisfaction arose, few
severe but the total aggravating. The most severe Prcblem was the
shortage of device addresses. With all the other devices attached to
the multiplexor channel, very little room was left for expansion. We
envisaged ultimately about 100 logged on users. Main store was also in
short supply and TCAM plus the TIOC seemed rather excessive in their
requirements. A number of outright bugs were present in TCAM and the
lack of documentation coupled with generally poor programming style
defeated our efforts to find these bugs. There were also a& number of
infelicities. TCAM tended to swallow characters which it thought
inappropriate to a Teletype and sometimes inserted various other
characters. The most irritating insertions were the "write idles™.
These are non-printing characters which cycle the Teletype mechanism,
the intent being to prevent the user typing at the keyboard when input
cannot be accepted. The resultant 'chuntering' is extremely irritating
and for us it was also futile: most of our Teletypes actually operated
in full duplex mode, acceptance of input being indicated by the echo.
Consequently we had the PDP-11 swallow the write idles, rendering it
impossible to transmit these characters when really required, for
example to a graphic device. This lost us four characters, each of
which was used by a different part of TCAM for such purposes. A further
infelicity lay in the treatment of "BREAK" (attention) . BREAK appeared
to TCAM as an I/0 error during a read or write command. When a user‘s
input buffers were full TCAM would cease to read from the terminal and
BREAK could not then be sent. Common reasons for input buffers being
full are an unintentional program loop or a never-ending WAIT, and this
is precisely when one would like to be able to signal BREAK. In such a
case the only remedy was to telephone the operators and request
"cancellation" of one's session. Finally, it was felt that it was silly
to have a sophisticated PDP-11 system prétending to be a totally stupid
2703. Several new features could be conceived if the 370/165 were to
acknowledge the existence of the power of the PDP-11. ’

These considerations prompted us to replace TCAM as the TSO device
driving program. This is commonly regarded as extremely difficult if
not impossible and it is worth considering how we found it possible to
do this economically. In the first Place, we did not replace TCAM per
se but the whole of the terminal I/0 software. Secondly, we have not
provided any facility not related to TSO. TCAM is in its own right a
general purpose message switching system. Again, TCAM has to drive many
different terminal types. We have a limited range and all are driven by
a separate computer, the PDP-11. Finally, there are some functions
which we have not (initially) Provided, such as automatic line numbering
and prompting.

April 1976 ' T.R.5 2

TCAM Connection Logic

.370/165
tso TCAM 64 _ 200
control connections PpP-11 terminals
control control
& data
tso
user

Figure 1
Parrot Connection lLogic:
370/165
tso
control
tso | PDP-11

user Parrot ////r-

— n

200 terminals

Figure 2

370/165 ~ PDP-11 transmission block

logical address command - data length data

Figure 3

April 1976 ' T.R.S 3

2 The New 370/165 - PDP-11 Interface

The 370/165 part of the software system has been named Parrot. It
will be convenient to use this name here. Figures 1 and 2 depict the
connection logic for TCAM and PARROT.

Since one of our aims was to reduce the range of 370/165 device
addresses required, it was clear that we could not have one per logged
on user. At first sight the logical alternative was one for the whole
system, but on reflection we opted for two, over which full duplex’
communication is maintained. To keep MVT happy, these are notionally
labelled as a card reader and a line Printer, but this is not important.
-Within the 370/165 all I/0 is through the standard EXCP mechanism. The
general rule for the interface is that at all times either party should
be able to speak. To this end the 370/165 should at (almost) all times
keep a read command outstanding on the input address and the PDP-11
should always be prepared to accept data on the output address. If an
I/0 error occurs for any reason, such as a PDP-11 system crash, the I/0
operation is restarted. The necessary flow control occurs at a higher
level.

A single I/O operation results in the transfer of a 'transmission
block® or ‘buffer' of up to 80 bytes (see Figure 3). This block is
headed by a 'logical process address®' and upon receipt the block ‘is
immediately passed to the corresponding 'pProcess'. At this stage a
Process is to be envisaged in a purely notional manner as a single
thread activity of bounded scope. On each side of the interface there
is one process devoted to each logged on user, the ‘session process'.
There is alsc a 'global process®, which deals with events such as
restarts.,

During normal operation the session Process sends transmission
blocks solely to its counterpart in the other machine, from whence only
it receives them. It is at this level that flow control is exerted.
Each buffer sent between session processes contains a 'command’ byte,
immediately following the address. Not all commands are legal at all
times; some depend on the current state.

The following is not intended as a complete description of the
protocol, but should be sufficient to give the flavour.

Session output commands (from the 370/165 to the PDP-11):-
Write characters - the remainder of the buffer contains the
characters. This may not be repeated until

a 'Write done' command is returned from the
PDP-11.

April 1976 . » " T.R.5 5

Write characters now

Enable read
Mend

Mode read
Mode wrifé’
Disconnect

=

Connect

Session input commands
Write done

Input chars read

Mode here

Mode write done

Break

Hangup

April 1976

(to

- ncrmally output does nct interrupt a
partially input line. This does.
Notionally needed for urgent messages,
actually unused.

~ After the PDP-11 has sent a data buffer it
may not send another until it receives
this.

- the acknowledgement to ‘Break’.

- read session details (eg line width).
Response is ‘Mode here'.

- set session details. Response is ‘Mode
write done’.

- terminates a ’session’. The session is
abandoned.

- request connection of a particular
terminal. For use after PDP-11 restart.

- enables reconnection for a new session
after disconnect or initial startup and
also acknowledges PDP-1l restart.

the 370/165 from the PDP~11):-
- sic

- The remainder of the buffer contains input.
This command may not be repeated until
'Enable read' is received.

- buffer contains session details; response
to "Mode read®.

- response to ‘Mode write?,

- after 'Break’ is sent, the PDP-11 session
‘process ignores all buffers from.the
corresponding 370/165 process until ‘Mend*®
appears. This overcomes synchronisation
pPrcblems associated with the full duplex
link.

- The user has hung up his telephone. After
‘Hangup', the PDP~11 automatically
disconnects the terminal and ignores all
commands until ‘Go' appears.

T.R.5 6

Connect - a terminal (i.e. a user) has been connected
and a session has thus begun.

Input read complete - as 'Write done', but the last character is
a record terminator, i.e. RETURN or ESC.

Go - acknowledges 370/165 restart.

Individual processes are not permitted to crash without brlnglng
down the whele of the machine in which they are running, an attitude
adopted in view of the lack of adequate storage protection in either
machine. On the other hand it was felt unreasonable to demand a
complete system restart when either only the PDP-11 or only the 370/165
crashed.

After a 370/165 restart, the PDP-11 automatlcally re-initialises
itself, disconnecting all terminals. Users must then log on again. The
more interesting case is when the PDP-11 is restarted.

When the PDP-11 is restarted, it loses all memory of its previous
life., It announces the restart by means of a command sent to the global
process in the 370/165. This process informs all session processes in
the 370/165. Each of these session processes then sends a 'Go’ command
to its PDP-1l counterpart. In the meantime this PDP-~11 session process
ignores everything until the °Go' command arrives. This is necessary
since the pipeline may contain a substantial backlog of messages
relating to activities before the fall was detected. If a corresponding
TSO session was previously in progress, the 370/165 session process
sends a ‘Connect' command to its PDP-11 counterpart to acquire the
correct terminal. When all 370/165 session processes have had a chance.
tc reconnect, a global 'Go' is sent to the PDP-11 and normal running
resumed. Until the global °Go' is received, no terminal is permitted to
initiate connection. :

Confusion can arise since the communication pipeline can in
principle hold a queue of several restart announcements and
acknowledgements from either or both parties. One has no means of
knowing whether an acknowledgement received refers to the most recent
announcement made. This problem can be solved if one can generate
unique incarnation numbers. We do not do this because in practice the
problem does not arise. In the last resort a complete clean start can
be made.

As far as was possible, we tried to banish all device dependent
code into the PDP-1l. Nonetheless, "problem program" in the 370/165 :
does occasiacnally need to know dev1ce details and to exert special '
control. An immediate example is the maximum length line that can be
typed. Programs may legitimately wish to produce output in different
formats on wide and narrow typewriters, and the user of a dial-up device
needs to be able to specify its width. To this end the special
functions of ’'Mode-read’ and 'Mode-write® are provided in the protocol.

April 1976 T.R.5 7

3 The 370/165 System - Parrot

One of the difficulties in replacing TCAM is the diffuse nature of
the interface between TCAM and the TSO user. There is a misty interface
between TPUL/TGET and the TIOC, a muddy one between the TIOC and TCAM,
and several tenuous links between TPUT/TGET, TCAM, and the rest of TSO.
This was not so discouraging as might appear since we had considerable
freedom in deciding precisely where the hatchet was to fall. We were
nat' so much replacing TCAM per se as the terminal I/0 system as & whole.
The main constraint was that the user interface to TGET and TPUT should
remain constant, and since this is by far the narrowest interface in the
system it was here that we-cut. Internally we also used the standard
interface to the TSO driver, and the standard flags and ECBs for
signalling RCTs and TSC. QTIP, AQCTL and the TIOC were excised.

The main bulk of Parrot runs as an OS subtask of TSC, and in the
same ‘region. The code of Parrot is assembled as a single load module
with a single CSECT whose sole entry point is that of the Parrot task..
The code for SVC 93 (TPUT/TGET) and SVC 94 (terminal control) is also
part of this CSECT, the entry points for these routines being planted in
the TSCVT by the Parrot task during initialisation. The SVCLIB modules
merely branch to these entry points.

It is clear that within Parrot several logically unconnected
activities will take place and so some form of multiprogramming .
technique is required. Trivial estimates of cost are sufficient to rule
out OS multitasking as a solution and so a multiprocess system was built
within the Parrot task. The basis of this is the “coordinator", which
is a set of routines for regulating the progress of Parrot “"processes".
A process in this context is rather more concrete than that described in
the preceding section. A Parrot process bears the same sort of relation .
to the whole Parrct task as an OS task does to the whole machine., It is
analogous to a Hasp processor. Any one process is normally oblivious of
other processes and communicates with them solely through the
coordinator. Activities which run aéynchronously with Parrot, such as
other OS tasks using TPUT, appear to Parrot as interrupt routines or
routines executed by an asynchronous cpu.

The Parrot coordinator is strongly based on the coordinator written
by M.J.T. Guy for the PDP-1l system.

The rules for processes are mainly dictated by the reguired
economies. One envisages of the order of a hundred logged on users and
a comparable number of processes. This means that the main storage
dedicated to a process must be minimal and that the cpu time per process
should not increase with the number of processes. For example, one
cannot afford to store a set of 16 general registers for each process or
to scan the entire list of processes at every coordinator entry.

April 1976 T.R.5 .9

April 1976

Parrot Process Base

chain pointer

instruction address

local code base

message chain base

optional

} Process dependent [}

5

Figure 4

T.R.5

10

A Parrot process is physically represented by a block of store
called a "process base", whose size depends on the particular process
(see figure 4). The minimum regquirement for a Process base is three
words, one of which is used for chaining, one for storing the
instruction address, and one for storing the local cocde base register.
When a process is running, one standard register, the "process base
register"”, points to the base and one, the "local code base register" is
used to address code local to the process. This code is often shared
re—entrant code. At all times within Parrot, the "common code base
register" may be used to address coordinator code or "central
subroutines”, and one other register standardly points to the TSCVT.
When a process is halted, the only information Preserved by the
coordinator is that kept in the minimal process base; that is the local
code base register and the current instruction address. The necessary
corollary of this is that processes may only be halted of their own
volition, which they signal by calling either the SLEEP or WATT
coordinator routine. Until such a routine is called, a Process may
assume that its registers are all its own and will not change under its
feet, and further that no other Parrot process will run. Other OS tasks
may of course run unless hardware interrupts are disabled.

When one process SLEEPs, the coordinator runs the Process whose
base is on the head of the "ready queue", first removing that base from
the queue. Thus the way to cause a process to be run is to Place its
base on the ready queue, a function performed by the coordinator
subroutine WAKE. It is but a mild simplification to say that the
coordinator consists of two routines, CHAIN and UNCHAIN. ‘If the ready
queue is found empty, the cocrdinator enters an OS WAIT. If any
external activity, such as TPUT, requires the services of Parrot, it
calls the coordinator subroutine KICK, which WAKEs the appropriate
pProcess and 0OS POSTs Parrot.

Most process bases have one other word used by coardinator
functions concerned with inter-process communication. The standard
method of sending a process a message is to pPlace the message in a
buffer and "send" it to the target process, a coordinator routine SEND
being provided for this purpose. The action is to chain the buffer to
the target process base and wake the target process. When it eventually
runs, the target process is expected to look for and unchain any buffer
sent to it.

This leads to Buffer Management. There is a central .subroutine
which may be called at any time to obtain a standard buffer and. another
to get rid of it. If no buffer is available, hopefully a rare case, the
routine signifies this by a return code. The requesting process is then
expected to use a coordinator routine to WAIT on the buffer halt queue,
the action being to chain the process base onto this queue. Eventually
the Buffer Management Process will FREE all the bases on this dueue.
They should then try again for buffers. This is the only way in which
store may be obtained dynamically.

April 1976 S | T.R.5 1L

If an external task requires a buffer and none is free it must make
its own arrangements. For example, TPUT sets a flag, KICKs a process to
get a buffer for it, and OWAITs.

The rest of the processvbasey which may be of any length, may be
used freely by the process, and is naturally preserved when the process
is halted. '

The main processes are the transmission process, which accepts
buffers and writes them to the PDP-11, the reception process, which
reads buffers from the PDP-1l and distributes them, and the session
processes.

The transmission and reception processes are very simple. For the
transmission process the loop is:-

until buffer queue is empty
Write buffer to PDP-11
Free buffer

Sleep

Repeat

For the reception process the loop is:-

Get buffer »

Read block from PDP-11 to buffer
(This is the main halt point.)

Send buffer to addressee

Repeat

There is one session pfdcess for each slot, that is for each TJB in
the system., Thus each logged on user is connected to a unigue session
process, and there are typically some session processes idle awaiting
connection. A session process remains permanently attached to a
particular TJB.

The main cycle of action for a session process is:-

Sleep

Deal with any transmission blocks that have arrived from the
PDP-11

I1f output is available and not in progress,
send output text to the PDP-11

Unless too much input has accumulated,
send ‘'Enable read’ to the PDP-11

Check for miscellaneous events such as logoff

Repeat

TPUT, TGET (SVC 93) and the terminal status SVC (SVC 94) appear as
interrupt processes. The code for these SVCs is written within the
general orbit of the session process code, has the same register
conventions, and shares some subroutines local to the session pProcess as -
well as the universally available central routines.

April 1876 . T.R.5 12

Between the session process and the SVCs, text for transmission
either way is buffered in "streams", that is to say it is densely packed
into chains of buffers. Streams are handled by the stream handling
subroutines, of which the main ones are READ and WRITE. One of the
arguments to these routines is a pointer to the "stream base”, from
which everything knowable about the stream can be deduced. Any stream
may be read from the point where the previous read left off, or written
to at the tail. Simple estimation indicates that the cpu time spent
pPacking and unpacking the text in streams is negligible.

Streams have a record structure embedded; so that, for example, one
may read the shorter of a specified number of characters or to end of
record. Such a structure is necessary since TGET operates in terms of
records, which are strings terminated by some (variable) end of
transmission character at the terminal. On output the record structure
is mainly unused, since devices basically only accept strings of
characters, one such being NEWLINE. Occasionally “control records"”
appear in the streams. A control record is identifiable as such
independently of the characters it contains. It is used for activities
connected with 'Mode-read' and ‘'Mode-write®’, such as 'setting terminal
width', which must not leap-frog the normal character transfers.

There are two streams associated with each session process, the
Ainput stream and the output stream, the stream bases being embedded in
‘the process base. The output is written to by TPUT and read from by the
Process; the input stream is written to by the process and read from by
TGET. The size of a stream is normally restricted. If the input stream
becomes over full, the process merely refrains from sending ‘Enable
read' to the PDP-11. If the output stream becomes full the caller of
TPUT is forced into OWAIT in the standard TSO fashion, which is to set a
flag in the TJB, a non-dispatchability bit in the TCB, to inform the TSO
driver, and exit to the dispatcher. Similarly if TGET has to wait for
input to appear in the input stream, it forces the user into standard
IWAIT. IWAIT and OWAIT are ended by the session process when
appropriate. If the user is still in core the waits are cleared
directly. If he is swapped out the driver causes the RCT to clear then.

'Break', which may arrive at any time, causes the process to flush
both streams and to signal the event to the user in the standard
fashion,

A new feature, Input Mode, has been provided as an aid to
efficiency. Much of the time a user is at a terminal is spent merely
typing text into the machine, from which no interactive response is
expected. This state is ended by typing some Particular terminating
string, such as "/*". In a standard system this activity results in the
user being swapped in at the end of every line, necessarily so since the
TSO/TCAM control functions do not know that no interaction is regquired.
One would like to be able to buffer rather more input before swapping
in. A user enters input mode by calling SVC 94 with a particular
function code and pointing to a character string tec be used as the
terminating string. While input mode is set the user is swapped in only
when the input stream becomes reasonably full. Input mode is normally
terminated when the user types the terminating string. It is also ended
by 'Break' or by a different entry tc SVC 94,

April 1976 ' T.R.5 13

No great difficulties were found in interfacing to the rest of the
world. Such as were found were all the result of 0S not using the
proper interfaces. For example, OPEN for a terminal data set needs to
know the line size. As supplied it does not use the proper interface
(i.e. the GTSIZE macro, which expands into SVC 94); instead, it rousts
about in TSO's control blocks. ZLess disreputably, but quite as
confusingly, there are two modules in which this happens. The obvious
one, the access method executor, is documented but the code is never
exercised. The other, in the main line of OPEN, is not documented and
is frequently exercised.

In the design stage, most of the problemé arose from the
inadequacies of OS inter-task communication and alsc its expense.
Sometimes facilities are basically adequate but too expensive: such is
ENQ. At other times they are inadequate, such as in WAIT/POST, which
provides no help in the case when one party may vanish or be otherwise
unreliable. The classic boner is inter~partition POST, which if used
incautiously can bring the RCT down.

April 1976 T.R.5 14

April 1976 T.R.5 15

SOUTT 9T

SOUTT 9T

§ ll u

SSUTT 91

I’ ,lfl

TT-HQ

G 2anbrg

TT-0a

TT-Ra

02/1T ddad

eoey
-I93UT
TI-Xa

"TINNYHO

YOXH14
-ILINN

oLse

q91/0LE

WLI

T.R.5 16

April 1976

4 THE PDP-11 SYSTEM

4.1 Hardware

The PDP-11 hardware consists of a PDP 11/20 processor with 28K »
words of store, a DX-1l1 control unit to channel interface, and a number
of synchronous and asynchronous line drivers. There are also paper tape
readers and punches, a Tri-Data Cartrifile, and a local operator's
typewriter.

The synchronous lines are used for HASP Remote Job Entry
Workstations, which do not fall within the scope of this Report. The
asynchronous line drivers are in the form of multiplexors, each driving
16 lines. The current configuration is:-

8 x DM-11 multiplexors, all working at 110 baud

1l x DJ-11 multiplexor with 8 lines at 1200 baud
and 8 lines at 134.5 baud

5 x DJ-11 multiplexors working at 110 baud

1l x DH-11 multiplexor with all lines variable between
110 and 300 baud inclusive

Five of the lines on the DH-11 are connected to the public
telephone network via Post Office Modems. .One of each multiplexor type
is shown in figure 5. ‘

4.2 Software

The overall design of the PDP-11 software is due to M.J.T. Guy.
The system is conceived as a number of processes and interrupt routines,
some of which are interdependent. The processes are run under the
control of a simple coordinator which contains much the same facilities
as the Parrot coordinator described above. Processes that have been
"woken up" are placed on a ready queue, and are run one by one when they
reach the top of the queue. The most frequent cause of awakening is ‘the
arrival of an interrupt. However, a process sometimes needs to wait for
some other external event. For example, it may be unable to proceed
until buffers are available. In this case it places itself.on a halt
queue associated with the event in question. When the awaited event
happens, the halt queue is freed, i.e. transferred to the ready gqueue.
Processes run at the lowest hardware priority, so that any .interrupt
takes precedence. A process runs until it causes itself to be halted,
which is a useful interlocking feature for inter-process communication..
The information required by the coordinator in order to manage a process
is kept in a control block called a process base, at which a standard
register is pointed whenever the process is entered.

April 1976 T.R.5 17

A number of central subrcutines are precvided feor common use. These
include rcutines for maintaining chains cf buffers and pProcess bases,
which run in "disabled" state for interlocking reasons. The chains are
cne-way circular chains, with the base pcinter peinting to the LAST
buffer. The chain field in this buffer points to the FIRST buffer. It
is thus a simple matter toc find either end cf the chain; in most cases
this can be done in & single PDP-11 machine instruction.

4.3 Store Management

The store management routines manage a contiguous area of store,
Requests tc allocate and free blocks of arbitrary size are supported,
but these facilities are currently used only during initialization.
During normal running store allocation takes place from two free chains
of fixed length buffers, of lengths 12 and 88 bytes respectively. The
short buffers are used for characters transferred to or from a terminal,
and the longer ones for transfers to or from the 370/165. Store
management subroutines are provided for obtaining and freeing buffers.
There is a store management process which is woken up at suitable times
to replenish the supply of buffers from the free store if it gets low,
or to return some buffers to the free store if there is a surplus. A
process which requests a buffer and is refused must place itself on the
Stere Manager's halt qgueue. The entire queue is freed when the store
becomes available, and each process must repeat its request,

4.4 Timing facilities

A special process called the "one second process® is woken up every
second by the clock interrupt routine. Its sole task is to free its
halt queue. Other processes may thus request to be woken up at the next
clock "tick".

4.5 Interface to the 370/165 channel

The 2870 Multiplexor Channel performs I/0 between 370/165 main’
storage and peripheral "devices". In this section we use the word
"device" to mean a logical peripheral with a unique address as seen from
the 370/165. 1In practice, what are actually connected to the channel
are a number of "control units®, which may in general control more than
one device each. The channel, however, works entirely in terms of
"device addresses”, which lie in the range 0-255.

April 1976 T.R.5 18

The 370/165 initiates a data transfer by executing a Start I/0
(SI0} instruction, which specifies the address of the device in
question. Before doing this, a Channel Program must be set up in
370/165 main storage. This consists of one or more Channel Command
Words, each of which contains a command byte, data pointer, and data
length. The channel operates autonomously under the control of the
channel program until it completes, or an error occurs. After each
channel command is executed, the device sends a "status" byte which
indicates whether the command was successful or not.

The PDP-11 behaves as a control unit with a number of different
devices on it. The DX-1l control unit to channel interface is the
hardware connection between the PDP-11 and the channel, The DX-11
driver routines, which were written by C.J. Cheney, control the DX-11
on behalf of all the devices. They consist of an interrupt routine
and a process.

Inside the PDP-11, an active device is always associated with a
"device process". In addition to the coordinator information in the
Process base, there are additional fields for the use of the DX-11
driver. These include the 370/165 hardware address for the device, the
current command byte, the command status, and the address of an
"interrupt vector", which contains pointers to subroutines that are
called asynchronously from the DX-11 interrupt routine whenever there is
activity on the channel which changes the state of the device, such as
the receipt of a command. There are two device processes associated
with the Parrot interface -- one for transferring data in each
direction. (However, these are not the only devices in the PDP-11
system -- the RJE lines, 370/165 Operator Console typewriters, and paper
tape I/0 have their own devices, all of which use the same channel
interface simultaneously.)

A typical ‘sequence of events which occurs during the processing of
a command is as follows:-

a) The 370/165 cbeys an SIO instruction to start a channel program
for the device, and the channel fetches the first channel command
word.

b) The DX-11 hardware recognizes the address propagated by the
channel, acknowledges, and accepts the command byte.

c) The "command received" subroutine for the device is called from
the DX-11 interrupt routine; this wakes up the device process.

d) The device process, when it starts to run, decodes the command.

e} For a read command, the process waits until data is available.
Buffers are then sent to the DX-11 process for transmission to
the 370/165. When a buffer has been transmitted, it is sent back
to the device process. When all the data have been sent, a DX=11
subroutine is called to terminate the transfer.

April 1976 T.R.5 19

f) For a write ccmmand, the brccess must send tc the DX-11 process
an empty buffer which is returned with data from the channel.
This is repeated as many times as necessary. A device interrupt
subroutine is called when the channel count is exhausted, and the
transfer is terminated as before.

Slight variants on the above occur when events such as System Reset
interrupt normal running.

The two Parrot "device processes" are little more than a software
multiplexor and a de-multiplexor. The former receives buffers from the
80 "user processes™ and sends then to the DX-11 process in response to
read commands from the 370/165. Each transfer consists of one (not
necessarily full) buffer only, with a maximum data length of 80 bytes.
The latter device process receives buffers from the DX-11 process as a
result of write commands, and passes them on tc the relevant user
pProcess as indicated by the Parrot address fields in the buffers,
Again, each transfer consists of a 51ngle buffer, This device process
also acts as the "global" process. Global restart commands and System
Resets are sent to ALL user processes., The communication between the
device processes and user processes is entirely one-~way.

The flows of data within the PDP-11 are thus:~

Output: 370/165 ~> DX-1l process —-> 370/165 output device process
-> user process =-> terminal

Input: terminal -> user process -> 370/165 input device process
—> DX~11 process ~> 370/165

4.6 User Processes

The 80 user processes in the PDP-11 communicate with their
corresponding session processes in the 370/165 on the cne hand, and with
physical terminals on the other. At system start up or immediately
after LOGOFF (i.e. after a Parrot ’'Disconnect' command), a user process
enters a disabled state until 'Go’ is received. This command makes the
Process available for connection to a terminal.

When a user wishes to log on to the Phoenix system, he types RETURN
on his terminal. In the interrupt routine which is then entered, the
table of user processes is searched to see whether there is one
available for connection. If not, a suitable message is written to the
terminal and the transaction is completed. (It is also possible to run
the ‘system in a testing mcde in which only terminals that are situated
in the computer room are allowed te log on:. This mode can be set-or
unset by commands from the 370/165.) If a process is available for.
connection, the device is connected to it and it is woken up.

A simplified picture of some of the data structures used in

controlling a process which is connected to a terminal is shown in
figure 6.

April 1976 T.R.5 20

User process base table multiplexor hardware
v interrupt vector

address of base 0

address of base 1 . I

etc ‘ ' l

multiplexor base>>
hardware address
hardwére State
etc
base table base for line 0
address of base 79 for connected
lines base for line 1
etc
l user process base base for line 15

chain field —— 13 chain of incoming
Parrot buffers

coordinator info

multiplexot base -

multiplexor line no

process number —‘—-)I | last buffer
v ' .

terminal width

carriage position | first buffer

input buffer chain v

miscellaneous middle buffer
Figure 6

April 1976 T.R.5. 21

When it is first wecken up after a terminal ie connected; the .
process causes the message “"LOGON" to be written, waits for it to
complete, and then waits for the user to type his userid. If this is
not done within 30 seconds, the message "***ABANDONED® is written, the.
terminal is disconnected from the process, and the process base is
marked as being available for connection again. This also happens if
BREAK is pressed. Only when the process has a complete line in hand
does it send a "Connect® command to the 370/165. The data sent with the
‘Connect' command includes the PDP-11 hardware address and the terminal -
width., The usual response is an ‘Enable read®' command, which causes the-
logon line to be transmitted. The terminal then remains connected to-
the process until a ‘Disconnect’ command or a System Reset is received.

When the user has completed a line .of input, no further input is
accepted until the ccmplete line has been transmitted to the 370/165.
Output received from the 370/165 is held for up to 60 seconds if the ..
user is in the middle of typing a line of input. If the input line is
not completed in this time, it is abandoned (!!RETURN, LINEFEED being
output). If BREAK is received from the device at ANY time, all the
current input and output in the PDP-11 is abandoned, a 'Break' command
is sent to the 370/165, and ! written to the terminal. The process
ignores all subsequent activity by the terminal and all commands from .
the 370/165 until °'Mend’ is received. If a user on a dialled line hangs
up, 'Hangup' is sent tc the 370/165, and the prccess disconnects from
the terminal automatically. '

4.7 Terminal handling

The majority of asynchronous terminals connected to the PDP-11
operate in ASCII code in full duplex mode, i.e. all output on the
terminal, including the reflection of input, is under the PDP-1l's
control. The system also supports half-duplex ASCII devices and IBM
2741 terminals; for simplicity, however, only the handling of full
duplex ASCII devices will be described here.

When a character is received it is immediately reflected back to
the terminal. The character is then checked for wvalidity, and if it is
invalid, a BELL character is "reflected" as well. Valid characters are
translated to EBCDIC code and stored in short (12 byte) buffers.
Completed buffers are chained together up to a maximum of 256
characters. The input line can be terminated by RETURN, which causes
"carriage return, linefeed" to be sent to the terminal, or by ESC, which
leaves the carriage where it is.

The character @ is used as an "escape character" when reading
input. It signals the PDP-11 that the next character is to be treated
in a special way. This mechanism is used for entering characters which
do not exist on the terminal, and also for requesting special control
functions from the PDP-11. Examples of the first use are @v for [, e-
for _, @T for ~, @@ for @ itself, and @Xnn for the EBCDIC character with
value X'nn'. The control functions include

April 1976) T.R.5 22

@c cancel the previous character

QL cancel the whole line

ey convert subsequent letters to lower case

QU convert subseqguent letters to upper case

@GRETURN concatenate this line with the next as one input
line

@I interrupt -- has the same effect as BREAK

ez suppress character reflection until the end of the
line

@<char> change device characteristics (see below)

The character RUBOUT has the same effect as @ (which it reflects).
@L and @RETURN both cause RETURN, LINEFEED to be sent to the device.
The @ combination signals a change in terminal characteristics to the
PDP-11. Normally the characteristics of devices on fixed lines are
known, so its main use is on dialled lines. The following options are
supported:- »

@DB ignore BREAK characters

@D revert to default characteristics

@DF change to full 96-character ASCII code

@DH change to half-duplex working

@DR ignore RUBOUT characters

@s) (insert idle characters after RETURN and/or
LINEFEED;

epT) (the different letters request different numbers of

@u) (idle characters '

@B and @DR are provided to help overcome problems on noisy lines.
The effects of BREAK and RUBOUT can always be achieved by typing @I or
@ respectively. @DS, @DT and @DU are provided for terminals with slow
carriage return mechanisms.

Output buffers for the terminal are translated from EBCDIC into
terminal code, illegal characters being converted to ?. There is a
special output character, GRAPHIC ESCAPE, which causes the following
character to be output untranslated. By this means, control codes can
be written to VDU's. The PDP-1l maintains a pointer to the current
carriage position, and inserts a newline in the output if the right hand
margin is exceeded. The right hand margin value can be changed by the
370/165 via the 'Mode set' command, and read via the 'Mode read!'
command.

While output is taking place at the terminal, input is not
permitted and any characters received are ignored, with two exceptions:-

a) Typing BREAK or @I causes the.rest of the output to be abandoned
and subsequently a 'Break' -command is sent to the 370/165.

b) Typing SPACE causes the PDP-11 to pause at the end of the next
line of output. The pause lasts 60 seconds. It can be cancelled
by typing @L, or alternatively by typing in a line of input, which
will be sent to the 370/165 while subsegquent output continues.

April 1976 T.R.5 23

5 Glossary of IBM terminclogy

AQCTL
CSECT
Dispatcher

Driver

ECB
ENQ

EXCP
IWAIT
MCP
OWAIT

QTIP
POST

RCT

SVC
SVCLIB

TCAM

TCB

TGET
TIOC

TJB

April 1976

Routine for communication with TCaM.
Program segment,
0OS task coordinator.

The program which does the short term scheduling
within TSO.

Event Control Block, used by WAIT and POST.
An interlock and reservation mechanism.

The supervisor call for initiating
I/0 on a channel.

The state of being halted waiting for terminal input.
Message Contrcl Program.
An IBM multiprogramming supervisor program.

The state of being halted waiting for terminal
output to take place.

TSO/TCAM communication routine.

.Ends WAIT,

Region Control Task. The task which connects and
disconnects users from the rest of the operating
system when they are swapped in and ocut

of main store.

Supervisor call.

Library of SVC routines.

Telecommunications Access Method. An IBM system ‘
normally required for driving TSO terminals.

Task Control Block.

The superviéor call by which a problem program
reads from a terminal.

‘Terminal I/O Coordinator. A buffering interface

between TPUT/TGET and TCAM.

A control block regulating a single user‘s sessiomn.

TSC Time Sharing Control. The top task of the TSO
subsystem. The task which actually performs the
swapping.

TSCVT The central control block and address
table for TSO.

TPUT The supervisor call by which a problem program
writes to a terminal.

TSO Time Sharing Option. An IBM multiple access system.

TSIP An interface to the TSO Driver (g.v.).
WAIT Suspend current task.

BApril 1976 : T.R.5 25

