
Inductive Verification of

Cryptographic Protocols

Giampaolo Bella

Clare College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

March 2000



ii



Preface

Except where otherwise stated in the text, this dissertation is the result
of my own work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted
for a degree or diploma or any other qualification at any other university.

No part of my dissertation has already been, or is being currently sub-
mitted for any such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words, including foot-
notes and bibliography.

Publications

Some of the work presented in this dissertation has been published, and
may be found in references [11, 12, 13, 15, 17, 18, 19, 20].

For comments or suggestions, email Giampaolo.Bella@cl.cam.ac.uk

This dissertation is copyright c© 2000 by G. Bella.
This is Revision 2.0, October 2003.

iii



iv



Acknowledgements

I am extremely grateful to Larry Paulson, my supervisor, for the perfect
mixture of knowledge, experience and patience with which he has guided
my research. On the human side, he has taught me how to face unsuccessful
experiments and learn from them, and how to evaluate the successful ones.
On the practical side, he has found a solution for my unexpected financial
hardship due to inexplicable problems with my initial awarding body, which
would have compromised the completion of my research. I thankfully ac-
knowledge assistance from the EPSRC grants GR/K77051 and GR/K57381.

I am also particularly grateful to my Ph.D. examiners, Mike Gordon
and Peter Ryan, who gave me invaluable suggestions on how to make this
dissertation more readable and more intelligible.

Special thanks are due to Lewis Tiffany, librarian of the Computer Lab-
oratory, for making the library a friendly environment and for speeding up
my access to printed information, and to Margaret Levitt, secretary of the
laboratory, for her assistance through the bureaucratic steps of my Ph.D.

My sincere gratitude goes to the professors of the University of Cata-
nia for the educational and psychological support they have granted me
through my studies: Domenico Cantone, who favoured my security semi-
nars in Catania, Giovanni Gallo, who supervised my first degree, Alfredo
Ferro, who encouraged me to undertake a Ph.D. at Cambridge, and Elvinia
Riccobene, who discovered my impetus towards research in general, and
guided that impetus towards expertise.

I would like to thank the following people: Dieter Gollmann, of Microsoft
Research, who clarified for me the relation between integrity and authen-
ticity; Peter Honeyman, of the University of Michigan, who unveiled a few
technicalities of the Shoup-Rubin protocol; Gavin Lowe, of the University
of Leicester, who facilitated my understanding of authentication; Markus
Kuhn, of the Computer Laboratory, who discussed with me some of the
risks affecting the use of smart cards. I am indebted to David Richerby,
my office-mate, for being an up-to-date and responsive dictionary of English
and, especially, for proof-reading the entire dissertation.

I am deeply grateful to Zia Nerina, Zio Tanino and, particularly, to my
brother Giuseppe for filling my absence from home with vitality and skill:
without them, I could not have accepted to live abroad.

My deepest recognition and my warmest grazie go to my father, Carmelo,
whose death helped me broaden my views of life, and to my mother, Ada,
whose loss of eyesight helped me bring those views to a focus.

v



vi



To my mother

and to the loving

memory of my father

vii



viii



Abstract

The dissertation aims at tailoring Paulson’s Inductive Approach for the
analysis of classical cryptographic protocols towards real-world protocols.
The aim is pursued by extending the approach with new elements (e.g.
timestamps and smart cards), new network events (e.g. message reception)
and more expressive functions (e.g. agents’ knowledge). Hence, the aim is
achieved by analysing large protocols (Kerberos IV and Shoup-Rubin), and
by studying how to specify and verify their goals.

More precisely, the modelling of timestamps and of a discrete time are
first developed on BAN Kerberos, while comparing the outcomes with those
of the BAN logic. The machinery is then applied to Kerberos IV, whose
complicated use of session keys requires a dedicated treatment. Three new
guarantees limiting the spy’s abilities in case of compromise of a specific
session key are established. Also, it is discovered that Kerberos IV is subject
to an attack due to the weak guarantees of confidentiality for the protocol
responder.

We develop general strategies to investigate the goals of authenticity,
key distribution and non-injective agreement, which is a strong form of au-
thentication. These strategies require formalising the agents’ knowledge of
messages. Two approaches are implemented. If an agent creates a message,
then he knows all components of the message, including the cryptographic
key that encrypts it. Alternatively, a broad definition of agents’ knowledge
can be developed if a new network event, message reception, is formalised.

The concept of smart card as a secure device that can store long-term se-
crets and perform easy computations is introduced. The model cards can be
stolen and/or cloned by the spy. The kernel of their built-in algorithm works
correctly, so they spy cannot acquire unlimited knowledge from their use.
However, their functional interface is unreliable, so they send correct out-
puts in an unspecified order. The provably secure protocol based on smart
cards designed by Shoup & Rubin is mechanised. Some design weaknesses
(unknown to the authors’ treatment by Bellare & Rogaway’s approach) are
unveiled, while feasible corrections are suggested and verified.

We realise that the evidence that a protocol achieves its goals must be
available to the peers. In consequence, we develop a new a principle of
prudent protocol design, goal availability, which holds of a protocol when
suitable guarantees confirming its goals exist on assumptions that both peers
can verify. Failure to observe our principle raises the risk of attacks, as is
the case, for example, of the attack on Kerberos IV.
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Chapter 1

Introduction

Communicating across modern computer networks should be secure. The
adjective “secure” typically embodies multiple properties. For example, a
peer may wonder whether the message just received has exactly the same
form as it was sent. If so, the message is said to enjoy integrity. Even if a
message that is received quotes a certain peer as its creator, this may not
be true. In case it is, then the message is said to be authentic. Another
important property is whether the message that is received has been inter-
cepted and understood by other peers beside its creator and its receiver. If
not, then the message is confidential.

While it is a matter of current research to devise a satisfactory list of
properties for defining a secure communication in the context of modern
computer networks, all of these properties implicitly assume the existence
of a malicious entity, spy below, who can overhear the communication, create
fake messages and introduce them in the traffic. While history tells us that
security was already an important issue in ancient times, considerable frauds
have still been mounted during the last decade using relatively expensive
hardware and software resources.

Cryptographymay help. Used massively also during the World Wars [53],
it is the art of coding information by a cryptographic key. A cleartext mes-
sage is transformed into a ciphertext using the key (encryption). In the best
case, the cleartext can be retrieved from the ciphertext (decryption) if and
only if the key is available. As a consequence, the cleartext is safe from the
spy as long as she does not know the key. On the contrary, the intended
receiver of the message is assumed to know the key. When the cryptographic
key used for encryption is the same as that to be used for decryption, cryp-
tography is said to be symmetric or shared-key (DES [81], IDEA [61], etc.),

1



2 CHAPTER 1. INTRODUCTION

otherwise it is asymmetric or public-key (RSA [93], LUC [99], etc.). In the
sequel, we assume a basic familiarity with these techniques.
Steganography [55] may also be used towards secure communications. It

is the art of hiding a message inside a larger, intelligible one so that the spy
cannot discern the presence of the hidden message from seeing the larger one.
For example, the low-order pixel bits of a digital image may be changed to
the message bits without the image suffering perceptible variations.

A more recent technique aiming at confidentiality is chaffing and win-
nowing [92], which may be viewed as a form of steganography. It makes use
of MACs (a MAC, message authentication code, for a message is another
message computed out of both the original one and a secret that is shared
by the peers). The message sender authenticates the message by adding the
correct MAC to it and sends the pair. The sender also sends chaff, namely
different messages with wrong MACs. Only the intended receiver of the
message knows which MAC is correct as he knows the secret key used to
compute it. So, he can winnow the received messages, namely discard the
chaff and select the original message.

The vast majority of security protocols for computer networks are based
on cryptography, hence the name cryptographic protocols. These are se-
quences of messages, possibly encrypted, exchanged between pairs of peers
in order to make their subsequent communication secure. Messages include
peer names, cryptographic keys, random numbers, timestamps, concatena-
tions of those components and ciphertexts obtained from them. Each pro-
tocol attempts to achieve certain goals at the time of its completion, namely
the set of properties that define security. The peers belong to a larger set
of agents, who could be interpreted as humans, machines, or processes, as
Abadi and Needham point out [4, §2]. We prefer the last interpretation.
For example, if a confidentiality guarantee is available to a process running
on a workstation, it is not necessarily available to the human that owns
the process because there could be a malicious break-in at any level of the
workstation architecture. In this dissertation, the word “peer” refers to an
agent who is engaged in the execution of a protocol.

Experience shows that cryptographic protocols often fail to enforce the
goals claimed by their designers. In fact, establishing whether a protocol
lives up its promises is, in general, daunting. While informal reasoning has
failed to capture serious protocol failures, formal reasoning can address only
a few goals on abstract protocol models. This dissertation extends an ex-
isting approach for reasoning on classical protocols towards the analysis of
deployed protocols. It is found that the approach scales up and that a num-
ber of protocol goals can be formally verified, while unveiling an important
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principle of prudent protocol design.

1.1 Informal vs. Formal Protocol Analysis

Until the late 1980s, cryptographic protocols were only analysed by informal
reasoning. If a protocol claimed to achieve the goal of confidentiality, some
researchers studied the protocol in detail and decided whether this was true.

Although the process became more and more scrupulous with the in-
creasing utilisation of cryptographic protocols on local area networks and
then over the Internet, it was granted the rigour of formal reasoning only
when it was understood that the protocols bore a high potential for flaws.
The reason is that each protocol is a concurrent distributed program that
can be executed by a large population of agents including the spy. Not only
is the spy entitled to participate in the protocol as any other agent, but she
can also act illegally, interleaving a number of concurrent protocol sessions.
By doing so, she can exploit on a session the messages obtained from oth-
ers. Moreover, the vulnerability of modern computer networks allows her to
overhear the messages exchanged by other agents.

Using cryptography appropriately for enforcing the protocol goals in this
setting is not easy. This claim is supported by the large number of flaws that
have been reported. Some affect well-known protocols [7, 62], and a subset
of them can be classified [100]. Others affect less publicly known banking
protocols, whose weaknesses have been exploited by dishonest employees [6].
Some others are due to the specific implementation of the cryptographic
primitives [96].

The literature shows that formal approaches can significantly help to
detect protocol flaws [56, 74], as well as to yield general principles of secure
protocol design. Some approaches lack expressiveness or automation, others
are just too complicated to use on realistic protocols. Informal reasoning in-
deed retains its importance: it is crucial to grasp the semantics of a protocol
design beyond its bare representation as a sequence of messages; it may find
simple flaws and minor weaknesses of a protocol more quickly than formal
reasoning; it is easier to follow for a non-experienced audience; it helps to
develop formal approaches. Moreover, the complete understanding of cer-
tain flaws or of the guarantees against them is not a trivial matter, as we
discuss in the next chapter.
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1.2 Induction via Theorem Proving

The simple principle of mathematical induction suffices to model crypto-
graphic protocols in detail: this is Paulson’s intuition behind the Inductive
Approach [88]. We are not aware of other entirely inductive approaches in
this field.

The Inductive Approach relies on the concept of trace as a list of events
occurred on the network while a population of agents is running a protocol.
Traces are defined inductively and so is the set of all traces admissible under
a specific protocol. This set, which represents the formal protocol model, is
unbounded. Proofs may be carried out by induction on a generic trace of the
model, establishing trace properties that represent goals of the underlying
protocol. More details may be found in chapter 3.

The interactive theorem prover Isabelle [85] supports the inductive mod-
elling of the protocol in Higher Order Logic, where nested quantification is
permitted over functional symbols, and mechanises the proofs developed by
the user.

1.3 Motivations

Our research concerns the verification of realistic protocols using the Induc-
tive Approach. We have three goals: the development of a young approach
that shows large potentialities, the verification of protocol goals that have
not yet been formally explored in a realistic setting, the investigation of
general principles of protocol design.

This section refers to the development state of the Inductive Approach
in early 1997 when the present research began.

1.3.1 Developing the Inductive Approach

Further Testing

The approach has only been applied to a few classical cryptographic proto-
cols [86, 87]. Nevertheless, a general theory of messages and an extendible
formalisation of the spy are already provided. The great advantage of the
entire treatment is that it does not bound the size of the models. Crucially,
the population of agents who could participate in the protocol is potentially
infinite: the model agents originate from a bijection with the natural num-
bers. Besides, each agent is allowed to interleave an arbitrary number of
protocol sessions.
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However, to convince ourselves of the practicality of the approach, fur-
ther case studies are necessary. In particular, the security community lament
that the size of the existing case studies is not realistic. Hence, we decide
that the new case studies must be deployed protocols.

Deeper Understanding

Further informal criticism to the approach derives from difficulties in un-
derstanding the concept of trace, commented as a “low-level” view of the
network traffic, or as a structure “non-existent” in reality. Indeed, it took
us some experimentation to develop the view of a trace as a possible history
of the events occurred on the network. This interpretation has smoothened
any subsequent conversation about the foundations of the approach.

All proofs follow the natural inductive style adopted by humans, verify-
ing that a certain property is preserved through the various protocol steps.
However, many proofs are widely viewed as “cryptic” and, consequently,
their results are only reluctantly accepted. This is imputed to the high level
of automation of the released proof scripts. Admittedly, when the Isabelle
simplifier drastically reduces the size of a subgoal, it is difficult to track
down the rewriting rules that have been applied and in which order. The
same concern arises from the use of highly specific, automatic tactics, which
may implement several proof steps and aim at tidying up the proof scripts.

A possible solution could be conforming to the following procedure at
least in a few, demonstrative proofs: (i) simplifying the subgoals manually
to a certain extent by applying the crucial rewriting rule one at a time; (ii)
avoiding automatic tactics by a linear application of the steps they imple-
ment.

Additional Constituents

Many protocols use timestamps to assure freshness of important components
such as session keys. The datatype for messages built in the approach does
not comprise timestamps. However, even after the necessary syntactical
updates, the main issue would be how to reason about freshness.

No message reception is modelled in the original release of the approach.
However, understanding a theorem very often involves some informal rea-
soning about reception. It would be desirable to make the entire reasoning
formal. This raises the issue of how complex updating the existing analyses
with new events could be, and whether the outcomes would pay back.

Another important issue is how to account for e-commerce protocols,
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which often involve smart cards. How could the cards be modelled? How
could their functionalities and interaction with agents be represented? How
would the protocol analyses be influenced?

1.3.2 Verifying Significant Protocol Goals

Existing Guarantees

A general strategy for proving the goal of confidentiality is provided, but
the concept of viewpoint is not mentioned in the initial literature [86, 87].
In fact, the guarantees expressed in terms of theorems are useful to their re-
cipients only when they can verify whether the assumptions of the theorems
hold. For example, if a proof of session key confidentiality is available on
assumptions that the protocol initiator can verify, then the protocol achieves
confidentiality from the initiator’s viewpoint. Unless the proof can be con-
ducted also on assumptions verifiable by the responder, the protocol does
not necessarily attain confidentiality from the responder’s viewpoint.

The existing guarantees, which only pertain to confidentiality and au-
thentication often omit these issues. Moreover, they may contain a few
assumptions that seem impossible to verify. Is a guarantee with this feature
still of any importance?

Also, the goal of authentication is merely formalised in terms of agents’
aliveness, whereas it may presuppose far wider requirements, as subsequently
discussed using a different approach [65].

New Guarantees

The well-known goals of integrity, authenticity, key distribution and stronger
forms of authentication need to be treated. For example, even if the initiator
is informed that session key confidentiality holds, it is not obvious that
the responder shares the same session key and means to share it with the
initiator. It is not clear a priori what and how substantial the extensions
necessary to formalise these goals might be. Some of the existing guarantees
might have to be reinterpreted.

1.3.3 Investigating Principles of Protocol Design

The best collection of principles for designing cryptographic protocols pru-
dently is due to Abadi and Needham [4]. The main principle, supported
with various examples, is explicitness. The contents of a message should say
exactly what the message signifies and, crucially, express the sender and the
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intended receiver. Other principles include avoiding unnecessary encryption,
and synchronising the clocks of the network nodes within a small interval
when running a protocol based on timestamps.

It is interesting to investigate whether findings obtained via the Inductive
Approach support these principles or clarify how relevant they are towards
the goals of a protocol. Besides, the deep study of the protocol goals men-
tioned in the previous section might unveil additional principles.

1.4 Contributions

Our contributions address all three motivations for the research itself.

1.4.1 On the Inductive Approach

The Inductive Approach scales up to the analysis of real-world protocols
thanks to its extensibility.

Timestamps can be modelled using a discrete formalisation of time that
exploits the ordering of the elements of each trace. Each history of the
network has only a global clock induced by the length of the corresponding
trace. Therefore, each trace is equipped with a global clock yielding the
current time of the trace. All agents must conform to it, so the model
avoids problems of clock synchronisation. A message component is fresh on
a trace if the time interval between the creation of the component and the
current time of the trace is smaller than or equal to the lifetime allowed for
the component. Session keys are considered valid if and only if they are used
within their lifetime.

These extensions have allowed us to mechanise the BAN Kerberos pro-
tocol [31], which is based on timestamps, and the larger, deployed Kerberos
IV [77]. The proof scripts are fairly understandable because, in each proof,
the use of automatic tactics has been reduced to the single case concerning
the spy’s operation.

New events can be modelled. In particular, introducing message recep-
tion makes the specifications more readable and the proofs easier to follow,
so that the entire treatment becomes more intuitive. Updating the existing
scripts can be done pragmatically with minor efforts. Message reception
is not forced to occur. This models a network that is entirely controlled
by an active spy, who can intercept certain messages and prevent their de-
livery. Besides, the reception event allows the formalisation of any agent’s
knowledge rather than just the spy’s.
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New objects can be modelled as new types of the language, as we demon-
strate with smart cards. The interaction between the cards and their owners
is formalised by additional events. The agents’ knowledge, in particular the
spy’s, must be reviewed for two reasons: (i) all long-term secrets are now
stored into the cards; (ii) certain protocols that are based on smart cards
assume that the spy cannot listen in between a card and its owner, while
others do not assume this. We verify the entire Shoup-Rubin [98] protocol
using a faithful model obtained both from the informal specification of the
protocol and the description of its implementation. The protocol involves
new long-term secrets, which can be easily introduced in the definition of
agents’ knowledge.

As a result, the Inductive Approach is now equipped with all the nec-
essary features to tackle modern protocols. The experiments carried out
with the well-known SET [70, 71, 72] protocol developed by VISA and Mas-
tercard support this claim [16]. In general, the approach is so expressive
that the bare statements of the theorems convey most guarantees without
additional informal argument. Therefore, the prose that accompanies each
theorem can be reduced to the very minimum.

1.4.2 On Protocol Goals

We find that the argument about any protocol goal can (and must, see
next section) be interpreted from the viewpoint of each peer. This practice
has the double outcome of providing us with a better understanding of
each protocol step, and the peers with guarantees that can be practically
applied. We have thus realised that one assumption of a theorem proved of
the shared-key Needham-Schroeder protocol is in fact superfluous (see §4.6).
Moreover, the assumptions that can never be verified by any agent different
from the spy, but are still necessary, constitute the minimal trust (see §4.8).

Paulson’s strategy for proving confidentiality is still effective after the
modelling of timestamps. However, several specific lemmas are necessary
with Kerberos IV because of its hierarchical distribution of session keys.
We have unveiled an important weakness in the protocol management of
timestamps and lifetimes, which lets the spy exploit certain session keys
within their lifetime. What makes this attack more serious is that the agent
to whom the session keys have been legally granted is no longer present on
the network, and so will not register any irregularity.

Our treatment supports the claim that the goals of authenticity and
integrity are equivalent (see §4.3), while the corresponding guarantees can
be derived from some of the existing theorems.
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The definition of agents’ knowledge, which can be achieved thanks to the
modelling of message reception, allows the formal verification of the goal of
key distribution. We argue the case that this goal is equivalent to a strong
form authentication (§4.7), as we demonstrate on both BAN Kerberos (see
§7.3) and Kerberos IV (see §7.4).

Verifying the goals of the protocols that are based on smart cards only
requires minor modifications to the existing proof strategies. A set of sim-
plification rules must be proved to deal with the new events and the new
definition of agents’ knowledge. Also the smart cards require guarantees
that the protocol goals are met. Two of the messages of the Shoup-Rubin
protocol lack crucial explicitness, so that none of the peers knows which
session key is associated with each other. The confidentiality argument is
significantly weakened in the realistic setting in which the spy can exploit
other agents’ smart cards. The proofs suggest a simple fix to the protocol,
yielding stronger guarantees.

Our proofs are, admittedly, difficult. When mechanising Kerberos IV
and Shoup-Rubin, certain proofs took up to four weeks each to be developed,
while each script was up to 50 Isabelle commands long. Polishing the original
scripts often shortens them up to one fifth of their original length because
the necessary theorems can be installed on the Isabelle automatic tactics.
However, this clearly affects the resulting intelligibility, as discussed above.
Also, the fact that no other theorem prover has been tailored thus far to
protocol analysis in this detail supports the efficiency of our strategies and
of Isabelle. Informal conversations with experienced users of other provers
confirm this.

1.4.3 On Principles of Protocol Design

Our research confirms the essential importance of explicitness. The mes-
sages that are not explicit about their meaning force the peers to heuristic
decisions that turn out to be extremely risky. This was known to affect
classical protocols such as the public-key Needham-Schroeder, but we find
that it also affects protocols that are apparently stronger such as a smart
card one, Shoup-Rubin.

It is interesting to note how, if a message lacks explicitness, then car-
rying out any proofs about it requires quantifying existentially the exact
components that are not sufficiently explicit. It could be argued that mere
expertise in theorem proving could make up for lack of competency in the
area of prudent protocol design.

The verification of Kerberos IV confirms that extra encryption does not
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necessarily strengthen confidentiality. Despite the double encryption of the
responder’s session key, the key is vulnerable to the attack mentioned above.

We state a new principle of protocol design, goal availability, which holds
of a protocol and one of its goals if there exist guarantees from the viewpoints
of both protocol peers that the goal is met. We did not encounter this
principle in the literature despite its crucial importance. The attack on
Kerberos IV is in fact due to a violation of goal availability. The weakness of
Shoup-Rubin arise from violations of both our principle and of the one about
explicitness. Precisely, the lack of explicitness could only be discovered
through the verification of goal availability. In this light, we argue that our
principle is more basic and easier to verify.

1.5 Outline

We briefly outline here the following chapters with their contents.

Chapter 2 reviews the main formal approaches towards the analysis of
cryptographic protocols, and focuses on interpreting the outcomes of
the analyses. The difficulties in obtaining them are not always related
to those in interpreting them.

Chapter 3 outlines Paulson’s Inductive Approach. The treatment is as
much as possible informative. The basic constituents are discussed
but the details of their implementations are avoided.

Chapter 4 discusses the desirable goals of cryptographic protocols in ad-
dition to the only two, confidentiality and authenticity, that can be
found in the literature regarding the Inductive Approach. The strate-
gies for proving them are developed and suitable examples provided.
The minimal trust that must be put to obtain the results of most the-
orems is explained. An important aim of the verification is minimising
such trust. The principle of goal availability is stated.

Chapter 5 concerns the extension of the Inductive Approach with time-
stamps. The BAN Kerberos protocol is mechanised and a suitable
formalisation of time provided. The protocol model is then refined by
a temporal modelling of session key accidental leaks, which realistically
lowers the minimal trust.

Chapter 6 contains the mechanisation of Kerberos IV. The modelling of
time and the temporal modelling of accidents on the session keys are
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inherited from the preceding chapter. The protocol violates our prin-
ciple of goal availability, and the spy can exploit this to mount an
attack. The attack can be prevented by refining the functioning of one
of the two trusted servers.

Chapter 7 introduces the modelling of agents’ knowledge using two differ-
ent approaches. These are both demonstrated on the two protocols
previously mechanised, verifying a strong goal of authentication and
the goal of key distribution, which was impossible before. The argu-
ment of their comparison is used to refute a claim of the BAN logic.

Chapter 8 describes the modelling of smart cards. Since some protocols
explicitly assume that the communication means between the cards
and their owners is reliable, while others do not, our treatment de-
velops around both options. The spy can exploit an unspecified set
of smart cards, some through simple theft, others through elaborate
tampering.

Chapter 9 contains the mechanisation of the Shoup-Rubin protocol, which
is based on smart cards, by the approach extended as in the preceding
chapter. The protocol is discovered to violate our principle of goal
availability. This reveals that two protocol messages lack explicitness,
so that each peer does not know who to associate the received ses-
sion key with. This affects substantially the goals of confidentiality,
authentication and key distribution, but fixing the weakness is reason-
ably easy and inexpensive.

Chapter 10 concludes the presentation. The research presented through-
out the dissertation is summarised and discussed. Statistics for some
proofs are given and ideas for future work conclude.

1.6 Notation

In this dissertation, the protocols are presented in standard notation. For
each protocol step (which essentially sends a message), the step number,
the sender and the intended recipient of the message, and the message itself
are indicated. Messages will be indicated by fat braces, using a notation
due to Paulson [88, §2.1], external braces being omitted. The ciphertext
obtained by encrypting a cleartext message m with a cryptographic key K
is indicated as {|m|}

K
.
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1. A → B : N

2. B → A : {|N,N ′|}
K

Figure 1.1: An example protocol

The invented example protocol in figure 1.1 serves to demonstrate the
notation. That protocol consist of two steps. In the first step, agent A
sends agent B the cleartext message N . In the second step, agent B replies
to A with a ciphertext obtained by encrypting the concatenation of N and
another message N ′ with a key K.

No further discussion on the meaning of N , N ′ or K is needed at this
stage. All protocols will be studied assuming the worst conditions for the
network: the spy can intercept all messages, prevent their delivery and tam-
per with them. Therefore, because the network is insecure, in general the
receiver of a message is not necessarily its intended recipient.



Chapter 2

The Analysis of

Cryptographic Protocols

Several formal approaches may help in the task of analysing cryp-
tographic protocols, but the findings may not be straightforward
to interpret.

At the beginning of the new millennium, formal methods are commonly
accepted as a significant contribution to the analysis of cryptographic pro-
tocols. We discuss the main ones (§2.1) and provide a few examples on how
to interpret their findings (§2.2).
Belief logics give a formal representation of the beliefs that the peers

derive during the execution of a protocol (§2.1.1), but fail to capture several
protocol weaknesses. State enumeration techniques such as model checking
verify exhaustively that a protocol model of limited size admits no attacks
(§2.1.2). While provable security allows for a theoretical study of confi-
dentiality (§2.1.3), other approaches also attempt reasoning on the goal of
authentication (§2.1.4) but usually lack mechanised support. The Inductive
Approach, which is discussed in the next chapter, seems to embody the most
desirable features: it can reason about a variety of protocol goals on models
of unbounded size, and is mechanised.

Interpreting the contributions of protocol analysis is not straightforward.
We present examples of findings that are: easy to obtain and interpret,
on the TMN protocol (§2.2.1); fairly easy to obtain but fairly difficult to
interpret, on the Woo-Lam protocol (§2.2.2); difficult to obtain but easy
to interpret, on the public-key Needham-Schroeder protocol (§2.2.3); diffi-
cult to obtain and interpret, on the shared-key Needham-Schroeder protocol
(§2.2.4). The list does not attempt to be exhaustive but merely to highlight

13



14 CHAPTER 2. THE ANALYSIS OF PROTOCOLS

that some of the issues concerning cryptographic protocols and their analy-
sis are not necessarily straightforward, although they may, at first, appear
to be so.

2.1 Formal Approaches

This section presents the main formal approaches developed throughout
the last decade towards analysing cryptographic protocols. The treatment
aims at being informative rather than detailed or exhaustive. Appropriate
references are pointed out.

2.1.1 Belief Logics

The belief logic due to Burrows et al. [31] is the first attempt to exceed the
limits of informal reasoning. The idea of their formal approach is repre-
senting the beliefs that the agents running a protocol derive at the various
stages of the execution. Each step of the protocol is idealised as an (initial)
logical formula, while a set of logical postulates is provided. The formulae
that, using the postulates, can be derived from the initial ones formalise
the goals of the protocol. We present here three typical formulae and quote
their semantics [31, p.236]:

P |≡X : “P would be entitled to believe X. In particular, the principal P
may act as though X is true.” It is often denoted also as P believesX.

P
K
←→ Q : “P and Q may use the shared key K to communicate. The

key K is good, in that it will never be discovered by any principal
except P or Q, or a principal trusted by either P or Q.”

#(X) : “the formula X is fresh, that is, X has not been sent in a message
at any time before the current run of the protocol.”

The semantics provided by the authors turned out to be unsatisfactory and
several attempts were made to repair to the problem [5, 26]. For example, it
is not clear from the first formula if P might believe something that is in fact
false. The BAN logic indeed claims correct some protocols that were sub-
sequently found to be flawed, such as a variant of the Otway-Rees protocol
that does not encrypt the nonce issued by the protocol responder. An attack
is possible, whereby the protocol initiator would share a session key with the
spy at completion of the protocol while believing to be sharing it with the
intended responder [87, §3.8]. This is both a violation of authentication and
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confidentiality. Another example is the public-key Needham-Schroeder pro-
tocol, which the logic analyses detecting no troubles: Lowe discovered a few
years later that the protocol suffers a subtle failure of authentication [62].

The second formula has been considered ambiguous because it embodies
the goals of both confidentiality and key distribution. The third formula is
crucial to the analyses. For example, it is used to specify that the shared-key
Needham-Schroeder protocol does not guarantee the protocol responder that
the received session key is fresh. In fact, Denning and Sacco had pointed
out that the spy might fool the responder into accepting an expired session
key as a fresh one [36].

A major limitation of the approach is reasoning about confidentiality.
This is done informally on top of the formulae derived through the calculus
of the logic, since no malicious entity is modelled explicitly. A number of
extensions have been designed in order to enhance the expressiveness of the
logic and account for further protocol goals [1, 44, 69] but they tend to sac-
rifice the intuitive nature of the logic itself. We believe that confidentiality
has never received an adequate treatment in this setting.

Proofs by belief logics are typically short and carried out by hand, but
certain logics have been implemented [29, 30] using the theorem prover
HOL [45].

2.1.2 State Enumeration via Model Checking

The well known process calculus CSP [49] has had vast applications in the
field of formal methods thanks to its intuitive notions of process and channel.
This setting easily scales up to the analysis of cryptographic protocols [97],
as pioneered by Ryan [95]. The approach is mainly targeted at detecting
possible attacks from the spy.

The peers are modelled as processes who can exchange the messages
encompassed by the protocol via specific channels. This idealised specifica-
tion, which accounts for no malicious entity, is certainly not flawed because
no-one tries to mount attacks. Then, another specification is obtained by
introducing the spy as a new process which can perform illegal operations.
If this specification is equivalent to the idealised one, then the protocol is
claimed to suffer no attacks.

More precisely, the two specifications are considered equivalent if all the
states that are reachable by the second can be also reached by the first.
Checking this by pen and paper is long and tedious, so a model checker
can be tailored to enumerate the reachable states. Lowe employs FDR [94].
However, the process is then constrained by the intrinsic limitations of model
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checking: only finite systems of reasonably small size can be tackled. Despite
the various techniques existing to loosen this limit as much as possible [73],
the model protocols still are very small. They typically account for at most
three or four agents, including the spy.

Many attacks have been discovered by model checking techniques [64,
67]. However, if the system of limited size does not suffer any attacks, it
is not obvious that neither does the system of arbitrary size. This result
has been proved by pen and paper on a specific protocol [66], while another
model checker, the NRL Protocol Analyzer [75], also allows mechanised
proofs by induction that certain states are out of reach. Nevertheless, no
protocol goals have been discussed in detail except confidentiality and, later,
authentication [65] (see §4.6). If a protocol cannot be attacked, it does not
necessarily mean that all its goals are achieved.

Other model checkers that have achieved results in the field are AS-
TRAL [35], Murphi [37, 79], SMV [33] and SPIN [10]. More recently, also
STEP [104] has been used to analyse the public-key Needham-Schroeder
protocol. Some of these checkers are based on temporal logic rather than
process calculus.

2.1.3 Provable Security

Provable security is a complexity-theoretic study of confidentiality. Origi-
nally developed by Bellare and Rogaway to address the problem of two-agent
authenticated key exchange [23], the notion was later extended by the same
authors to cope with the three-agent setting where a trusted server helps to
achieve the goal of distributing session keys to a pair of peers [24]. They
comment that devoting the entire efforts of formal analysis towards estab-
lishing that a protocol suffers no attacks is unsatisfactory: “there is finally a
general consensus that session key distribution is not a goal adequately ad-
dressed by giving a protocol for which the authors can find no attacks” [24,
§1.2].

In this setting, Bellare and Rogaway formally define the problem of ses-
sion key distribution, design a cryptographic protocol and prove it secure
assuming the existence of a family of pseudo-random functions (PRFs). To
show that this assumption is minimal, they prove that if a secure session key
distribution protocol exists, then a one-way function exists; then they apply
the existing result stating that a PRF family exists if a one-way function
exists [48].

The protocol is claimed secure in terms of two properties. The first
is key distribution, signifying that both peers share the same session key
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at completion of the session. The second is the spy’s negligible advantage
on the discovery of the key, namely confidentiality of the key. All relevant
proofs are carried out by hand and involve substantial formal complications.
However, it is unquestionable that the treatment is a fine piece of theory.

Shoup and Rubin later extend the approach with an account of smart
cards and design a new protocol based on smart cards that they prove secure.
Their treatment suggests that provable security cannot express detailed but
crucial requisites of the goal of confidentiality (see chapter 9).

To our knowledge, the approach has been tested only on very few pro-
tocol designs. However, it already shows limited flexibility in the sense that
the actual protocol design must be adapted for the analysis, raising the risk
of verifying a different design. Shoup and Rubin comment on this, while
verifying someone else’s protocol, and state that “several modifications to
the protocol were necessary to obtain our proof of security, even though it
is not clear that without these modifications the protocol is insecure” [98,
§2.2]. However, the implementors of the Shoup-Rubin protocol still point
out that “the details of Shoup-Rubin are fairly intricate, in part to satisfy
the requirements of an underlying complexity-theoretic framework” [52].

2.1.4 Others

More recent approaches use specific strategies to verify the goals of confi-
dentiality and authentication. The main ones, which are presented below,
lack mechanised support.

Spi Calculus

The Spi Calculus [2, 3] is an extension of the more popular Π-Calculus [78]
with primitives representing the cryptographic operations of encryption and
decryption. Like other process calculi, it is based on processes that com-
municate through channels. Channels may be restricted in the sense that
only certain processes may communicate on them. The Π-Calculus and the
derived Spi Calculus allow the scope of each such restriction to dynamically
change during the computation. A process may decide to send a message on
a restricted channel to a process outside the scope of the restriction. When
this happens, the scope is said to extrude.

It is intuitive to use the restricted channels to model confidentiality and
the scope extrusion to allow for communication of secrets. Once the spy
is modelled as an arbitrary environment for the protocol, confidentiality
of a message X is proved as an equivalence of two protocol specifications,
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one featuring X, another an arbitrary X ′. The idea of the proof is that the
presence of X does not influence the reactions of the environment. However,
the details may be difficult to grasp as admitted by the authors: “If you get
lost in the formal passages of the paper, the cleartext nearby may help
— hopefully the informal explanations convey the gist of what is being
accomplished” [2].

Strand Spaces

A recent approach [40] rests on the notion of strand, which records a protocol
history from the viewpoint of a single peer. Therefore, a strand is the
sequence of events (message sending or receiving) concerning a peer of a
protocol. This differs from Paulson’s notion of trace (see next chapter),
which records a protocol history from the viewpoint of an observer who can
see the entire network.

A strand space is an unspecified set of strands, some for the agents of
the network, some for the spy. Expectedly, while the strands formalising
the spy’s illegal behaviour are independent from the protocol being speci-
fied, those for the protocol peers are not. More important for the sake of
the verification is the notion of bundle, a set of traces that are sufficiently
expressive to formalise a protocol session. Therefore, certain strands of a
bundle send messages, other strands receive them. It is not clear to us
whether the spy’s strands might interfere with this, as would be desirable
to model real-world scenarios in which the spy can prevent the delivery of
messages.

The notions of fresh or unguessable components are elegantly modelled
as constraints on the construction of strands. For example, there exists no
strand in which the spy sends an unguessable component prior to its recep-
tion. Proofs are carried out by induction on a bundle and their philosophy is
reasonably easy to grasp. The treatment, entirely carried out by pen and pa-
per, is only applied to the three classical protocols Needham-Schroeder [40],
Otway-Rees and Yahalom [39]. Applications to further protocols are ex-
pected.

Abstract State Machines

Gurevich’s Abstract State Machines, ASMs in brief [28], (formerly known as
Evolving Algebras [46]), are born as a general-purpose formalism that should
be more flexible than a Turing machine but retain the same power. There-
fore, the ASM thesis is that any computable program can be represented by
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a suitable ASM.
An ASM is essentially a first-order signature equipped with a program

that is a set of if-then-else rules. Once an interpretation of the signature
is provided, a static algebra originates, the initial state of the ASM. Such
state can be updated by the rules of the program, which, updating certain
elements of the signature, produce a new algebra, namely a new state. The
admissible functions include oracles, whose interpretation is not influenced
by the ASM program, but is provided by the environment at each state. As
a consequence, the resulting ASM computational model is not linear but has
a graph structure. The approach, which has been benchmarked on a large
variety of real-world applications [27], also has a distributed variant where
each agent can independently run his own program. We have tailored this
variant to the analysis of cryptographic protocols.

Initially, we modelled the Kerberos IV protocol using stepwise refine-
ments in the presence of the spy. Confidentiality at the more detailed level
was investigated by simulation [21]. This was the first formal specification
of the semantical aspects of the protocol, obtained from the substantial
informal documentation provided by its designers. It has significantly sim-
plified the modelling phase of our mechanisation with theorem proving (see
chapter 6).

Then, we developed a general theory of messages and demonstrated it
on the public-key Needham-Schroeder protocol. Proofs were conducted by
induction but still by pen and paper [22]. However, integration with mecha-
nised tools, a model checker [102] or a theorem prover [42], has now reached
an advanced level of development and may be used to investigate further
protocol goals.

2.2 Interpreting the Findings

We present a few examples of findings obtained from the analysis of well-
known protocols. Those concerning the Woo-Lam protocol arise from in-
formal reasoning, which confirms the importance of that approach. All
others originate from formal approaches based either on model-checking or
on theorem-proving. Some of the corresponding notation is quoted without
explanation for the sake of demonstration.

2.2.1 On TMN

Let us consider the TMN protocol [101], which aims at distributing session
keys for mobile communications (figure 2.1).
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1. A → S : A, S, B, e(KA)

2. S → B : S, B,A

3. B → S : B, S, A, e(KB)

4. S → A : S, A,B, v(KA,KB)

Figure 2.1: The TMN protocol

The identifiers A, B, KA, KB, S respectively represent the protocol
initiator, the responder, the keys they choose and the trusted server; the
unary constant e() denotes a standard encryption function that only the
server is able to invert, and the binary constant v() stands for bit-wise
exclusive-or (Vernam encryption).

Nothing protects the messages so, while intercepting them, the spy can
read and modify any components. The protocol does not enforce agent
authentication. The spy may send the server a fake instance of the first
message using a key chosen by herself rather than by A, and complete the
protocol with B. Even if A has not taken part in the session with B, both
B and the server will believe that the opposite is true at completion of the
session. Precisely, B will rely on the key KB for communicating with A.

〈fake.Msg1.A.S.B.Encrypt.KC ,
comm.Msg2.S.B.A,
comm.Msg3.B.S.A.Encrypt.KB,
intercept.Msg4.S.B.A.Vernam.KC .KB,
resp fake session.A.B.KB〉

Figure 2.2: An attack on the TMN protocol (CSP notation)

Therefore, this scenario [67, Attack 4.1], which can be spotted also while
reasoning informally, is fairly easy to interpret. Its formalisation as a list of
CSP events (figure 2.2) encompasses that the spy sends the first message on
the channel fake, while the second and third messages are issued legally and
travel on the channel comm. Finally, the spy prevents the delivery of the
fourth message to A on the channel intercept, while B erroneously concludes
that he shares the key KB with A.

Similarly, the spy may intercept the second message, replace B’s identity
with hers in the third, and include in it a key chosen by herself rather than
by B [67, Attack 4.2]. As a result, both A and the server would believe
that B took part to the session, and A would erroneously think that the key
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invented by the spy is shared with B.

2.2.2 On Woo-Lam

The Woo-Lam protocol [103] aims at authenticating the initiator to the
responder (figure 2.3). According to a standard notation, Ka in general
indicates A’s long-term key shared with the server, while Nb stands for
the nonce issued by B. Authentication here means mere presence on the
network.

1. A → B : A

2. B → A : Nb

3. A → B : {|Nb|}Ka

4. B → S : {|A, {|Nb|}Ka |}Kb

5. S → B : {|Nb|}Kb

Figure 2.3: The Woo-Lam protocol

After B receives, encrypted, the nonce that he issued for A, she for-
wards it to the server quoting A’s identity. The server extracts the nonce,
ultimately using A’s shared key, and returns it to B. This signifies for B
that the nonce was encrypted using A’s key, and hence implies A’s pres-
ence. The protocol does not attempt to convince B that A indeed meant to
communicate with him, which would be a stronger guarantee (see §4.6).

1. C → B : A

1′. C → B : C

2. B → A : Nb

2′. B → C : Nb ′

3. C → B : {|Nb|}Kc

3′. C → B : {|Nb|}Kc

4. B → S : {|A, {|Nb|}Kc |}Kb

4′. B → S : {|C, {|Nb|}Kc |}Kb

5. S → B : {|Nb ′′|}Kb

5′. S → B : {|Nb|}Kb

Figure 2.4: An attack on the Woo-Lam protocol

Abadi and Needham point out an attack whereby the spy impersonates
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A when communicating with B [4, §4], so B’s reasoning, seen above, is
flawed. The spy (indicated by C in figure 2.4) may interleave two sessions
with B. She uses A’s identity in the first, but acts on her own behalf during
the second session (distinguished by the primes). During this session, the
spy cheats in the third step using the nonce Nb that B addressed to A.
Therefore, the server’s reply for the first session contains a new nonce Nb ′′,
while the reply for the second session must contain Nb. At the end, B is
misled into believing she has communicated with A.

However, one may wonder why B is not puzzled by receiving on a session
the nonce that she issued on another session. It must be stressed that
no agent can distinguish to which sessions the received messages belong,
unless the contents of the messages state this. Therefore, receiving the
nonce previously issued for A gives B the required “evidence” of A’s presence
although this is a wrong conclusion.

2.2.3 On Public-Key Needham-Schroeder

Lowe’s “middle-person attack” [63] on the public-key Needham-Schroeder
protocol [83] is a rather subtle one. It took one and a half decades to be
discovered. The protocol (figure 2.5) exchanges the nonces Na and Nb in
order to mutually authenticate A and B. Since A receives in the second step

1. A → B : {|A,Na|}Kb

2. B → A : {|Nb,Na|}Ka

3. A → B : {|Nb|}Kb

Figure 2.5: The public-key Needham-Schroeder protocol

the nonce that she encrypted using B’s public key, then B was alive. Upon
reception of his own nonce in the third step, B draws the same conclusion
about A. Lowe employs model-checking techniques to show how the spy
can exploit two interleaved runs and interpose between the peers so that
B believes that his peer is A when it is, in fact, the spy. The details of
the attack are omitted here as they are well known. It does not violate
authentication in terms of aliveness (it is true that A is alive, as B believes),
but a stronger form of authentication, “weak-agreement” (see §4.6), whereby
B should be assured that A intends to communicate with him. It appears
that formal methods may be the way to detect the subtle consequences of
session interleaving. Moreover, by showing that the attack can be avoided
simply by including B’s identity in the second step, Lowe points out the
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importance of explicitness, later investigated more deeply by Abadi and
Needham [4].

Paulson formally verifies [88, §5.4] that, if B sends the second message to
A and someone sends an instance of the third, then B is assured that A has
sent an instance of the first message to someone. This conveys A’s aliveness
from B’s viewpoint, but does not convey weak agreement of A with B. The
peers’ viewpoints become crucial when investigating positive guarantees (see
§2.2.4), which establish the beliefs on which the peers rely.

2.2.4 On Shared-Key Needham-Schroeder

Needham and Schroeder also proposed a key distribution protocol [83].
Based on symmetric encryption, the protocol presupposes that each agent
shares a long-term key with the trusted server (figure 2.6).

1. A → S : A,B,Na

2. S → A : {|Na, B,Kab, {|Kab, A|}Kb |}Ka

3. A → B : {|Kab, A|}Kb

4. B → A : {|Nb|}Kab

5. A → B : {|Nb − 1|}Kab

Figure 2.6: The shared-key Needham-Schroeder protocol

A replay attack on the protocol is well-known. The spy may intercept
the cipher sent in the third step and replay it to B without understanding
its contents. As a result, B may be fooled into accepting an old session key
as fresh.

Paulson verifies by induction that the protocol guarantees the confiden-
tiality of the session key issued by the server, provided that both peers’
shared keys are safe from the spy [84]. More formally, the main assumption
of this theorem requires that the event

Says Server A (Crypt(shrKA){|NA,AgentB,KeyKab, X|}) (2.1)

occurs. However, the theorem must be interpreted. Can the peers who
are intended to use the session key take advantage of it? In general, no
agent can verify any events concerning other agents because they take place
at other points in the network. Therefore, the theorem is only applicable
by the server or some super-agent who sees all occurring events. It is not
applicable either by A or by B, who cannot inspect the server’s activity
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unless we establish some suitable lemmas on assumptions that they can
verify. In particular, we can prove that, if A’s shared key is safe from the
spy and the certificate

Crypt(shrKA){|NA,AgentB,KeyKab, X|}

appears in the traffic, then the event (2.1) occurred. Then, Kab is confiden-
tial by application of the previous theorem. The resulting theorem can be
applied by A because, if she ever receives an instance of the second message,
the message was in the traffic.

Similarly, the confidentiality argument can be made useful to B by the
following lemma. If B’s shared key is safe from the spy and the certificate

Crypt(shrKB){|KeyKab,AgentA|}

appears in the traffic, then the event (2.1) occurred for some NA. Conse-
quently, when B receives an instance of the third message, he considers the
session key found inside it to be confidential.

Following these considerations, we emphasise that it is the peers running
the protocol who need guarantees that the protocol goals are met. This leads
to the principle of goal availability (see §4.8). Any formal reasoning must be
devoted to finding suitable evidence for the peers, in terms of assumptions
that they can verify, that enforces these goals. Model-checking techniques
typically exhibit a protocol version that suffers an attack, and a strengthened
one that does not: it is not clear to us whether the latter version makes the
guarantee available to the peers, or whether the reasoning can account for
this.



Chapter 3

The Inductive Approach

A detailed analysis of security protocols can be performed by
means of the Inductive Approach and the support of the interac-
tive theorem prover Isabelle.

The informal way of establishing a protocol property is to verify that it is
preserved by all protocol steps. If not complex per se, the process tends
to reach unmanageable size because a protocol is a distributed concurrent
program that is executed by an indefinitely large population of agents. The
aim of preserving a property through various steps inspired Paulson’s idea
of proving the property formally via structural induction on an unbounded
protocol model.

Paulson considers a security protocol, P, and an unlimited population of
agents. In particular, the agents include a spy who monitors the entire net-
work and knows the long-term secrets of an unspecified set of compromised
agents. The network traffic develops according to the actions performed by
the agents while they are executing P. Each agent can interleave an un-
limited number of protocol sessions. A history of the network traffic may
be represented by the list of the events occurred, which is a trace. Paulson
proposes the set P of all possible (finite or infinite) traces as an operational
model for the network where P is executed. Generally, by abuse of terminol-
ogy, P is referred to as the formal protocol model for P. The set P is defined
inductively by specific rules drawn from P. The events occur via the firing
of these rules. Since no rule is forced to fire, no event is forced to occur.

The use of induction in analysing security protocols features in the work
of Meadows [75], who combines state-enumeration on a system of limited size
with inductive proofs that the system never reaches infinite sets of states.
However, Paulson’s Inductive Approach [88] is entirely inductive: induction
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is employed to define the protocol model and all operators, and provides the
strategy to prove any properties of the model. The approach is mechanised
by the interactive theorem prover Isabelle [85], which supports inductively
defined sets, provides simplification by conditional rewrite rules and per-
forms automatic case splits for if-then-else expressions

This chapter introduces the main features of the Inductive Approach
prior to our extensions: the basic formal structures (§3.1), the formalisation
of the spy’s knowledge (§3.2), the operators for the traces (§3.3) and the
principles for constructing the formal protocol model (§3.4).

3.1 Basics

The free type key is introduced to represent cryptographic keys. The Isabelle
datatype definition provides a compact and easily extensible way to define
type constructors that are injective and have disjoint ranges. Paulson uses
it to define types agent (§3.1.1), msg (§3.1.2) and event (§3.1.3), providing
the basic structures to model most security protocols.

In the symmetric-key setting, each agent is endowed with a long-term
key that is shared with the server

shrK : agent −→ key

while two functions are defined respectively for the private and the public
keys of each agent (omitted here) when encryption is asymmetric. In the
former setting, a cryptographic key is either a shared key or, if it does not
belong to the range of the function shrK, a session key. Also, an unspecified
set bad of compromised agents have revealed their respective shared keys to
the spy since the beginning of the protocol. They have also agreed to reveal
the notes taken throughout the protocol sessions.

The remainder of this section will show the actual Isabelle syntax for the
basic types.

3.1.1 Agents

Although finite, the population of agents running a security protocol in the
real world is indefinitely large. Therefore, modelling any limited population
would prevent the protocol model from capturing some potentially realistic
scenarios.

An infinite population can be easily modelled by establishing a bijection
with the set of natural numbers. Given a number i, Friend i is the corre-
sponding agent [88, §3.1]. The malicious agent is modelled by the nullary
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constructor Spy, which will serve to investigate the protocol robustness to-
wards illegal activity. Most symmetric-key protocols rely on a trusted third
party, Server (often abbreviated as S), which has access to all agents’ long-
term secrets.

datatype agent = Server | Friend nat | Spy

In particular, Kerberos IV [77] has two trusted parties, so the datatype
must be extended accordingly (see §6.2). By abuse of terminology, all agents
except the spy will be often addressed as “friendly”. Recall that we view
agents as processes.

3.1.2 Messages

The original datatype for messages [87, §3.1] only included six constructors,
which were subsequently extended by our introduction of guessable numbers
to model timestamps (see §5.1) [88, §3.1]. The basic constructors allow agent
names, nonces and cryptographic keys.

datatype msg = Agent agent

| Nonce nat

| Key key

| Mpair msg msg

| Hash msg

| Crypt key msg

The recursive ones introduce compound messages, hashed messages and ci-
phers; MPairX1 . . . (MPairXn−1 Xn) is abbreviated as {|X1, . . .Xn−1, Xn|}.

Encryption is assumed to be perfect: there is no rule to extract X from
CryptKX unless K is available. Also, encryption is assumed to introduce
enough redundancy to be collision-free. This obviously does not hold of
certain encryption schemes such as exclusive-or, so, attempts to allow for
them have required alternative formalisations to the datatype [38].

3.1.3 Events

The events of the model allow message sending and message noting. The
latter is used when agents need to note down portions of messages they
receive (see the analysis of TLS [88]), or when the spy learns a session key
by some agent’s inaccuracy.

datatype event = Says agent agent msg

| Notes agent msg

We will introduce a third event to model message reception and derive a for-
malisation of agents’ knowledge (§7.2). Additional events will be necessary
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for modelling protocols based on smart cards (§8.2).
A list of events, namely a trace, records all those events occurred dur-

ing a certain history of the network. Traces will be the parameter for the
construction of the protocol model and for the verification of its properties.

3.2 Spy’s Knowledge

Modelling the spy’s knowledge inductively requires devising her initial know-
ledge. For this purpose, Paulson introduces the function [88, §3.5]

initState : agent −→ msg set

which also models agents different from the spy’s initial knowledge, although
this is not useful to the rest of the treatment.

The server’s initial knowledge consists of all agents shared keys (namely, all
long-term secrets).

initState Server , {Key (shrKA)}

Friendly agents’ initial knowledge consists of their respective shared keys.

initState (Friend i) , {Key (shrK (Friend i))}

The spy’s initial knowledge consists of all compromised agents’ shared keys.

initState Spy , {Key (shrKA) | A ∈ bad}

The knowledge that the spy obtains from traces, expressed by the function

spies : event list −→ msg set

is defined as follows.

0. The spy knows her initial state.

spies [ ] , initState Spy

1. The spy knows all messages ever sent on a trace.

spies ((SaysABX) # evs) , {X} ∪ spies evs

2. The spy knows all compromised agents’ notes.

spies ((NotesAX) # evs) ,

{

{X} ∪ spies evs if A ∈ bad

spies evs otherwise

Note that spies evs contains the entire network traffic occurred during the
history recorded by evs. As a consequence, by abuse of terminology, spies evs
is often referred to as traffic on evs.
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3.3 Operators

Three operators are introduced to manipulate sets of messages

parts, analz, synth : msg set −→ msg set

Their formal definition [88, §3.2] is omitted here. Given a set H of messages,
partsH contains H and all messages recursively extracted from messages
in H by projection and decryption. A similar definition builds analzH,
but decryption is performed only when the corresponding key is recursively
available. In brief, while the former operator assumes readable ciphers, the
latter does not. Thus, given a message M and a trace evs,

M ∈ parts(spies evs)

signifies that M appears in the traffic on evs possibly as component of a
larger message, while

M 6∈ analz(spies evs)

expresses that the spy is not able to extract M , using the keys that she
knows, from the messages on evs. The latter means that M is confidential
on evs.

The definition of analz is somewhat more restrictive than that of parts.
Indeed, it follows that

analzH ⊆ partsH

When H is the traffic on a trace, the theorem signifies that the components
that are available to the spy are a subset of the entire traffic.

If H is the set of messages known to the spy, she can either forward its
elements or use them to build compound messages and ciphers sealed by
keys in H while adding agent names (which are publicly known). These
messages constitute the set synthH.

Another operator conveys the notion of freshness on a trace

used : event list −→ msg set

A message M is considered fresh on a trace if it never appears either as a
component of any agent’s initial state or of a message recorded by the trace.
So, used is defined as follows

− used [ ] ,
⋃
B. parts(initStateB )

− used((SaysABX) # evs) , parts{X} ∪ used evs

− used((NotesAX) # evs) , parts{X} ∪ used evs
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3.4 Protocol Model

The formal protocol model is a set of lists of events, namely a set of traces.
It is defined inductively and is unbounded because so are Isabelle lists.

The base case of the definition states that the empty trace belongs to
the set. All other rules formalise the inductive steps. Each of them states
how to extend a given trace of the set by all possible events whereby the
protocol sends a new message in the traffic. For example, if a protocol has
four steps, we will have four inductive rules (see §5.3).

Another rule, Fake lets the spy send all messages that she can fake. So,
if evs is a trace of the set, then also the concatenation of Says SpyBX with
evs must be a trace of the set, X being drawn from synth(analz(spies evs)).

When modelling key-distribution protocols, rule Oops is typically used
to allow for the accidental loss of session keys to the spy. The rule introduces
an event, referred to as oops event below, whereby the spy notes a session
key. This makes it possible to investigate how local breaches of security can
affect the global security.

Properties of an inductively defined set can be established by the cor-
responding induction principle. The property must be verified against all
rules that define the set. This generates long case analyses, which Isabelle
mechanises efficiently.



Chapter 4

Verifying the Protocol Goals

The main goals of cryptographic protocols, which are only part
of the overall security of a system, are discussed along with the
strategies for proving them within the Inductive Approach.

Security protocols cover a large spectrum of applications ranging from bank-
ing services to e-mail and, ultimately, e-commerce, and are intended to
achieve a number of goals, depending on the specific application. Thus,
“security is not a simple boolean predicate” [6]. Bolstering this analogy, we
may think of security as a conjunctive-normal-form formula. Some of its
conjuncts represent protocol goals, while the remaining ones embody prop-
erties of the entire system where the security protocol runs. Devising the
“security formula” for a specific application is matter of open research. It
is not obvious how many and which conjuncts the security formula should
have. For example, many LANs have suffered breaches of security because
of badly-configured firewalls and some users saving important keys on their
workstations, despite the fact that the keys were always protected by well-
established security protocols whenever officially exposed to the external
world. External attackers have merely overcome the firewalls and then read
the workstation memories. This demonstrates that security is a concept
that spreads across multiple vertices of a communication architecture and
multiple levels of each vertex.

Furthermore, verifying whether a conjunct of a given security formula
holds may be a challenging task. In particular, those representing the goals
of security protocols have been studied by formal methods only during the
last decade. For example, an agent may need evidence that a received
message is reliable in all its components (integrity), or that the same session
key cannot be received within two different messages (unicity), or that his
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peer is indeed meaning to communicate with him (authentication). The
Inductive Approach allows a scrupulous study of these properties.

This chapter comments on how to verify the reliability of the protocol
model by means of suitable theorems (§4.1) and introduces the regular-
ity lemmas (§4.2), which were pioneered by Paulson [88, §4.3]. Then, it
discusses the goals of authenticity, stressing its correlation with integrity
(§4.3), unicity (§4.4), confidentiality (§4.5), authentication (§4.6) and key
distribution (§4.7), while explaining the strategies for proving them by Is-
abelle and reporting a few limitations of the original approach. Finally, the
minimal trust required by most of the proved guarantees is explained, along
with the principle of goal availability (§4.8).

4.1 The Reliability of the Protocol Model

The problem of how close a model is to the system it should represent intrin-
sically limits any formal verification. When a model is based on theorem
proving, suitable reliability theorems can highlight whether it suffers any
discrepancies from the real system or behaves as it is expected. Their major
outcome is increasing the significance that the subsequent theorems proved
of the model have in the real world. We develop new reliability theorems
establishing properties that hold until a certain event takes place on a trace.
For this purpose, we define the function before in the sequel of this section.
When verifying security protocols, the reliability theorems do not address
any protocol goals directly.

The theorems that fall under this category cannot be enumerated ex-
haustively, as new ones may arise from specific protocols to analyse. Most
of the results proved by Paulson on the theories of messages, events, and
shared-key protocols must be regarded as reliability theorems. For example,
if the spy has obtained a set H of messages from the observation of the
traffic, she may extract message components from them by decomposing
compound messages and decrypting the ciphers sealed under known keys.
This process can be iterated until there are no more compound messages and
no more intelligible ciphers. In the real world, at this stage, the spy cannot
acquire new knowledge by repeating the previous process. The model con-
forms to this, as the analz operator, which performs the message analysis,
can be proved to be idempotent

analz(analzH) = analzH

Another important reliability result states that a cryptographic key that is



4.1. THE RELIABILITY OF THE PROTOCOL MODEL 33

fresh on a trace certainly is not a long-term (shared) key. This assures that
when a fresh key is generated, it cannot clash with any agent’s shared key.
Indeed, the probability of this happening in the real world is negligible.

The “possibility property” [88, §4.1] states that the protocol model con-
tains traces on which the event formalising the last step of the real protocol
occurs. This must be considered a reliability theorem because it signifies
that the model allows completion of the protocol.

Other theorems of this class state that if a friendly agent (including the
server) sends a certain message of the protocol, then the components of the
message can be specified. As a matter of fact, in the real world all agents
other than the spy act according to known legal rules. For example, Paulson
proves that the server of the shared-key Needham-Schroeder protocol only
sends well-formed messages [84]. If evs is a trace of the protocol model
containing

Says Server A (CryptK ′{|NA,AgentB,KeyKab, X|})

then

K ′ = shrKA and Kab 6∈ range shrK and

X = Crypt(shrKB){|KeyKab,AgentA|}

The full proof consists of three Isabelle commands: the first makes the event
of the assumption a premise of the inductive formula, the second applies
induction, the third simplifies all subgoals. However, this theorem does not
guarantee that the server’s operation is entirely reliable. For example, it is
not clear whether the session key is fresh, as it should be, when it is sent.
To investigate this, we declare the function

before : [event, event list] −→ event list

so that before ev evs yields the subtrace of events that occur on a trace evs
before the introduction of the event ev . Since all traces are extended in
reverse, the head of a trace contains the most recent events. So, we scan the
reversed evs and collect its elements until ev is found

before ev on evs , takeWhile(λz.z 6= ev)(rev evs)

On the assumptions of the previous theorem, we have proved that the session
key is fresh when the server issues it,

KeyKab 6∈ used(before

(Says Server A (CryptK ′{|NA,AgentB,KeyKab, X|}))

on evs)
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which completes the argument about the reliability of the model server.
The proof requires two general subsidiary lemmas, one stating that the set
of elements used on a trace is the same as the set of elements used on the
reversed trace, the other stating that, if an element is used on a subtrace,
then it is also used on the trace from which the subtrace is derived.

When verifying protocols based on smart cards (§9.3.1), we will prove
that both friendly agents and the server can only use their own smart card,
provided that it has not been stolen by the spy. By contrast, the spy can use
both her own card and a set of compromised cards. These are also reliability
theorems.

Proving a theorem of this class is not difficult. The idempotence of
analz is easily derived from its definition, while the possibility property is
proved by “joining up the protocol rules in order and showing that all their
preconditions can be met” [88, §4.1]. All remaining theorems, strictly de-
pending on the specific protocol being verified, necessitate induction over
the protocol rules. Then, the simplifier either terminates all subgoals or,
alternatively, highlights the structure of the remaining ones. On these oc-
casions, the Isabelle automatic tactic, which combines simplification and
classical reasoning, concludes the proof.

4.2 Regularity

Paulson regards as regularity lemmas all laws that can be proved on the
assumption that some message appears in the traffic [88, §4.3]. More con-
cretely, if a trace evs of the protocol model is such that

X ∈ parts(spies evs)

then some conditions can be proved about X on evs. By such a broad defi-
nition, many of the theorems proved of the protocol model must be regarded
as regularity lemmas. In particular, the class includes those theorems as-
sessing the originator of a certificate that is on the traffic, and those that
formalise the goals of authenticity and authentication (see below).

A basic regularity lemma can be stated for each kind of long-term key.
If a shared-key protocol never requires the agents to send their shared keys
in the traffic, then, given a trace evs of the protocol model, an agent’s key
appearing in the traffic on evs implies that the agent is compromised. The
proof applies induction and shows that the key could appear in the traffic
only in the Fake case, namely when it is the spy who uses it, because the
key owner is compromised. By definition of initState, spies and parts, the
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same result holds in the opposite direction regardless of the protocol being
analysed. Combining the two implications, the basic regularity lemma for
shared keys is obtained

Key(shrKA) ∈ parts(spies evs)⇐⇒ A ∈ bad

However, the major relevance of the theorem arises when it is expressed in
terms of analz

Key(shrKA) ∈ analz(spies evs)⇐⇒ A ∈ bad

The left-to-right implication holds because of analzH ⊆ partsH and the
regularity lemma; the opposite holds by definition of initState, spies and
analz. By abuse of terminology, we still address this result as regularity
lemma in the sequel. Its importance lies in translating a condition that an
agent is certainly not able to verify — the spy learning his key from the
analysis of the traffic — into one that he could be able to verify — his being
compromised (see §4.8). In other words, the lemma says that the spy knows
a shared key from analysing the traffic induced by the protocol if and only
if she knows it initially. For example, let us consider a certificate {|X|}Ka ,
meant for A and sealed by her shared key. If we want to prove any properties
about the certificate, then it must be tamperproof against the spy. This, in
turn, requires A’s key not to be available to the spy, which, by the regularity
lemma, is equivalent to A not being compromised.

The regularity lemma concerns the private keys in case evs is a trace of
the model for a public-key protocol.

4.3 Authenticity

If a message that appears to have originated with a certain agent did indeed
originate with the agent, then the message enjoys authenticity. The ISO Se-
curity Architecture framework [50] distinguishes authenticity from integrity,
which holds of a message that is proved to be received in the same form as
it was generated.

However, many researchers consider the source of a message as essential
part of the message. Therefore, verifying that the message is unaltered when
it is received (integrity) confirms its originator (authenticity). Conversely,
discovering the originator of a message that is received also confirms that the
message is unaltered. To this extent, the two properties may be considered
equivalent.1

1Private conversation with Dieter Gollmann.
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Our proofs support this viewpoint. For example, let us consider the
ticket of the shared-key Needham-Schroeder protocol (§2.2.4), {|Kab, A|}Kb ,
which is created by the server. The integrity of the ticket is equivalent to
preventing the spy from knowing Kb and thus, via the regularity lemma,
to B not being compromised. Under this assumption, Paulson proves that
the ticket originated with the server [84], and hence its authenticity. So, the
ticket integrity implies its authenticity.

The converse also holds. Trying to prove the ticket authenticity, permit-
ting the spy to know Kb, leaves the following subgoal, which arises from the
case Fake

[| evsF ∈ ns_shared;

Crypt (shrK B) {|Key Kab, Agent A|} 6∈ parts (spies evsF);

Crypt (shrK B) {|Key Kab, Agent A|} ∈ synth (analz (spies evsF)) |]

=⇒ ∃ NA. Says Server A (Crypt (shrK A) {|NA, Agent B, Key Kab,

Crypt (shrK B) {|Key Kab, Agent A|}|})

∈ set evsF

The second and third assumptions signify that, although the ticket does
not appear on the traffic on evsF , the spy can synthesise it from the anal-
ysis of that traffic. The symbolic evaluation of synth states that two cases
are, in general, possible. Either the spy merely forwards the ticket that
she obtains from the analysis of the traffic, namely the ticket belongs to
analz(spies evsF ); or the spy can handle all components necessary to fake
the ticket. The former is impossible because it contradicts the second as-
sumption of the subgoal (since analzH ⊆ partsH). According to the latter
case, simplification and the regularity lemma transform the third assump-
tion in the following pair

KeyKab ∈ analz(spies evsF ) and B ∈ bad

The resulting subgoal can be falsified because it assumes a non-contradictory
scenario in which an agent and a session key are compromised to the spy. So,
she is able to forge the corresponding ticket {|Kab, A|}Kb before the server
issues it legally. In this scenario, when the ticket appears in the traffic, it is
not necessarily authentic.

In the light of these considerations, we will regard authenticity and in-
tegrity as a single concept denoted by the former term. Also, when proving
message authenticity, we will in general make the assumptions that appear
to prevent the spy from faking the message, and will attempt to enforce the
event corresponding to the protocol step that creates the message. If we are
dealing with a certificate sealed by a long-term key, then, by application of
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the corresponding regularity lemma, it will suffice to assume that the key
owner is not compromised. However, further assumptions may be required
to investigate the authenticity of specific message components such as the
“pairkey” used by the Shoup-Rubin protocol (see §9.3.3).

The introduction of message reception (§7.2) will allow a more realistic
formalisation of the authenticity theorems from the agents’ viewpoints.

4.4 Unicity

Security protocols often involve the creation of fresh components such as
nonces or session keys. Since the same component cannot be created as
fresh more than once, it is uniquely bound to its message of origin. These
observations inspired the unicity theorems [88, §4.4], establishing that, if two
events containing a certain component occur, then the events are identical.
We investigate the argument in deeper detail, proving that certain events
cannot occur more than once. We achieve this aim below, defining the
predicate unique.

The Yahalom protocol, for example, requires the server to issue a fresh
session key Kab for two peers A and B [90]. So, if evs is a trace of the
Yahalom model containing the events

Says Server A {|Crypt(shrKA){|AgentB,KeyKab,Na,Nb|}, X|} and

Says Server A′ {|Crypt(shrKA′){|AgentB′,KeyKab,Na ′,Nb ′|}, X ′|}

then

A = A′ and B = B′ and Na = Na ′ and Nb = Nb ′

An initiator A of the public-key Needham-Schroeder protocol (§2.2.3)
has to issue a fresh nonce Na and include it in the first message. Therefore,
if the nonce is not available to the spy and evs is a trace of the protocol
model such that

Crypt(pubKB){|NonceNa,AgentA|} ∈ parts(spies evs) and

Crypt(pubKB′){|NonceNa,AgentA′|} ∈ parts(spies evs)

then

A = A′ and B = B′

Should Na be available to the spy, the certificates of the theorem could have
been created by the spy. Alternatively, both B and B ′ should be assumed not
to be compromised in order to apply the corresponding regularity lemma.
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Proving these theorems merely requires an inductive analysis of the pro-
tocol steps and a simplification of the arising subgoals. The critical case is
the step where the fresh component is created. If a different component is in-
troduced, then simplification terminates the subgoal; if the same component
is introduced, then the freshness assumption concludes the proof.

However, while the former unicity theorem is only useful to the server,
the latter may become useful to a non-compromised friendly agent B only
upon reception of the certificates {|Na, A|}Kb and {|Na, A′|}Kb . Modelling this
scenario formally requires the introduction of message reception in the model
(see §7.2). Once B has received the two certificates, should A differ from A′,
the theorem would be violated. Thus, B would suspect that something that
lies outside the model happened, ranging from some failure of the underlying
transport protocol to brute-force codebreaking.

We observe that the first form of unicity theorem still permits the server
to send two identical messages. This would, all the same, violate the fresh-
ness assumption on the session key, so it should be impossible. To investigate
the matter, we declare a predicate that takes as parameter an event and a
trace,

unique : [event, event list]

scans the trace until the event is found and skipped, and finally checks that
the event does not occur on the remaining part of the trace

unique ev on evs ≡ ev 6∈ set(tl(dropWhile(λz.z 6= ev) evs))

The predicate holds on an event ev and a trace evs when ev occurs only
once on evs. As expected, we can prove that a trace evs of the Yahalom
model is such that

unique (Says Server A {|Crypt(shrKA){|AgentB,KeyKab,Na,Nb|}, X|})

on evs

An equivalent result can be routinely proved by induction and simplification
for all protocols analysed so far. The definition of the predicate must be used
as a rewrite rule for the simplifier.

The analysis of protocols that are based on smart cards (see §9.3.4)
will gain by the new theorem in case the protocols assume a secure means
between agents and cards. Agents will receive further assurances about the
cards’ functioning.



4.5. CONFIDENTIALITY 39

4.5 Confidentiality

A protocol enforces confidentiality of M if it does not disclose M to the spy.
Paulson’s session key secrecy theorem formalises session key confidential-

ity. For example, if A and B are not compromised and evs belongs to the
Otway-Rees model and contains

Says Server B {|Na,Crypt(shrKA){|Na,KeyKab|},

Crypt(shrKB){|Nb,KeyKab|}|}

but does not contain an oops event on Kab involving the same nonces

Notes Spy {|Na,Nb,KeyKab|}

then

KeyKab 6∈ analz(spies evs)

Proving this theorem [88, §4.6] requires evaluating the assertion for all the
possible extensions of evs according to the protocol model. In each of these
cases, spies extracts the new message, say X, leaving expressions of the form

KeyKab 6∈ analz({X} ∪ (spies evs))

The symbolic evaluation rules for analz inspect X and pull out all compo-
nents except the keys, leaving expressions of the form

KeyKab 6∈ analz({KeyK} ∪ (spies evs))

for some session key K in the subgoal corresponding to the oops case, where
a message containing a non-fresh session key is introduced. Symbolic eval-
uation cannot proceed any further because in general K may be used to
encrypt Kab in some message of evs. However, perhaps the protocol pre-
vents this. Proving such result, the session key compromise theorem [88,
§4.5], provides the necessary rewriting rule

KeyK ′ ∈ analz({KeyK} ∪ (spies evs))

⇐⇒ K ′ = K ∨ KeyK ′ ∈ analz(spies evs)

K being a session key. The result confirms that Otway-Rees never uses
session keys to encrypt other keys, so the spy cannot exploit a stolen session
key to learn others.

After simplification by the compromise theorem, the oops subgoal of the
secrecy theorem terminates via the unicity theorem enforcing that the server
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issued Kab only with the nonces Na and Nb. The subgoal corresponding
to the third step of the protocol, where the server issues the session key, is
solved by freshness of the session key, and the remaining ones routinely.

Although the session key secrecy theorem constitutes the main confiden-
tiality result, it is still not directly applicable by the agents. Further lemmas
are necessary to this purpose (§2.2.4).

Confidentiality is often crucial also on nonces. For example, in the TLS
protocol [89], the pre-master secret, PMS , is a nonce of fundamental impor-
tance because it is used to compute other nonces, session keys and MACs.
Confidentiality of the PMS can be proved conventionally with the addition
of a new rewriting rule for analz. If A and B are not compromised and evs
is a trace of the TLS model containing

NotesA {|AgentB,NoncePMS |}

then

NoncePMS 6∈ analz(spies evs)

The theorem signifies that once a non-compromised agent notes the PMS ,
it remains secure from the spy. As explained on the preceding result, the
proof requires a suitable rewriting rule for analz

NonceN ∈ analz({KeyK} ∪ (spies evs))⇐⇒ NonceN ∈ analz(spies evs)

K being a session key, stating that session keys cannot be exploited to learn
nonces.

The strategies presented in this section do not vary with the introduction
of message reception or of smart cards into the model.

4.6 Authentication

Despite the fact that agent authentication is the main, claimed goal of many
security protocols, there exists significant potential for confusion about the
interpretation of this term [43]. A taxonomy due to Lowe may elucidate
the matter identifying four levels of authentication. Let us suppose that an
initiator A completes a protocol session with a responder B.

1. Aliveness of B signifies that B has been running the protocol.

2. Weak agreement of B with A signifies that B has been running the
protocol with A.
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3. Non-injective agreement of B with A on H signifies weak agree-
ment of B with A and that the two agents agreed on the set H of
message components.

4. Injective agreement of B with A on H signifies non-injective agree-
ment of B with A on H and that B did not respond more than once
on the session with A.

Note that each level subsumes the previous one. In particular, the injective
agreement of B with A establishes an injective relation between B’s runs of
the protocol with A and A’s runs with B. The existing authentication ar-
guments carried out using the Inductive Approach do not set their findings
within this taxonomy. Although authentication is typically interpreted as
aliveness, we find that many guarantees also convey weak-agreement. How-
ever, investigating non-injective agreement requires extending the approach,
as we explain below.

The Inductive Approach allows agents to respond more than once to
a received message (provided that it is of the expected form) because the
protocol models are meant to be as permissive as possible. Therefore, the
strongest form of authentication that we can wish to prove is non-injective
agreement. A generic rule of the protocol model takes a trace evs of the
model, insists that some events occur on it and others do not, and establishes
that the concatenation of a specific event ev with evs is still a trace of the
model. Constraining agents to a single reply can be done by adding to the
generic rule an extra assumption stating that ev does not occur on evs.
While leaving the existing proofs unaltered, this would make it possible to
investigate injective agreement. Lowe simply says that such property “may
be important in, for example, financial protocols” [65, §2.4], but we are not
aware of real-world protocols that have claimed it explicitly as a goal.

However, we find that the original Inductive Approach requires some
extensions even to formalise non-injective agreement. With key-distribution
protocols, for example, non-injective agreement on a session key is the rel-
evant form of authentication. Paulson proves that, if A and B are not
compromised and evs is a trace of the model for the shared-key Needham-
Schroeder protocol (§2.2.4) containing

SaysBA (CryptKab(NonceNb))

and such that

Crypt(shrKB){|KeyKab,AgentA|} ∈ parts(spies evs) and

CryptKab{|NonceNb,NonceNb|} ∈ parts(spies evs)
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but not containing an oops event on Kab,

Notes Spy {|N,N ′,KeyKab|}

for any N , N ′, then evs contains

SaysAB (CryptKab{|NonceNb,NonceNb|})

The message {|Nb − 1|}Kab is formalised as CryptKab{|NonceNb,NonceNb|}
(if the model spy could add or subtract 1, then she could spoof all nonces),
so the assertion means that the last step of the protocol has taken place.
Reviewing the theorem, we have discovered that the first assumption is
superfluous. The general strategy for all theorems of this form appeals to
authenticity (§4.3) and then derives the confidentiality of the session key
(§4.5). Hence, if the certificate CryptKab{|NonceNb,NonceNb|} appears in
the traffic, then it is integral, so induction proves it to have originated with
A. This proof has not required assuming that B sent the other certificate,
which can in fact be proved as a corollary.

Does the theorem establish non-injective agreement of A with B on Kab?
Upon reception of the two mentioned certificates, and with the assumptions
that A is not compromised and that Kab has not been leaked by accident
(which is a minimal trust, see §4.8), B is informed that A sent him a cipher
sealed by Kab. While B learns Kab from one of the certificates, A merely
sending the cipher does not express A’s knowledge of the key that seals it, so
B is not informed of whether A agrees on Kab. In general, A might be just
forwarding an unintelligible message previously received. By Lowe’s defini-
tions, the theorem only establishes weak agreement of A with B. However,
the protocol inspection highlights that A is in fact the true creator of the
cipher and therefore knows the key to seal it. In chapter 7, we will prove
such insight formally by means of two different strategies.

4.7 Key Distribution

Key distribution is the main goal for many protocols. It is met when any two
peers who complete a protocol session gain evidence that they share a session
key with each other. There are also weaker interpretations of this goal,
according to which a protocol meets key distribution when it just distributes
the keys without giving the corresponding evidence to the peers. However,
in the latter case, the goal is certainly not available to the peers according to
the definition that we give in the next section (§4.8). Bellare and Rogaway
state that key distribution is “very different from” agent authentication.
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“The reason is that entity authentication is rarely useful in the absence of
an associated key distribution, while key distribution, all by itself, is not only
useful, but it is not appreciably more so when an entity authentication occurs
along side. Most of the time the entity authentication is irrelevant” [24, §1.6].

We believe that key distribution and agent authentication are strictly
related. We observe that mutual non-injective agreement on a session key
is, in fact, a stronger goal than key distribution because the former implies
the latter. Indeed, our proofs will establish key distribution via the au-
thentication argument. Also, this is the only possible strategy towards key
distribution on all protocols analysed so far, which supports the claim that
the two goals are equivalent. For example, let us recall the second and third
steps of the shared-key Needham-Schroeder protocol

2. S → A : {|Na, B,Kab, {|Kab, A|}Kb |}Ka

3. A → B : {|Kab, A|}Kb

Upon B’s reception of the certificate {|Kab, A|}Kb , the only strategy to show
B that also A knows Kab is that of deriving that the certificate originated
with A upon reception of the second message of the protocol, which delivered
Kab to her. This also establishes non-injective agreement of A with B upon
the session key. Formalising message reception is, once more, required to
express this reasoning formally.

4.8 Minimal Trust and Goal Availability

The previous sections (and also §2.2.4) have stressed that formal guarantees
can be applied by an agent only when the agent can verify their assumptions.
This concept necessitates further consideration.

Let us recall the session key secrecy theorem (§4.5). Both peers must
not be compromised in order to prevent the spy from knowing their shared
keys and decrypting the ciphers that deliver the session key. Besides, the
spy must not have learned the key by exploiting either peer’s incaution via
an oops event. These assumptions form the minimal trust because they can-
not be verified by any agent, although they are indispensable in our highly
permissive modelling. All guarantees that appeal to the confidentiality ar-
gument will be constrained by the minimal trust.

Reinterpreting this concept from a specific agent’s viewpoint, we observe
that an agent’s minimal trust includes that the agent’s peer is not compro-
mised and that neither of them has leaked the key. Moreover, if the agent’s
long-term key is stored on some workstation, the spy may be able to get
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hold of it even before the agent participates in the protocol. Therefore,
depending on the static protection of the workstations (e.g. in terms of fire-
walls), an agent’s minimal trust may also have to include himself not being
compromised.

Modelling timestamps and restricting the protocol model to only leak
session keys that have expired will weaken the assumption on the oops
event and therefore lower the minimal trust (see §5.5). Modelling smart
cards will modify the minimal trust so to include that certain cards are not
compromised (see §8.1.2).

We say that a guarantee is applicable by an agent, when it is established
by a theorem whose assumptions, excepted those in the minimal trust, can
be verified by the agent. If there exist guarantees about a certain goal g
of a protocol P that are applicable, respectively, by both protocol peers,
then P makes g available to its peers. We state the following principle
of goal availability: a protocol must make its goals available to its peers.
Investigating this principle reveals an attack on Kerberos IV (see §6.3.5)
and important weaknesses of Shoup-Rubin (see §9.3.5).



Chapter 5

Modelling Timestamps

The Inductive Approach is extended with the treatment of time-
stamps and a timestamp-based protocol, BAN Kerberos, is mod-
elled and verified.

The original Inductive Approach does not include timestamps among the
formalised message components [87, §3.1] and is in fact only benchmarked
on nonce-based protocols such as Otway-Rees and Yahalom.

At the beginning of the 1980s, Denning and Sacco pioneered the use of
timestamps in the field of security protocols [36] to avoid replay attacks.
Timestamps, which are numbers marking a specific instance of time, have
been employed since then in many protocols such as BAN Kerberos [31, §6]
and Kerberos IV [77]. We extend the Inductive Approach with the treatment
of timestamps in order to analyse this new class of protocols.

The single operational difference between nonces and timestamps is that
the latter can be guessed by the spy. So, we model timestamps as guessable
numbers to include in the allowed message components. The price paid is
limited to introducing the new message constructor, proving a few technical
lemmas, and doing minor updates to some of the existing ones. The ap-
proach becomes significantly more general. The new message component is
also used to model any extra information that the real-world protocols pass
inside their messages, which is in general available to the spy. This is the
case, for example, with the session identifier and other fields of the model
for the TLS protocol [89].

The first benchmark we choose for the extended approach is the BAN
Kerberos protocol, as its well-known analysis by BAN logic [31, §6] provides
a significant opportunity for comparison. The BAN analysis concludes that,
if A has completed a session of the protocol with B, then A is aware that

45
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B meant to communicate with A using the session key Kab; the equivalent
guarantee is offered to B

A |≡B |≡A
Kab
←→ B and B |≡A |≡A

Kab
←→ B

Since the logic omits investigating whether the agreement is injective, its
conclusions may be viewed as mutual non-injective agreement on the session
key. Our findings confirm this goal (via some extensions to the approach,
see §7.3) and strengthen it with a deeper investigation of others such as
authenticity and confidentiality [20]. The proofs, partially adapted from the
existing ones on the shared-key Needham-Schroeder protocol, also suggest
refining the treatment of the accidental losses of session keys. Our protocol
model accounts for the temporal checks performed by the agents at each
step, which helps in understanding how the protocol functions beyond the
mere sequencing of messages.

The Kerberos project started at MIT during the mid 1980s [77] and, over
a decade, generated several variants of the same protocol design [58]. BAN
Kerberos is the natural modification of the shared-key Needham-Schroeder
with the addition of timestamps. Therefore, it is interesting to compare the
temporal requisites that the two protocols add to the goal of authentica-
tion. This is achieved later (§7.6) because the Inductive Approach must be
suitably extended.

This chapter presents the formalisation of guessable numbers (§5.1) and
introduces the BAN Kerberos protocol (§5.2), which is then modelled (§5.3)
and verified (§5.4).

5.1 Modelling Guessable Numbers

The process of modelling guessable numbers consists of three phases. First,
the Isabelle datatype for msg is extended by a new constructor Number that
takes as its parameter a natural number. A timestamp T will be represented
in the model by the message component Number T .

Then, the inductive definition of synthH is updated by a rule that allows
the spy to synthesise any number

NumberN ∈ synthH

Finally, the main operators need suitable rewriting rules for the symbolic
evaluations that involve the new component

parts({NumberN} ∪H) = {NumberN} ∪ (partsH)

analz({NumberN} ∪H) = {NumberN} ∪ (analzH)
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Minor updates necessary to a few existing lemmas are omitted here.

5.2 The BAN Kerberos protocol

BAN Kerberos [31, §6] is a key distribution protocol, namely it aims at
distributing session keys to its peers (figure 5.1).

1. A → S : A,B

2. S → A : {|Tk , B,Kab, {|Tk , A,Kab|}Kb
︸ ︷︷ ︸

ticket

|}Ka

3. A → B : {|Tk , A,Kab|}Kb
︸ ︷︷ ︸

ticket

, {|A,Ta|}Kab
︸ ︷︷ ︸

authenticator

4. B → A : {|Ta + 1|}Kab

Figure 5.1: The BAN Kerberos protocol

The design closely resembles that of the shared-key Needham-Schroeder
protocol (§2.2.4) but rests on a different procedure of mutual authentication
(see in particular the last two steps). The protocol associates a lifetime to
session keys and another to authenticators. Lifetimes represent the time
intervals within which the corresponding components should be considered
valid. The lifetimes are passed in the messages but we omit them from the
presentation, assuming they are known to all.

After A’s initial request to establish a session with B, the server issues
a fresh session key and includes it, along with the timestamp that marks its
time of issue, inside a message sealed by A’s shared key. The message also
contains a ticket sealed by B’s shared key, which in turn contains a duplicate
of the session key and its timestamp. The message is sent to A, who removes
the external encryption and learns that the session key Kab issued at time
Tk is indeed meant for the session with B. Then, A checks that Tk has
not expired to establish whether the session key is still valid. If so, A builds
an authenticator with a new timestamp Ta and sends it with the ticket to
B. Upon reception of this message, B decrypts the ticket, learns the session
key for the session with A and its timestamp Tk . If Tk has not expired,
B uses the session key to decipher the authenticator. This should give him
evidence that A was alive and able to use the session key at time Ta. The
same guarantee should be given to A by the certificate that B sends her in
the final step of the protocol.
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5.3 Modelling BAN Kerberos

The protocol uses the notion of time in two ways: it issues timestamps as the
current time and checks timestamps against the current time. Only specific
instants are considered, so a discrete sampling of the continuous time suffices
for the modelling. We assume that there exists a global, secure clock that
all agents rely on. Hence, we will equip each trace with a clock yielding the
current time of the network history modelled by that trace.

Traces only grow linearly. If the event ev is located after the event ev ′

on a trace, then ev ′ in the real world occurred at some later, unspecified,
time after ev did.1 Hence, there exists an injective function between the set
of all traces and the set of all samplings of time. A sampling corresponds
to a trace if the first value of the sampling represents the time when the
first event of the trace took place, the second value represents the time for
the second event, and so on. The function is clearly not a bijection because
there may exist different traces corresponding to the same sampling. The
empty trace corresponds to the empty sampling.

A time-sampling can be normalised in terms of natural numbers: there
exists an injective function between the set of all discrete samplings of time
and the set of segments of natural numbers including zero. The empty
sampling corresponds to the set {0}. Any sampling containing only one
value corresponds to the set {1}; any sampling containing only two values
corresponds to the set {1, 2}, and so on. Since the current time of a trace is
the highest value of the corresponding time sampling, after the normalisation
process the current time of a trace of length n is n. We declare the function

ct : event list −→ nat

and define
ct evs , length evs

Recall that a trace of length n represents a history of the network during
which n events have taken place. We believe it is intuitive to think that the
current time of the trace is n.

We declare two natural numbers, seskLife and authLife, to formalise re-
spectively the lifetime of session keys and of authenticators. Agents check
the timestamps against them and discard the messages containing expired
timestamps. To formalise those checks, we declare two binary predicates

expiredS, expiredA : [nat, event list]

1The trace model assumes that no two events occur simultaneously. This could be
relaxed by defining a trace as a list of sets of events.
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and define them as

expiredSTk evs ≡ (ct evs)− Tk > seskLife

expiredATa evs ≡ (ct evs)− Ta > authLife

When, for example, expiredSTk evs holds, a longer time than seskLife has
elapsed since Tk at the moment when the history registered by evs is ex-
amined. Therefore, the session key associated with Tk is no longer valid
on evs (which in practice has become too long). The association between
Tk and its session key is established by the structure of the second protocol
message, so it does not need explicit formalisation.

The constant bankerberos, declared as a set of lists of events, represents
the formal protocol model and is defined by induction in figure 5.2. The
empty trace formalises the initial scenario, in which no protocol session has
taken place. Rule Base settles the base of the induction stating that the
empty trace is admissible in the protocol model. All other rules represent
inductive steps, so they detail how to extend a given trace of the model. Rule
Fake models the spy’s illegal activity, which includes forging any timestamps.
Rule BK1 lets any agent begin a protocol session at any time. Rule BK2

models the server’s operation, which is subordinate to some other agent
having sent the first message of the protocol. Since the first message is a
cleartext, the spy may easily fake it many times and overload the server. The
session key has not been used before and is accompanied with a timestamp
drawn from the current time. Rule BK3 states that an agent who initiated
a protocol session may proceed with the third step of the protocol if she
has been sent a message with a non-expired session-key timestamp. By
rule BK4, an agent completes the protocol if he has been sent a specific
intelligible message containing two non-expired timestamps. Note that the
model does not need to increment the timestamp in the last protocol step
as the message is already structurally different from all others. Finally, rule
Oops allows accidental leaks of session keys at any time.

Note that rules BK1 to BK4 model the agents’ behaviour that is legal
according to BAN Kerberos. For example, it is visible that only the correct
timestamps are inserted.

5.4 Verifying BAN Kerberos

The main guarantees that we have proved about BAN Kerberos are pre-
sented in this section, where evs is always a generic trace of the set banker-

beros. The authentication goals (§5.4.6) will be subsequently strengthened
thanks to an extension to the approach (§7.3).
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Base

[] ∈ bankerberos

Fake

[| evs ∈ bankerberos; X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ bankerberos

BK1

[| evs ∈ bankerberos |]

=⇒ Says A Server {|Agent A, Agent B|} # evs ∈ bankerberos

BK2

[| evs ∈ bankerberos; Key K 6∈ used evs;

Says A’ Server {|Agent A, Agent B|} ∈ set evs |]

=⇒ Says Server A (Crypt (shrK A) {|Number (ct evs), Agent B, Key K,

Crypt (shrK B) {|Number (ct evs), Agent A, Key K|}|})

# evs ∈ bankerberos

BK3

[| evs ∈ bankerberos;

Says A Server {|Agent A, Agent B|} ∈ set evs;

Says S A (Crypt (shrK A) {|Number Ts, Agent B, Key K, Ticket|})

∈ set evs;

¬ expiredS Ts evs |]

=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (ct evs)|}|}

# evs ∈ bankerberos

BK4

[| evs ∈ bankerberos;

Says A’ B {|Crypt (shrK B) {|Number Ts, Agent B, Key K|},

Crypt K {|Agent A, Number Ta|}|} ∈ set evs;

¬ expiredS Ts evs; ¬ expiredA Ta evs |]

=⇒ Says B A (Crypt K (Number Ta))

# evs ∈ bankerberos

Oops

[| evs ∈ bankerberos;

Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K,

Ticket|}) ∈ set evs |]

=⇒ Notes Spy {|Number Ts, Key K|} # evs ∈ bankerberos

Figure 5.2: Formalising BAN Kerberos inductively

5.4.1 Reliability of the BAN Kerberos Model

The only relevant reliability theorem states that the model server is reliable
(theorem 5.1). If the cipher is addressed to A, then the server encrypts it
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with A’s shared key, and inserts a session key and the ticket meant for A’s
peer, B. Since cryptographic keys can be either long-term keys or session
keys, Kab is merely shown not to be a long-term one, while it is never used
before the server issues it, so it is fresh. The timestamp is chosen as the
current time of the subtrace where the key is being issued.

Theorem 5.1. If evs contains

ev = Says Server A (CryptK{|NumberTk ,AgentB,KeyKab,Ticket |})

then

K = shrKA and Kab 6∈ range shrK and

Ticket = (Crypt(shrKB){|NumberTk ,AgentA,KeyKab|}) and

KeyKab 6∈ used(before ev on evs) and

Tk = ct(before ev on evs)

Proving the last conjunct of the assertion requires extending the existing
strategy (§4.1) by two lemmas for the symbolic evaluation of the length of
a subtrace.

5.4.2 Regularity

The protocol employs a single kind of long-term key and never sends it in
the traffic, so a basic regularity lemma is provable. An agent’s shared key
appears in the traffic if and only if the agent is compromised (lemma 5.2).

Lemma 5.2. Key(shrKA) ∈ analz(spies evs) ⇐⇒ A ∈ bad.

All subsequent guarantees about certificates sealed by a shared key will
appeal to this lemma to guarantee their integrity.

5.4.3 Authenticity

The second message and the ticket contained inside it represent the crucial
certificates of the protocol because they are meant to deliver the session key
to A and B respectively. They are encrypted under shared keys. Applying
the regularity lemma assures that the spy cannot handle the keys that en-
crypt the certificates and so cannot spoof them.

Let us consider the certificate for A and assume the agent not to be
compromised in order to apply the regularity lemma. When A receives
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the certificate and inspects it, she realises that it is the four-component
certificate delivering a session key. The theorem proves that the certificate
was created by the only entity that is legally entitled to issue session keys,
the server, so it is authentic (theorem 5.3).

Theorem 5.3. If A is not compromised and evs is such that

Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |} ∈ parts(spies evs)

then evs contains

Says Server A (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |})

Since A is not compromised, the certificate is, via the regularity lemma,
integral. Therefore, A learns that the session key was issued at time Tk .
Checking this timestamp against the current time prevents her from accept-
ing an old key as fresh. A similar guarantee holds about the certificate
{|Na, B,Kab, X|} of the shared-key Needham-Schroeder protocol [84]. Since
the nonce Na is previously issued by A and then received along with the
session key inside the integral certificate, A infers that the session key is
more recent than her nonce.

An analogous guarantee can be established about the certificate for B
(theorem 5.4).

Theorem 5.4. If B is not compromised and evs is such that

Crypt(shrKB){|NumberTk ,AgentA,KeyKab|} ∈ parts(spies evs)

then evs contains

Says Server A (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,

Crypt(shrKB){|NumberTk ,AgentA,KeyKab|}|})

Agent B is guaranteed that the session key was issued at time Tk and so
can verify its freshness. The corresponding guarantee on the shared-key
Needham-Schroeder protocol [18, §5.1] relies on the certificate {|K,A|}Kb .
This time B cannot decide whether he is accepting an old session key as
fresh, which raises the known chance of a replay attack.
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5.4.4 Unicity

The server issues fresh session keys, so the same key cannot be issued twice.
Using Paulson’s strategy [88, §4.4], we can enforce that, if a session key
appears within two message contexts, then the contexts must be the same
(theorem 5.5).

Theorem 5.5. If evs contains

Says Server A (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |}) and

Says Server A′ (Crypt(shrKA′){|NumberTk ′,AgentB′,KeyKab,Ticket ′|})

then

A = A′ and Tk = Tk ′ and B = B′ and Ticket = Ticket ′

This result is often used when proving theorems that assume the event that
issues the session key. The Oops rule of the protocol model introduces
another event of the same form, but they can be derived to be identical in
case they contain the same session key.

A similar result can be enforced if two tickets containing the same, con-
fidential, session key appear in the traffic.

While theorem 5.5 allows the server to send two identical messages, we
can prove that this is impossible (theorem 5.6). This is a stronger guarantee
because it states that the server never issues the same session key more than
once for the same peers using the same timestamp and the same ticket.

Theorem 5.6. If evs contains

Says Server A (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |})

then

Unique (Says Server A (Crypt(shrKA)

{|NumberTk ,AgentB,KeyKab,Ticket |})) on evs

5.4.5 Confidentiality

The proof of the session key compromise theorem (§4.5), which provides
a crucial rewriting rule for the analz operator, is conventional, since BAN
Kerberos does not use session keys to encrypt other keys.

If the peers’ shared keys are not compromised, then no protocol step
reveals to the spy the session key that the server issues. Further, if the key
is not leaked by accident, then it can be proved to be confidential (theo-
rem 5.7).
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Theorem 5.7. If A and B are not compromised, and evs contains

Says Server A (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |})

but does not contain Notes Spy {|Number T,KeyKab|} for any T , then

KeyKab 6∈ analz(spies evs)

The application of the authenticity theorem 5.3 makes this result useful
to A within the minimal trust still imposed by the assumptions on B and
on the oops event (theorem 5.8).

Theorem 5.8. If A and B are not compromised, and evs is such that

Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |} ∈ parts(spies evs)

but does not contain Notes Spy {|Number T,KeyKab|} for any T , then

KeyKab 6∈ analz(spies evs)

Likewise, session key confidentiality can be proved from B’s viewpoint
(theorem 5.9) by application of the authenticity theorem 5.4 to the confi-
dentiality theorem 5.7.

Theorem 5.9. If A and B are not compromised, and evs is such that

Crypt(shrKB){|NumberTk ,AgentA,KeyKab|} ∈ parts(spies evs)

but does not contain Notes Spy {|Number T,KeyKab|} for any T , then

KeyKab 6∈ analz(spies evs)

5.4.6 Authentication

One of the aims of BAN Kerberos is to enforce mutual agent authentication.
The authenticator of the third message should authenticate A to B, and the
fourth message as a whole should authenticate B to A. Our proofs suggest
that the goal is met within the minimal trust. This section shows that the
protocol establishes mutual weak agreement, while a few extensions to the
approach will show that it also establishes mutual non-injective agreement
on the session key and on an important timestamp (see §7.3).

Tracing back the originator of the authenticator requires the session key
that seals it to be confidential. Thus, the assumptions of the confidentiality
theorem 5.9 must be allowed, since we are reasoning from B’s viewpoint.
In these circumstances, the authenticator can be proved to have originated
with A during the third step of the protocol (theorem 5.10).
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Theorem 5.10. If B is not compromised, and evs is such that

Crypt(shrKB){|NumberTk ,AgentA,KeyKab|} ∈ parts(spies evs) and

CryptKab{|AgentA,NumberTa|} ∈ parts(spies evs)

and does not contain Notes Spy {|Number T,KeyKab|} for any T , then it con-
tains

SaysAB {|Crypt(shrKB){|NumberTk ,AgentA,KeyKab|},

CryptKab{|AgentA,NumberTa|}|}

If B receives the ticket, extracts the session key, and then receives the au-
thenticator that is sealed by it, he infers that A was alive and meant to
communicate with him. The theorem does not express A’s knowledge of
Kab or Ta.

The same strategy proves that a cipher that has the form of the fourth
message of the protocol was indeed created during the fourth step (theo-
rem 5.11). The necessary condition that the cipher be sealed by a confiden-
tial session key is conveyed via an appeal to the confidentiality theorem 5.8.

Theorem 5.11. If A is not compromised, and evs is such that

Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |}

∈ parts(spies evs) and

CryptKab(NumberTa) ∈ parts(spies evs)

and does not contain Notes Spy {|Number T,KeyKab|} for any T , then it con-
tains

SaysBA (CryptKab(NumberTa))

When A gets hold of the two suitable certificates, she infers that B was
alive and meant to communicate with her. The theorem does not express
B’s knowledge of Kab or Ta.

5.4.7 Key Distribution

We want to establish whether, at the end of a protocol session, the peers
have evidence that they share a session key, which is a major goal of the
protocol.

In order to decrypt the authenticator {|A,Ta|}Kab , B must learn Kab
from the ticket {|Tk , A,Kab|}Kb . Under the minimal trust, B considers Kab
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confidential. Therefore, the authenticator cannot have been faked and, so,
must have been sent by A in the third step of the protocol. The authentica-
tion theorem 5.10 establishes this formally. Also, since A is the true creator
of the authenticator, she must know the session key to seal it. This notion
cannot be captured formally in the current approach: in general, when an
event SaysABX occurs, A may be just forwarding X and therefore having
no knowledge about its contents.

To overcome this problem, we extend the Inductive Approach in chap-
ter 7 to capture the notion of an agent being the true creator of a message.
Modelling message reception will provide an alternative reasoning: when B
receives the ticket and the authenticator, A must have previously received
an instance of the second message and so must have learnt the session key.

The authentication theorem 5.11 allows the same considerations from
A’s viewpoint. Although the certificate {|Ta|}Kab is proved to have been
sent by B, proving B’s knowledge of the session key requires, as mentioned
above, further modelling.

5.5 A Temporal Modelling of Accidents

The minimal trust of the confidentiality and authentication theorems is also
raised by the necessity of checking that no oops event occurred. This is in
general not possible from any friendly agent’s viewpoint (see §2.2.4), which
raises concern that perhaps allowing the leaking of any session key at any
time makes the model too permissive.

We observe that the longer a message component is in the traffic, the
higher is the risk that the spy may get hold of it. In particular, the proba-
bility that a session key becomes compromised increases over time.

In the light of these considerations, we assume for this protocol that a
session key cannot be leaked as long as its lifetime has not expired, namely
the key cannot be leaked as long as it is still valid. Restricting the model
accordingly requires adding the condition

expiredSTk evs

to the Oops rule. Hence, session-key leaks may only happen to histories that
have evolved for longer than seskLife after the time of issue of the session
key. In the new model, all confidentiality and authentication theorems (5.7
to 5.11) rest on the assumption ¬expiredSTk evs, instead of “evs does not
contain Notes Spy {|Number T,KeyKab|} for any T”. Any agent can check
the new temporal assumption by verifying that the current time does not



5.5. A TEMPORAL MODELLING OF ACCIDENTS 57

differ from the timestamp by more than the allowed lifetime. Therefore, the
minimal trust required by the theorem becomes lower.

The temporal modelling of accidents will also be used in the analysis of
Kerberos IV (see next chapter).
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Chapter 6

Verifying a Deployed

Protocol

The Kerberos IV protocol is verified using the extended Inductive
Approach and a weakness is discovered in the protocol manage-
ment of timestamps.

The most commonly deployed variant of the Kerberos protocol is Version
IV [77]. Kerberos IV is a password-based system for authentication and
authorisation over local area networks. It was developed during the late
1980s with the following aim: once a user authenticates himself to a network
machine, the process of obtaining authorisation to access another network
service should be completely transparent to him. Hence, the user certainly
must not be prompted with a password request during the authorisation
phase. He only should have to enter his password once during the authen-
tication phase.

Kerberos IV pursues its aim by delivering certain credentials to the login
process of each user during the authentication phase. These credentials are
to be used with a suitable trusted server during any subsequent authorisation
phase. Receiving, storing and using the credentials are invisible to the user.

We model both the trusted server of the authentication phase and that of
the authorisation phase [17]. Each of them issues a session key with a specific
lifetime. The session key issued by the first server is used to encrypt the one
issued by the second server. This feature greatly complicates the verification
of the confidentiality goals [19], but a technique for modelling the association
between two message components can be reused from the analysis of the
Yahalom protocol [90]. Using the temporal modelling of accidents (§5.5),
we also investigate the authenticity, unicity, confidentiality, authentication

59
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and key distribution goals. During the verification of our principle of goal
availability, we discover a weakness in the management of timestamps, which
leads to an attack: the spy may access a network service using a session key
that belongs to a user who is no longer present on the network. Our proofs
suggest a simple fix, which can be formally verified to be effective.

To our knowledge, this is the first mechanised modelling of the complete
protocol. We have previously analysed the protocol by ASMs (§2.1.4) for-
malising the actions of an unbounded population of agents by means of a
detailed algebraic model [21]. Using that formal specification as a start-
ing point rather than the informal one [77] significantly simplifies our work
towards the inductive definition of the protocol model.

Mitchell et al. [79] model check a highly simplified version of the protocol,
which derives from Kohl et al. [57]. Neither are timestamps included in
their model, nor are multiple runs allowed. They find no attacks on a
system of size three — consisting of an initiator, the Kerberos servers and a
responder — and a “redirection” attack on a system of size four, including
two responders, which the full Kerberos IV prevents by explicitness (see next
section).

The chapter describes the three phases of Kerberos IV (§6.1), its mod-
elling (§6.2) and its verification (§6.3).

6.1 The Kerberos IV Protocol

Kerberos IV is essentially a key distribution protocol. It relies on the
Kerberos System (figure 6.1), which comprises two trusted servers and a
database containing all users’ passwords sealed using the standard Unix
one-way encryption algorithm.

6.1.1 Overview

Once a user types in his identifier and his password, his login process en-
crypts the password using the Unix algorithm. This process is the agent who
initiates the protocol (recall we view agents as processes, §3.1.1). The full
protocol consists of three phases, only the first being compulsory. The first
phase, authentication, comprises the first two protocol steps and serves
to authenticate the initiator to the Kerberos System, specifically to the Ker-
beros Authentication Server, Kas in short. If the user is a registered one, the
two agents share the sealed password as a long-term secret, which consti-
tutes the initiator’s shared key: the initiator has computed it, while Kas has
looked it up in the database. Using this secret, Kas issues some authorisation
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A B

1 2 3 4

5
6

database

Kas Tgs

Kerberos System

Figure 6.1: The Kerberos IV layout

credentials that the initiator will use in the second phase, authorisation,
which comprises the third and fourth protocol steps. This phase only oc-
curs when the initiator, who is currently running on a workstation, requires
a network service. Using the previously obtained authorisation credentials,
the initiator contacts the Kerberos System, specifically the Ticket Granting
Server, Tgs in brief. The initiator obtains some service credentials to use in
the final phase, service, in order to access the requested service.

Note that, while Kas does not have a long-term key of its own, Tgs, like
all other agents, does have one that is shared with Kas.

6.1.2 Details

The complete protocol is presented in figure 6.2.

During the authentication phase, the initiator A queries Kas with
her identity, Tgs and a timestamp T1 ; Kas issues a session key and looks
up A’s shared key in the database. It replies with a message sealed by A’s
shared key containing the session key, its timestamp Ta, Tgs and a ticket.
The session key and the ticket are the credentials to use in the subsequent
authorisation phase, so we address them as authkey and authticket respec-
tively. The authticket is sealed by the Tgs shared key and contains a copy
of the authkey, its timestamp and its peers. The lifetime of an authkey is
several hours.

If T1 is not much older than Ta with respect to a given lifetime, then A
is assured that the Kas reply was prompt. If this check is affirmative, A may
start the authorisation phase. She sends Tgs a three-component message
including the authticket, an authenticator sealed by the authkey containing
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Authentication

1. A → Kas : A,Tgs,T1

2. Kas → A : {|authK ,Tgs,Ta, {|A,Tgs, authK ,Ta|}Ktgs
︸ ︷︷ ︸

authTicket

|}Ka

Authorisation

3. A → Tgs : {|A,Tgs, authK ,Ta|}Ktgs
︸ ︷︷ ︸

authTicket

, {|A,T2 |}authK
︸ ︷︷ ︸

authenticator

, B

4. Tgs → A : {|servK , B,Ts, {|A,B, servK ,Ts|}Kb
︸ ︷︷ ︸

servTicket

|}authK

Service

5. A → B : {|A,B, servK ,Ts|}Kb
︸ ︷︷ ︸

servTicket

, {|A,T3 |}servK
︸ ︷︷ ︸

authenticator

6. B → A : {|T3 + 1|}servK

Figure 6.2: The Kerberos IV protocol

her identity and a new timestamp T2 , and B’s identity. The lifetime of an
authenticator is a few minutes. Upon reception of the message, Tgs decrypts
the authticket, extracts the authkey and checks the validity of its timestamp
Ta, namely that Ta is not too old with respect to the lifetime of authkeys.
Then, Tgs decrypts the authenticator using the authkey and checks the
validity of T2 with respect to the lifetime of authenticators. Finally, Tgs

issues a new session key and looks up B’s shared key in the database. It
replies with a message sealed by the authkey containing the new session key,
its timestamp Ts, B and a ticket. The session key and the ticket are the
credentials to use in the subsequent service phase, so we address them as
servkey and servticket respectively. The servticket is sealed by B’s shared
key and contains a copy of the servkey, its timestamp and its peers. The
lifetime of a servkey is a few minutes.

If T2 is not much older than Ts with respect to a given lifetime, then A
is assured that the Tgs reply was prompt. If so, A may start the service

phase. She sends B a two-component message including the servticket and
an authenticator sealed by the servkey containing her identity and a new
timestamp T3 . Upon reception of the message, B decrypts the servticket,
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extracts the servkey and checks the validity of its timestamp Ts. Then, B
decrypts the authenticator using the servkey and checks the validity of T3 .
Finally, B increments T3 , seals it by the servkey and sends it back to A.

In a simplified version of the protocol [57], the fourth message does not
include either of the two occurrences of B’s identity. The spy can then
mount the mentioned redirection attack [79]: she changes B’s identity to
some compromised C’s (or her own) in the third message; she intercepts
the fifth message, decrypts the servticket, extracts the servkey, decrypts the
authenticator and extracts the timestamp T3 ; she forges the sixth message.
Hence, A believes to have completed a protocol session with B when in
fact she has been redirected to someone else and B never participated. The
complete Kerberos IV clearly does not suffer this attack.

6.2 Modelling Kerberos IV

Modelling the two trusted servers requires modifying the Isabelle datatype
for agents (§3.1.1) as

datatype agent = Kas | Tgs | Friend i | Spy

The definition of initState must be updated so to allow both trusted servers
to know all agents’ shared keys. Both Kas and Tgs are assumed not to be
compromised.

The protocol reliance on time is identical to that of BAN Kerberos, so we
adopt the same discrete formalisation for the current time of a trace (§5.3).

We define three natural numbers, authkLife, servkLife, authLife, formalis-
ing respectively the lifetimes of an authkey, of a servkey, and of an authen-
ticator. Three intuitive binary predicates

expiredAK, expiredSK, expiredA : [nat, event list]

check their respective validity, namely the validity of the timestamps asso-
ciated with them

expiredAKTa evs ≡ (ct evs)− Ta > authkLife

expiredSKTs evs ≡ (ct evs)− Ts > servkLife

expiredAT evs ≡ (ct evs)− T > authLife

When any of these predicates holds for some timestamp and some trace,
we say that the timestamp has expired or that the corresponding key, or
authenticator, has expired on that trace.
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A further lifetime, replyLife, indicates the validity interval of any trusted
server’s replies. A suitable binary predicate checks that a timestamp is
issued within such lifetime after another timestamp

validT wrtT ′ ≡ T ≤ T ′ + replyLife

Agents discard late servers replies, which may be either due to servers’
temporary malfunction or to network latency, by operating this check. Those
replies arriving within the lifetime are more highly reliable.

The constant kerberos, declared as set of lists of events, represents the
formal protocol model and is defined by induction below.

6.2.1 Basics

The inductive definition of kerberos contains two basic rules (figure 6.3).
The first sets the base of the induction (Base) introducing the empty trace
in the protocol model. The second models the spy’s illegal activity (Fake)
allowing the spy to send any fake message, obtained from the active analysis
of the traffic, to any agent.

Base

[] ∈ kerberos

Fake

[| evs ∈ kerberos; X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ kerberos

Figure 6.3: Modelling Kerberos IV: basics

6.2.2 Authentication Phase

The protocol initiator A must go through the authentication phase with Kas

(figure 6.4). Any trace, including the empty one, can be extended by the
event formalising the first message of the protocol (K1). This is faithful to
the real world, where any agent, including the spy, may decide to initiate
a protocol session. In the model, the Kas reply is subject to the previous
occurrence of a suitable request from some agent (K2). In the real world,
Kas must receive the request before operating, but the approach does not
yet include message reception (see §7.2).
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K1

evs ∈ kerberos

=⇒ Says A Kas {|Agent A, Agent Tgs, Number (ct evs)|} # evs ∈ kerberos

K2

[| evs ∈ kerberos; Key authK 6∈ used evs;

Says A’ Kas {|Agent A, Agent B, Number T1|} ∈ set evs |]

=⇒ Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number (ct evs),

Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key authK, Number (ct evs)|}|})

# evs ∈ kerberos

Figure 6.4: Modelling Kerberos IV: authentication phase

6.2.3 Authorisation Phase

The initiator A may require authorisation to a network service (figure 6.5).
Before contacting Tgs, A checks that some agent has issued a message con-

K3

[| evs ∈ kerberos;

Says A Kas {|Agent A, Agent Tgs, Number T1|} ∈ set evs;

Says Kas’ A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket|}) ∈ set evs;

¬ expiredAK Ta evs; valid Ta wrt T1 |]

=⇒ Says A Tgs {|authTicket, Crypt authK {|Agent A, Number (ct evs)|},

Agent B|}

# evs ∈ kerberos

K4

[| evs ∈ kerberos; Key servK 6∈ used evs; B 6= Tgs;

Says A’ Tgs {|Crypt (shrK Tgs) {|Agent A, Agent Tgs,

Key authK, Number Ta|},

Crypt authK {|Agent A, Number T2|}, Agent B|}

∈ set evs;

¬ expiredAK Ta evs; ¬ expiredA T2 evs |]

=⇒ Says Tgs A (Crypt authK {|Key servK, Agent B, Number (ct evs),

Crypt (shrK B) {|Agent A, Agent B,

Key servK, Number (ct evs)|}|})

# evs ∈ kerberos

Figure 6.5: Modelling Kerberos IV: authorisation phase
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taining the authorisation credentials for her. While the message must have a
specific form, its sender can be anyone, even the spy. The reception of such
message is, as above, implicit (K3). Note that A checks that the authkey
has not expired and that it was issued within the validity interval from her
request. Once a trace records a query of the expected form, Tgs may issue
its reply provided that neither the authkey nor the authenticator has expired
(K4).

6.2.4 Service Phase

This phase can be modelled (figure 6.6) by the same layout used for the
authorisation one. The initiator A can contact the requested service B only
if the trace records the issue of a servkey within the validity interval from
A’s request. Also, the servkey must not have expired (K5). Before acknowl-
edging A’s request, B checks that neither the servkey nor the authenticator
has expired (K6). We do not need to model the incremented timestamp in
the last step because this does not contribute to the goals of the protocol
(see §6.3.6, §7.4). The message is still different from all others that are sent
in the protocol.

K5

[| evs ∈ kerberos;

Says A Tgs {|authTicket, Crypt authK {|Agent A, Number T2|}, Agent B|}

∈ set evs;

Says Tgs’ A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})

∈ set evs;

¬ expiredSK Ts evs; valid Ts wrt T2 |]

=⇒ Says A B {|servTicket, Crypt servK {|Agent A, Number (ct evs5)|}|}

# evs ∈ kerberos

K6

[| evs ∈ kerberos;

Says A’ B {|Crypt (shrK B) {|Agent A, Agent B, Key servK, Number Ts|},

Crypt servK {|Agent A, Number T3|}|} ∈ set evs;

¬ expiredSK Ts evs; ¬ expiredA T3 evs |]

=⇒ Says B A (Crypt servK (Number T3)) # evs ∈ kerberos

Figure 6.6: Modelling Kerberos IV: service phase
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6.2.5 Accidents

The authkeys are operationally different from servkeys, although they are all
session keys. Chiefly, the two types of keys are associated with timestamps
that are in turn associated with different lifetimes. Also, while authkeys are
issued by Kas and are meant to be used with Tgs, servkeys are issued by Tgs

and are meant to be used with the network services. Furthermore, when an
authkey expires, the corresponding user is logged out from the workstation
and all his processes are killed. On the contrary, when a servkey expires, the
intended network service will not accept it, so the initiator must undertake
a new authorisation phase.

We allow for accidental leaks of session keys (figure 6.7) adopting the
temporal modelling of accidents seen above (§5.5). An authkey can be noted
by the spy together with its timestamp and its peers provided that it has ex-
pired (OopsA), and so can a servkey (OopsS). It is interesting to investigate
whether the spy can exploit expired session keys to get hold of non-expired
ones. This would be a major success for her, since the model allows the
reuse of a session key within its lifetime, like the real world does.

OopsA

[| evsOa ∈ kerberos;

Says Kas A (Crypt (shrK A) {|Key authK, Agent Tgs, Number Ta,

authTicket|}) ∈ set evsOa;

expiredAK Ta evsOa |]

=⇒ Notes Spy {|Agent A, Agent Tgs, Number Ta, Key authK|}

# evsOa ∈ kerberos

OopsS

[| evsOs ∈ kerberos;

Says Tgs A (Crypt authK {|Key servK, Agent B, Number Ts, servTicket|})

∈ set evsOs;

expiredSK Ts evsOs |]

=⇒ Notes Spy {|Agent A, Agent B, Number Ts, Key servK|}

# evsOs ∈ kerberos

Figure 6.7: Modelling Kerberos IV: accidents

6.3 Verifying Kerberos IV

Kerberos IV makes use of session keys in a rather peculiar way: Tgs em-
ploys an authkey to encrypt a servkey in the fourth message. This feature
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greatly complicates the verification of the confidentiality goals. Our proofs
show that synchronising the issue of the two types of keys is crucial. If no
synchronisation is implemented, then the protocol responder (the network
service) gets a weak confidentiality guarantee because the spy may exploit
some servkeys within their validity interval.

While introducing suitable abbreviations to distinguish the two types of
session keys or express the association between authkeys and servkeys, this
section presents all goals verified of Kerberos IV.

In the following, evs is a generic trace of the set kerberos.

6.3.1 Reliability of the Kerberos IV Model

To address the authkeys formally, we define the function

AuthKeys : event list −→ key set

so that AuthKeys evs yields all session keys that Kas issues on the trace evs,
ignoring any eventual repetitions

AuthKeys evs ,

{authK | ∃ A Ts |

Says Kas A (Crypt(shrKA){|Key authK ,Agent Tgs,NumberTs,

Crypt(shrK Tgs){|AgentA,Agent Tgs,

Key authK ,NumberTs|}|})

∈ set evs}

Several lemmas are needed for the symbolic evaluation of this function.
For example, one states formally that no authkeys appear on an empty
trace (lemma 6.1), and another signifies that Kas does introduce an authkey
(lemma 6.2).

Lemma 6.1. AuthKeys [ ] = {}.

Lemma 6.2.

AuthKeys(Says Kas A (Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa,

authTicket |})# evs)

= {authK} ∪ (AuthKeys evs)

The servkeys on a trace evs are formalised as those keys that do not be-
long either to the range of shrK (so they are session keys) or to AuthKeys evs
(so they are not authkeys).
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Our model Kas can be proved to be reliable (theorem 6.3). When ad-
dressing a message to an agent A, Kas seals it by A’s shared key and includes
in it a session key that is an authkey and a well-formed authticket. Using
the function before (defined in §4.1), we establish that the authkey is fresh
when it is issued and its timestamp is chosen as the current time of the
moment.

Theorem 6.3. If evs contains

ev = Says Kas A (CryptK{|Key authK ,AgentTgs,NumberTa, authTicket |})

then

K = shrKA and

authK 6∈ range shrK and authK ∈ AuthKeys evs and

authTicket = (Crypt(shrK Tgs){|AgentA,AgentTgs,

Key authK ,NumberTa|}) and

Key authK 6∈ used(before ev on evs) and

Ta = ct(before ev on evs)

An analogous guarantee enforces the reliability of the model Tgs (the-
orem 6.4). An authkey is used to seal the message, which includes a fresh
servkey and the servticket that quotes it.

Theorem 6.4. If evs contains

ev =

Says Tgs A (Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |})

then

authK 6∈ range shrK and authK ∈ AuthKeys evs and

servK 6∈ range shrK and servK 6∈ AuthKeys evs and

servTicket = (Crypt(shrKB){|AgentA,AgentB,

Key servK ,NumberTs|}) and

Key servK 6∈ used(before ev on evs) and

Ts = ct(before ev on evs)

As expected, to obtain these results, the general strategy for proving
the reliability theorems (§4.1) must be upgraded with frequent appeals to
lemmas 6.1 and 6.2.
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6.3.2 Regularity

Kerberos IV never sends shared keys on the network, so a shared key is avail-
able to the spy if and only if its owner is compromised. The corresponding
regularity lemma has the usual formulation (lemma 6.5).

Lemma 6.5. Key(shrKA) ∈ analz(spies evs) ⇐⇒ A ∈ bad.

6.3.3 Authenticity

The protocol intends to deliver an authkey to A and Tgs and a servkey to
A and B. Determining the originator of a certificate that contains a session
key will confirm the authenticity of both the certificate and the key. As
usual, the analysis will be performed from each agent’s viewpoint, while all
proofs are carried out according to the strategies described above (§4.3).

The instance of the second message that is sealed by A’s shared key car-
ries the authkey meant for A. An appeal to the regularity lemma guarantees
that the certificate is tamper-proof, so induction proves it to have originated
with Kas (theorem 6.6). Recall that the theorem becomes useful to A only
upon reception of the certificate.

Theorem 6.6. If A is not compromised and evs is such that

Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa, authTicket |}

∈ parts(spies evs)

then evs contains

Says Kas A (Crypt(shrKA){|Key authK ,AgentTgs,

NumberTa, authTicket |})

The same guarantee can be enforced on the certificate that delivers the
authkey to Tgs, the authticket (theorem 6.7). Recall that Tgs is not com-
promised.

Theorem 6.7. If evs is such that

Crypt(shrK Tgs){|AgentA,Agent Tgs,Key authK ,NumberTa|}

∈ parts(spies evs)

then evs contains

Says Kas A (Crypt(shrKA){|Key authK ,AgentTgs,NumberTa,

Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,NumberTa|}|})
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We now investigate the authenticity of the servkey. The fourth message,
which delivers this to A, is sealed by the authkey. Clearly, this must be A’s
authkey in order for the message to be intelligible to A. Since the authkey is
not a shared key, the regularity lemma cannot help, so the authkey must be
explicitly assumed to be confidential. The second and the fourth messages
have the same structure. Theorem 6.6 pinpoints the second message by ex-
plicitly assuming that it quotes Tgs. The fourth message quotes a different
agent from Tgs, so this assumption must be made to investigate its authen-
ticity (theorem 6.8). This version of the theorem is not useful to A because
of the confidentiality assumption on the authkey, which can be relaxed by
the confidentiality argument (see §6.3.5).

Theorem 6.8. If B is not Tgs and evs is such that

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs) and

Key authK 6∈ analz(spies evs)

then there exists A such that evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |})

Although the servticket has the same structure as the authticket, the
former is sealed by the shared key belonging to an agent different from Tgs.
The regularity lemma must be applied to investigate the authenticity of
the servticket. We prove (theorem 6.9) that Tgs indeed sent the servticket
encrypted under a session key that originated with Kas.

Theorem 6.9. If B is not compromised and is not Tgs and evs is such that

Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|}

∈ parts(spies evs)

then there exist authK and Ta such that evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,NumberTs,

Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|}|}) and

Says Kas A (Crypt(shrKA){|Key authK ,AgentTgs,NumberTa,

Crypt(shrK Tgs){|AgentA,AgentTgs,Key authK ,NumberTa|}|})
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6.3.4 Unicity

Since Kas issues fresh authkeys, the classical unicity theorem can be used to
state that an authkey cannot appear into two different messages. Another
theorem rests on the unique predicate (§4.4) to state that Kas only sends
each authkey one. The same guarantees hold of the fresh servkeys issued by
Tgs.

Both the authticket and the servticket have the same structure and con-
tain a fresh session key, so we can establish a useful unicity result that
applies to either ticket under the assumption that the session key is con-
fidential (theorem 6.10). Relaxing this assumption by the confidentiality
argument (see §6.3.5) makes the theorem useful to either Tgs or B.

Theorem 6.10. If evs is such that K 6∈ analz(spies evs) and

Crypt(shrKP ){|AgentQ,AgentP,KeyK,T |} ∈ parts(spies evs) and

Crypt(shrKP ′){|AgentQ′,AgentP ′,KeyK,T ′|} ∈ parts(spies evs)

then

P = P ′ and Q = Q′ and T = T ′

6.3.5 Confidentiality

Each authkey can be used to encrypt several servkeys because an agent, once
authenticated, can request more than once service. Therefore, we expect
that the compromise of an authkey may cascade on to several servkeys.
Conversely, servkeys are never used to encrypt any keys, so the compromise
of a servkey should not affect other keys.

These observations can be proved formally, providing three significant
session key compromise theorems. They also become fundamental rewrite
rules for the analz operator when proving the session key secrecy theorems,
the actual confidentiality goals of the protocol.

Session Key Compromise

The proof scripts for the theorems discussed in this section may be found
in Appendix A. The association of authkeys with servkeys in Kerberos
IV resembles the association of session keys with nonces in the Yahalom
protocol [90]. These relations can be formalised in a similar fashion. We
define the predicate

AKcryptSK : [ key, key, event list]



6.3. VERIFYING KERBEROS IV 73

which holds on a trace whenever it contains an event that associates an
authkey with a servkey

AKcryptSK authK servK evs ≡

∃ A B Ts |

Says Tgs A (Crypt authK{|Key servK ,AgentB,NumberTs,

Crypt(shrKB){|AgentA,AgentB,

Key servK ,NumberTs|}|})

∈ set evs

Several lemmas must be proved about the predicate. Chiefly, no keys
encrypt an authkey or a shared key (lemma 6.11); only a single authkey
encrypts a servkey (lemma 6.12); a servkey does not encrypt any keys
(lemma 6.13).

Lemma 6.11. If evs is such that K ∈ AuthKeys evs, or K ∈ range shrK,
then ¬AKcryptSKK ′K evs.

Lemma 6.12. If evs is such that AKcryptSK authK servK evs, and K is
different from authK , then ¬AKcryptSKK servK evs.

Lemma 6.13. If evs is such that servK 6∈ AuthKeys evs, and servK 6∈
range shrK, then ¬AKcryptSK servK K evs.

If a session key K is not associated with a key K ′ by the predicate
AKcryptSK, then the key K is never used to encrypt K ′, so the compromise
of K should not increase the spy’s chances to discover K ′. Expressing this
formally provides an essential lemma (lemma 6.14). The proof is rather
long and complicated: simplification takes three quarters of the total com-
putational time, and several case analyses are required afterwards. The
assumptions of the theorem let, for example, K be an authkey and K ′ be a
servkey, provided that K has not been used to encrypt K ′.

Lemma 6.14. If K is such that K 6∈ range shrK and evs is such that

¬AKcryptSKKK ′ evs

then

KeyK ′ ∈ analz({KeyK} ∪ (spies evs))

⇐⇒ K ′ = K ∨ KeyK ′ ∈ analz(spies evs)
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The first session key compromise theorem concerns authkeys and shared
keys: they can be proved unaffected by the accidental loss of any session key
(theorem 6.15). The proof follows from applying lemma 6.11 to lemma 6.14.
Recall that authkeys are particularly valuable secrets because of their long
lifetime.

Theorem 6.15. If evs is such that

K ∈ AuthKeys evs or K ∈ range shrK

and K ′ 6∈ range shrK, then

KeyK ∈ analz({KeyK ′} ∪ (spies evs))

⇐⇒ K = K ′ ∨ KeyK ∈ analz(spies evs)

Another theorem concerns the servkeys: given the authkey that is as-
sociated with a servkey, no other authkey would help the spy to discover
the servkey (theorem 6.16). The proof follows from applying lemma 6.12 to
lemma 6.14.

Theorem 6.16. If evs is such that

AKcryptSK authK servK evs

and K is different from authK , then

Key servK ∈ analz({KeyK} ∪ (spies evs))

⇐⇒ servK = K ∨ Key servK ∈ analz(spies evs)

No cryptographic key is affected by the loss of a servkey (theorem 6.17).
Note that no assumptions bind K. The proof follows from the application
of lemma 6.13 to lemma 6.14.

Theorem 6.17. If evs is such that

servK 6∈ AuthKeys evs and servK 6∈ range shrK

then

KeyK ∈ analz({Key servK} ∪ (spies evs))

⇐⇒ K = servK ∨ KeyK ∈ analz(spies evs)
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Session Key Secrecy

Session key secrecy theorems express the confidentiality of the session keys.
Following the general strategy, we verify the property from the viewpoints
of the servers and then refine the findings via the authenticity theorems.

If an authkey has not expired, then it cannot be lost by accident via
the OopsA rule. Adding that its peer is not compromised assures that the
key travels safely inside the second message of the protocol. Under these
assumptions, the key confidentiality can be enforced from the viewpoint of
Kas (theorem 6.18) by frequent appeals to theorems 6.15 and 6.16.

Theorem 6.18. If A is not compromised and evs contains

Says Kas A (Crypt(shrKA){|Key authK ,AgentTgs,

NumberTa, authTicket |})

and is such that ¬expiredAKTa evs, then

Key authK 6∈ analz(spies evs)

Refining this result by the authenticity theorem 6.6 produces a confidential-
ity guarantee for A over the authkey.

An analogous result enforces the confidentiality of the servkey from the
Tgs viewpoint under the assumption that the key has not expired and that
the authkey associated to it is confidential (theorem 6.19). Frequent appeals
to theorems 6.15-6.17 are necessary to the proof. The assumption of authkey
confidentiality is clearly indispensable, otherwise the fourth message of the
protocol would falsify the conclusion of the theorem. That assumption can
be relaxed by theorem 6.18 producing a guarantee that is applicable by Tgs,
since Kas and Tgs can inspect each other’s functioning. Also, if B were
compromised, then the servticket, which the spy observes from the fifth
message, would reveal the servkey.

Theorem 6.19. If B is not compromised and evs contains

Says Tgs A (Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |})

and is such that

Key authK 6∈ analz(spies evs) and ¬expiredSKTs evs

then

Key servK 6∈ analz(spies evs)
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The servkey confidentiality can be made useful to A (theorem 6.20) using
existing authenticity and confidentiality theorems. The first step is applying
theorem 6.6 to theorem 6.18 to derive the authkey confidentiality. Then,
theorem 6.8 gives that the servkey originated with Tgs, and theorem 6.19
concludes.

Theorem 6.20. If A and B are not compromised and evs is such that

Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa, authTicket |}

∈ parts(spies evs) and

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs) and

¬expiredAKTa evs and ¬expiredSKTs evs

then

Key servK 6∈ analz(spies evs)

Investigating the servkey confidentiality from B’s viewpoint provides the
opportunity for a deeper insight into the protocol (theorem 6.21), revealing
a violation of our principle of goal availability (§4.8). The proof develops in
a forward style. First, it elaborates on the given history of servK deriving
the confidentiality of authK by theorems 6.6 and 6.18. Then, theorem 6.3
states that authK is a session key (it does not belong to the range of shrK),
which is necessary to apply theorem 6.8 and derive the origin of servK .
Certainly B is different from Tgs, otherwise theorems 6.7 and 6.3 would
derive that servK is an authkey while theorem 6.4 states that it is not. At
this stage, theorem 6.9 introduces another possible history of servK but the
unicity argument for Tgs unifies the two histories. An appeal to theorem 6.19
concludes.

Theorem 6.21. If A and B are not compromised, and evs is such that

Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|}

∈ parts(spies evs) and

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs) and

Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa, authTicket |}

∈ parts(spies evs) and

¬expiredAKTa evs and ¬expiredSKTs evs

then
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Key servK 6∈ analz(spies evs)

A closer look at the proof just described shows that, after applying theo-
rems 6.6, 6.18 and 6.8, servTicket = {|A,B, servK ,Ts|}Kb could be derived
by theorem 6.4. Since parts is closed under message decomposition, the first
assumption of theorem 6.21 is technically unnecessary. However, the present
formulation highlights what B can verify and what he must trust.

In the real world, B can only witness the reception of the servticket, thus
verifying the first and fifth assumptions of the theorem. He is certainly not
able to verify the second, third and fourth because they pertain to the au-
thentication and authorisation phases, to which he does not participate. Are
these assumptions necessary? They signify that the authkey that encrypts
the servkey whose confidentiality is being studied has not expired. This is
indispensable for the application of theorems 6.6 and 6.18 and enforces the
authkey confidentiality, which is itself indispensable to derive the servkey
confidentiality due to the form of the fourth message.

An Attack

Because of the assumptions that B cannot verify, theorem 6.21 cannot be
applied by B. The theorem reveals that, upon reception of the servticket,
B must trust that the preceding phases have not compromised the authkey
and consequently the servkey. Therefore, B obtains a weak guarantee of
servkey confidentiality. Note that these observations arise from checking
whether the protocol conforms to the principle of goal availability.

As a matter of fact, admitting that session keys can only be leaked by
accident when they have expired, as does our model, the following attack
is possible. The authkey belonging to A expires and the spy gets hold of
it, while A is killed and her owner logged out from the workstation; the
spy extracts all servkeys associated to that authkey from messages she has
previously intercepted; she exploits each of those that have not expired to
spoof the fifth message (she only needs to update the timestamp of the
authenticator) and access the corresponding network service B.

While B believes to be communicating with A, in fact A does not exist
anymore. Moreover, A’s owner, who is no longer connected, cannot register
any irregularities. So, within the lifetime of servkeys, the spy can obtain
access to all services that were in fact granted to the protocol initiator.
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Fixing the Attack

It is unsafe to allow servkeys to remain valid when the authkey to which
they are associated expires. Preventing this fixes the attack. The aim can be
achieved by constraining the Tgs operation with a suitable temporal check
to add to rule K4

(ct evs) + servkLife ≤ Ta + authkLife (6.1)

Note that Ta is the timestamp that marks the issue of the authkey, so the
check prescribes that the expiry time of the servkey at latest equals that of
the authkey.

In the strengthened protocol model, theorem 6.21 no longer needs the
second, third and fourth assumptions, so becoming applicable by B. There-
fore, B obtains a strong confidentiality guarantee. Although shorter than
the old proof, the new one requires some arithmetic. Moreover, B must
be explicitly assumed to be different from Tgs otherwise the servticket
{|A,B, servK ,Ts|}Kb could be misinterpreted as an authticket. Theorem 6.9,
updated to enforce also condition 6.1, derives a history of servK . From
¬expiredSKTs evs and condition 6.1, we derive that ¬expiredAKTa evs.
Theorems 6.18 and then 6.19 conclude the proof. Note that the unicity
argument is not required because the reasoning only develops along a single
history of servK .

6.3.6 Authentication

Authentication is one of the main goals of Kerberos IV. Not only does the
protocol aim at mutual authentication between the initiator and the network
service, but also between the initiator and Tgs. For the sake of completeness,
we observe that the first message, which is a cleartext, does not authenti-
cate the initiator to Kas. Thus, the spy may overload the server with fake
requests in the same way as with BAN Kerberos (§5.3). The authenticity
theorem 6.6 also authenticates Kas to the initiator A providing a guarantee
of weak agreement.

The authenticator {|A,T2 |}authK of the third message aims at authen-
ticating A to Tgs. However, Tgs merely receiving the authenticator does
not enforce the goal: Tgs must also receive the corresponding authticket
{|A,Tgs, authK ,Ta|}Ktgs to learn authK and be able to decipher the au-
thenticator. If authK is confidential in this scenario, then A sent those
certificates in an instance of the fourth message (theorem 6.22). Relaxing
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the last assumption by the confidentiality theorem 6.18 results in a guar-
antee for Tgs. Note that the regularity lemma guarantees the integrity of
the authticket because Tgs is not compromised, while the confidentiality of
authK establishes that of the authenticator.

The theorem formalises weak agreement of A with Tgs but does not
express that A is the true creator of the authenticator, which would give
evidence to Tgs that A knows authK and was alive at time T2 . We will
prove formally that this stronger goal is met (see §7.4).

Theorem 6.22. If evs is such that

Crypt authK{|AgentA,NumberT2 |} ∈ parts(spies evs) and

Crypt(shrK Tgs){|AgentA,Agent Tgs,Key authK ,NumberTa|}

∈ parts(spies evs) and

Key authK 6∈ analz(spies evs)

then there exists B such that evs contains

SaysA Tgs {|Crypt(shrK Tgs){|AgentA,Agent Tgs,Key authK ,NumberTa|},

Crypt authK{|AgentA,NumberT2 |},AgentB|}

The proof, which relies on the integrity of the two certificates, requires a
substantial simplification to deal with the long inductive formula. The most
significant subgoal arises from rule K3, which introduces an event of the same
form as that asserted by the theorem. If the two events contain different
authkeys, the inductive formula terminates the proof, otherwise an appeal
to the unicity theorem 6.10 is required.

The authenticity theorem 6.8 guarantees weak agreement of Tgs with A.

The same strategy proves weak agreement of A with B (theorem 6.23).
The theorem relies on certificates that have the same form as those of the
previous one. However, assuming B not to be Tgs establishes that they con-
tain a servticket. As expected, B must be assumed not to be compromised
in order for the servticket to be integral. The theorem will be strengthened
to state formally that A knows servK and was alive at time T3 (see §7.4).

Theorem 6.23. If B is not Tgs and is not compromised, and evs is such
that

Crypt servK{|AgentA,NumberT3 |} ∈ parts(spies evs) and

Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|}

∈ parts(spies evs) and

Key servK 6∈ analz(spies evs)
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then evs contains

SaysAB {|Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|},

Crypt servK{|AgentA,NumberT3 |}|}

Proving weak agreement of B with A (theorem 6.24) is a little more com-
plicated because the last message of the protocol fails to state B’s identity.
Fortunately, this lack of explicitness can be overcome by additional checks
on A’s side. The theorem does not state formally that B knows servK or
when B was alive (see §7.4).

Theorem 6.24. If A is not compromised and evs is such that

Crypt servK (NumberT3 ) ∈ parts(spies evs) and

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs) and

Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa, authTicket |}

∈ parts(spies evs)

Key authK 6∈ analz(spies evs) and Key servK 6∈ analz(spies evs)

then evs contains

SaysBA (Crypt servK (NumberT3 ))

To understand the theorem, let us recall that the last message of the protocol
is a certificate sealed by a servkey. That key must be confidential for the
certificate not to be spoof. Upon reception of the certificate, A can derive
that the servkey is meant for B by recalling the association established by
an instance of the fourth message. This must be sealed by a confidential
authkey meant for A in order for the association to be reliable, namely not
invented by the spy.

6.3.7 Key Distribution

The current potential of the Inductive Approach is inadequate to reason
about key distribution (§4.7), as observed during the analysis of BAN Ker-
beros (§5.4.7). In the next chapter, we will introduce the necessary exten-
sions to verify this goal (§7.4).



Chapter 7

Modelling Agents’

Knowledge of Messages

Agents’ knowledge of messages is defined via possession of the
messages. Two approaches to formalise the notion within the
Inductive Approach are demonstrated and compared.

Reasoning formally about security protocols invites confusion between belief
and knowledge. Abstracting from the context may help clarify the difference.
If Alice knows something in everyday life, then she has sufficient evidence
that it is true. If she believes something, then she does not necessarily have
evidence about it. The BAN logic [31] only captures the notion of belief,
though this is often misinterpreted as knowledge. The predicate P believesφ
signifies that “P would be entitled to believe X” and that “P may act as
though X is true” [31, p.236]. Subsequent research extends the logic with
a proper concept of knowledge: Bleeker and Meertens [26] introduce the
predicate P rightly believesφ, which holds when P believes φ and φ in fact
holds.

As demonstrated in the previous chapters, the Inductive Approach pro-
vides a meta formalisation of agents’ beliefs and knowledge by means of theo-
rems. Those stated from an agent’s viewpoint express the agent’s knowledge
in case the agent can verify all their assumptions. Conversely, if the agent
cannot obtain evidence of the truth values of some assumptions, then the
theorems express the agent’s beliefs. When some assumptions constitute a
minimal trust (§4.8), the beliefs cannot become knowledge.

The present chapter provides a formal definition of the agents’ knowl-
edge of message components and messages, rather than knowledge that cer-
tain events have occurred. This is crucial to verify the main goal of most
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of the protocols already formalised: key distribution. Each of the peers
of a session key should receive guarantees that the other peer knows the
same key. Moreover, the definition prepares the Inductive Approach for
analysing new hierarchies of protocols. For example, non-repudiation pro-
tocols (e.g. [105, 106]) aim at non-repudiation of reception, which requires
proving agents’ knowledge of specific components upon their reception. E-
commerce protocols (e.g. [70]) would not authorise delivery of goods until
the merchant obtains assurances that his bank knows the components that
correspond to the exact payment. Protocols for group key agreement aim
at distributing a key to all agents of the group, providing each agent with
evidence that the goal is met (e.g. [9, 91]).

We express knowledge of a component via possession of the compo-
nent [12]. This notion can be formalised via the ability to actively use
the component, which is in turn verifiable by inspecting the history of the
network (§7.1). Alternatively, reception of the component also expresses its
possession but requires introducing the corresponding event (§7.2). This also
improves the readability of the analyses. The outcomes of both approaches
are presented in detail on BAN Kerberos (§7.3) and on Kerberos IV (§7.4).
The chapter continues with a comparison of the two approaches (§7.5), and
finally discusses the outcomes of using timestamps or nonces on the same
protocol design (§7.6).

7.1 Agents’ Knowledge via Trace Inspection

The agent who creates a message certainly knows all components of the
message, including the cryptographic key that eventually seals the message.
Unfortunately, a Says event is inadequate to express creation (as observed
above, §4.6, §5.4.6, §6.3.6) because it may occur when an agent is merely
forwarding an unintelligible message.

However, if we require that a message X has never appeared, even within
a larger message, before the event SaysABX occurs, then A is the true
creator of X. This can be established by inspecting the history that precedes
the event. Since each history is recorded by a trace, enforcing the property
simply requires a trace inspection. We declare the predicate

Issues : [agent, agent,msg, event list]

so that A Issues B with X on evs holds when A creates message X for B on
trace evs. Events may occur more than once and recent events are appended
to the head of traces. Therefore, detecting the first occurrence through time
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of an event ev on a trace evs requires scanning evs in reverse, namely from
tail to head. Traces are lists, and Isabelle provides numerous functions
for reasoning about lists. The unary rev reverses a list, while the binary
takeWhile takes a predicate and a list, scans the list and returns all elements
of the list until these verify the predicate. All other functions for defining
Issues are known.

A Issues B with X on evs ≡

∃Y. SaysAB Y ∈ set evs and X ∈ parts{Y } and

X /∈ parts(spies (takeWhile(λx. x 6= SaysAB Y )(rev evs)))

It can be seen that the predicate requires that A has sent X, possibly inside
a larger message, and that X never appears in the traffic preceding such
event.

7.1.1 Basic Lemmas

A few technical lemmas are necessary to reason about reversed lists. All
of them are provable by induction on the relevant trace. For example, the
traffic on a trace whose first element is a Says event amounts to the traffic on
the subtrace without the event plus the message introduced by that event
(lemma 7.1). Recall that @ is the Isabelle symbol for the list concatenation
operator.

Lemma 7.1. spies (evs @ [SaysABX]) = {X} ∪ (spies evs).

Together with the analogous law concerning the Notes event (omitted here),
lemma 7.1 serves to establish an obvious result formally: the traffic on a
reversed trace is the same as that on the original trace (lemma 7.2).

Lemma 7.2. spies evs = spies (rev evs).

Another technically important result states that the traffic on a subtrace
obtained via the takeWhile function is a subset of the traffic on the whole
set (lemma 7.3).

Lemma 7.3. spies (takeWhileP evs) ⊆ (spies evs).

7.1.2 Proving Knowledge

A general strategy can be devised to prove significant guarantees in terms
of the Issues predicate.
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Let us suppose that a message X is a component of a larger message Y ,
and that the event SaysAB Y occurs on a trace evs. If A is the true cre-
ator of X, then (and only then) we can prove that A Issues B with X on evs
holds. Some assumptions are necessary to ensure that the spy cannot forge
X before A actually creates it: if X is a compound message, then we must
assume that the spy cannot analyse its components from the traffic or syn-
thesise them; if X is a ciphertext, then we must assume the confidentiality of
the key that seals it. Also, A must be assumed not to be the spy, so she acts
legally according to the protocol. Further assumptions may be required on
A and B (see §7.3.1, §7.4.1) depending on the protocol. The proof develops
through the following strategy.

• Simplify the main subgoal by the definition of Issues.

• Isolate the first two conjuncts of the definition of Issues by proceeding
in a backward style (resolving by the introduction rules for existential
quantification first, and then conjunction).

• Prove the first conjunct, SaysAB Y , by assumption, and the second
conjunct, X ∈ parts{Y }, by symbolic evaluation of the parts operator.

• Apply structural induction over the protocol model to verify that all
steps of the protocol definition preserve the following property: the
occurrence of the event SaysAB Y on a trace implies that Y never
appears on the trace before that event.

• Simplify all subgoals.

• Prove the subgoal corresponding to the protocol step where the event
SaysAB Y takes place by applying lemmas 7.3 and 7.2, a few trivial
ones, and finally a lemma introducing the event SaysAB Y on the
available assumptions (see §7.3.1, §7.4.1).

Although the theorem has limited importance in itself, since it merely
says that an agent knows the components of the messages he sends, it is par-
ticularly useful to refine other theorems that enforce the event SaysAB Y .
For example, using this strategy we have investigated the goals of non-
injective agreement and key distribution on all protocols analysed so far, as
demonstrated below on BAN Kerberos and Kerberos IV.
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7.2 Agents’ Knowledge via Message Reception

The extensions to the Inductive Approach mentioned in this section have
been released with the 1999 distribution of Isabelle.

A primitive modelling message reception can be introduced [11] by ex-
tending the Isabelle datatype for events (§3.1.3) as follows

datatype event = Says agent agent msg

| Notes agent msg

| Gets agent msg

In the real world, a message can be received only if it was previously
sent. This reception invariant can be easily enforced by the protocol model
(see §7.2.2).

Technically speaking, the Notes event could be replaced by the Gets

event imagining that when an agent notes down a message it is as if the
agent received it from the network. However, this would compromise the
reception invariant. Keeping the two events separate allows reasoning that
turns out to be more readable, more faithful to reality and, ultimately,
simpler. For example, thanks to the reception invariant, the messages that
are received do not need to enrich the set of components used on a trace.
The definition of used (§3.3) must be extended with the following rule

− used((GetsAX) # evs) , used evs

7.2.1 From Spy’s Knowledge to Agents’ Knowledge

The major outcome of introducing message reception is a realistic formalisa-
tion of agents’ knowledge. The rudimentary version available initially within
the Inductive Approach [87] was soon enhanced to express knowledge of a
single agent, the spy, by means of the function spies [88, §3.5] (§3.2). The
previous chapters have demonstrated that this function allows reasoning
about confidentiality but not about key distribution. We generalise spies to
a binary function that captures any agent’s knowledge

knows : [ agent, event list ] −→ msg set

The additional parameter represents the agent whose knowledge is being
defined. The entire range of the function initState (§3.2) is now relevant
to the rest of the treatment. The definition of knows generalises that of
spies in the base case and the two inductive steps corresponding to the
existing events. A third inductive step becomes necessary to account for the
Gets event.
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0. An agent knows his initial state.

knowsA [ ] , initStateA

1. An agent knows what he sends to anyone on a trace; in particular, the
spy also knows all messages ever sent on it.

knowsA ((SaysA′BX) # evs) ,
{

{X} ∪ knowsA evs if A = A′ ∨ A = Spy

knowsA evs otherwise

2. An agent knows what he notes on a trace; the spy also knows the
compromised agents’ notes.

knowsA ((NotesA′X) # evs) ,






{X} ∪ knowsA evs if A = A′ ∨
(A = Spy ∧ A′ ∈ bad)

knowsA evs otherwise

3. An agent, except the spy, knows what he receives on a trace. The spy’s
knowledge must not be extended with any of the received messages
since the spy already knows them by case 1 and by the reception
invariant.

knowsA ((GetsA′X) # evs) ,
{

{X} ∪ knowsA evs if A = A′ ∧ A 6= Spy

knowsA evs otherwise

According to the initial definition of agents’ knowledge [87, §4.5], an agent A
could see a message X when X had been sent by somebody to A. However,
this could not ensure that X had been delivered to A. The introduction of
the reception event allows a more faithful treatment of the matter through
the last step of the definition of knows.

Recall that the function analz is applied to a set of messages and recur-
sively extracts all components of compound messages and bodies of mes-
sages encrypted under keys that are known. If, in the real world, an agent
A knows a message X, the protocol model contains a trace evs such that
either X ∈ (knowsA evs) if A did not need any decryption to get hold of
X, or X ∈ analz(knowsA evs) if A had to retrieve X from within a larger
message of the set knowsA evs. Therefore, also friendly agents may now
need to apply the function analz in some circumstances.
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7.2.2 Updating the Existing Models

Let prot be a formal protocol model. The reception invariant (that a message
can be received only if it was sent) can be enforced by adding an inductive
rule to the definition of the protocol. The rule, which is called Reception (fig-
ure 7.1), allows extending a trace of prot that contains an event SaysABX
with the event GetsBX.

Reception

[| evsR ∈ prot; Says A B X ∈ set evsR |]

=⇒ Gets B X # evsR ∈ prot

Figure 7.1: Rule for message reception

Note that, since rules are never forced to fire on any trace, no Gets event
can be forced to take place. Therefore, no guarantee can be established that
a message that was sent will be ever received by the intended recipient, as
is realistic in a setting where the spy can prevent message delivery. Further-
more, each rule can fire more than once so that the same message can be
received more than once, or fire in the wrong order so the order in which
messages are sent is not necessarily preserved upon their reception. Note
also that agents discard the sender label upon reception because it is not
reliable on an insecure network.

The protocol model needs further updates. If the event SaysP QX ap-
pears in the premises of a rule and P does not appear in the conclusions,
then the event can be replaced by GetsQX. In the old model, Q acted
when some other (undefined) agent had sent him X. However, no agent
but the spy can monitor events performed by other agents, so the condi-
tion was not directly verifiable by Q until X was received. Thus, the new
model expresses Q’s behaviour more closely. Figure 7.2 shows a fragment
of the updated model for BAN Kerberos, derived from that in figure 5.2,
§5.3. Note that the Fake rule contains knows Spy rather than spies . The
occurrences of spies in all existing theories must be updated similarly.

7.2.3 Basic Lemmas

Let prot be a protocol model whose definition includes the Reception rule.
Let evs be a generic trace of prot. Induction easily proves that prot satisfies
the reception invariant (lemma 7.4).
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Fake

[| evs ∈ bankerberos; X ∈ synth (analz (knows Spy evs)) |]

=⇒ Says Spy B X # evs ∈ bankerberos

BK2

[| evs ∈ bankerberos; Key K 6∈ used evs;

Gets Server {|Agent A, Agent B|} ∈ set evs |]

=⇒ Says Server A (Crypt (shrK A) {|Number (ct evs), Agent B, Key K,

Crypt (shrK B) {|Number (ct evs), Agent A, Key K|}|})

# evs ∈ bankerberos

BK3

[| evs ∈ bankerberos;

Says A Server {|Agent A, Agent B|} ∈ set evs;

Gets A (Crypt (shrK A) {|Number Ts, Agent B, Key K, Ticket|})

∈ set evs;

¬ expiredS Ts evs |]

=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (ct evs)|}|}

# evs ∈ bankerberos

Figure 7.2: Updating the BAN Kerberos model (fragment)

Lemma 7.4. If evs contains GetsBX, then there exists A such that evs
also contains SaysABX.

Applying this lemma and an existing one (omitted here) stating that the spy
knows the messages that have been sent, we can prove that she also knows
all messages that have been received (lemma 7.5).

Lemma 7.5. If evs contains GetsBX, then X ∈ (knows Spy evs).

Reading the lemma when B is the spy, we derive that the spy knows the
messages she receives. The last case of the definition of knows allows this
result to be generalised: any agent knows what he receives (lemma 7.6).

Lemma 7.6. If evs contains GetsBX, then X ∈ (knowsB evs).

Resolving lemma 7.5 with the lemma H ⊆ partsH, we obtain that messages
that are received appear in the traffic (lemma 7.7).

Lemma 7.7. If evs contains GetsBX, then X ∈ parts(knows Spy evs).

7.2.4 Updating the Existing Theorems

Lemma 7.7 allows significant modifications to some theorems proved of the
protocols analysed thus far.
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In consequence, some theorems become available (according to our defi-
nition of §4.8) to the agents. For example, the unicity theorem 5.5 for BAN
Kerberos can be made available to agents who are not compromised (the-
orem 7.8). The proof rests on a double application of lemma 7.7; a double
application of the authenticity theorem 5.3 then introduces the necessary
assumptions to apply the unicity theorem 5.5.

Theorem 7.8. If A is not compromised and evs, belonging to bankerberos,
contains

GetsA (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |}) and

GetsA (Crypt(shrKA){|NumberTk ′,AgentB′,KeyKab,Ticket ′|})

then

Tk = Tk ′ and B = B′ and Ticket = Ticket ′

Therefore, should an agent who is not compromised receive the same session
key within two different messages, she could suspect that something has gone
wrong (unknown to our formalisation). Expectedly, the Unique predicate
cannot be proved to hold on any reception event, for any message can be
received more than once (§7.2.2).

Other theorems become more readable and faithful to reality. For exam-
ple, authentication of A to B for Kerberos IV can be established upon B’s
reception of a suitable message (theorem 7.9). The proof applies lemma 7.7,
then another stating that parts is closed under message decomposition, and
finally the existing authentication theorem 6.23.

Theorem 7.9. If B is not Tgs and is not compromised, and evs, belonging
to kerberos, contains

GetsB {|Crypt(shrKB){|AgentA,AgentB,KeyKab,NumberTs|},

CryptKab{|AgentA,NumberT3 |}|} and

and Kab 6∈ analz(knows Spy evs), then evs contains

SaysAB {|Crypt(shrKB){|AgentA,AgentB,KeyKab,NumberTs|},

CryptKab{|AgentA,NumberT3 |}|}
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7.2.5 Proving Knowledge

The crucial fact about agents’ knowledge is lemma 7.6: any agent knows
what he receives. Applying H ⊆ analzH, we derive that an agent knows all
components of the received messages that he can decrypt.

Hence, when designing guarantees for an agent A, we can inform her of
B’s knowledge of all components of X by proving that an event GetsBX
took place. However, proving that the event occurred depends on the pro-
tocol under analysis. As examples, we show below how to prove the goal
of key distribution for BAN Kerberos (see §7.3.2) and for Kerberos IV (see
§7.4.2).

7.3 Revisiting the Guarantees on BAN Kerberos

We have tested both approaches to agents’ knowledge on all existing proto-
col analyses. This section presents the outcome on the verification of BAN
Kerberos concentrating on the goals of authentication and key distribution,
which receive the most significant benefits. Other outcomes have been men-
tioned above (§7.2.4).

For the sake of readability, the statement “K is confidential on evs” will
replace K 6∈ analz(knows Spy evs).

7.3.1 Using Trace Inspection

The general strategy described above (§7.1.2) may be applied to prove that
if a friendly agent sends an instance of the third message of BAN Kerberos,
then that agent indeed created the message (theorem 7.10). The proof script
may be found in Appendix B.

Theorem 7.10. If A is not the spy and evs, belonging to bankerberos, con-
tains

SaysAB {|Ticket ,CryptKab{|AgentA,NumberTa|}|}

and Kab is confidential on evs, then

A Issues B with (CryptKab{|AgentA,NumberTa|}) on evs

As anticipated by the general strategy, the most difficult subgoal to
prove arises from the case formalising the third step of the protocol, which
we quote below.
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[| A 6= Spy; evs3 ∈ bankerberos;

Says S A (Crypt (shrK A) {|Number Tk, Agent B, Key Kab, Ticket|})

∈ set evs3;

Says A Server {|Agent A, Agent B|} ∈ set evs3;

Key Kab 6∈ analz (spies evs3);

Says A B {|Ticket, Crypt Kab {|Agent A, Number (ct evs3)|}|}

6∈ set evs3;

Crypt Kab {|Agent A, Number (ct evs3)|}

∈ parts

(spies

(takeWhile

(λz. z 6= Says A B {|Ticket,

Crypt Kab {|Agent A, Number (ct evs3)|}|})

(rev evs3))) |]

==> False

If we resolve the monotonicity law for parts with lemma 7.3, we obtain
a lemma with which the last assumption of the subgoal can be resolved,
producing

CryptKab{|AgentA,Number(ct evs3 )|} ∈ parts(spies (revevs3 ))

Then, the monotonicity law for parts and lemma 7.2 give that the authenti-
cator belongs to parts(spies evs3 ), namely it appears in the traffic. At this
stage, the proof would terminate by application of the authentication theo-
rem 5.10 but not all its assumptions are yet available. So, we try to fetch
them. From the third assumption of the subgoal, we derive that

Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |} ∈ analz(spies evs3 )

(referred to as condition 7.1 below) and therefore A certainly is not com-
promised, otherwise Kab would not be confidential. By theorem 5.3, the
agent S mentioned by the third assumption is in fact the server. Then,
theorem 5.1 derives that the ticket in the intelligible form is in the traffic on
evs3 . One last assumption is missing for applying theorem 5.10: B must not
be compromised. The subgoal does not give sufficient information to derive
this fact. However, the initial level of the proof tree did. We backtrack to
that level and derive that

Ticket ∈ analz(spies evs)

since the ticket appears in a compound message. Also, since A is a friendly
agent, we can prove by induction that the form of the ticket she is sending in
the fourth message is the same as that established by the server. Therefore,

Ticket = Crypt(shrKB){|NumberTk ,AgentA,KeyKab|}
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for some Tk . From the last two conditions, it follows that B must not be
compromised, otherwise Kab would not be confidential (this could not fol-
low from condition 7.1 because A is not compromised). Hence, the proof
proceeds as mentioned above and the last subgoal can terminate as indicated.

The authentication theorem 5.10 can be resolved with the first assump-
tion of theorem 7.10. To enhance readability, we use here the version of
theorem 5.10 where the confidentiality assumption on the session key has
not yet been relaxed by theorem 5.9. We obtain a guarantee available to B
conveying A’s knowledge of Kab and non-injective agreement of A with B
on Kab (theorem 7.11). The theorem assumes A to be friendly, so she acts
legally. This implies that she was alive at time Ta.

Theorem 7.11. If A is not the spy, B is not compromised, and evs, be-
longing to bankerberos, is such that

Crypt(shrKB){|NumberTk ,AgentA,KeyKab|} ∈ parts(spies evs) and

CryptKab{|AgentA,NumberTa|} ∈ parts(spies evs)

and Kab is confidential on evs, then

A Issues B with (CryptKab{|AgentA,NumberTa|}) on evs

The same procedure relies on the authentication theorem 5.11 to prove
the analogous guarantee for A (theorem 7.12). The theorem informs A that
B knows Kab and establishes non-injective agreement of B with A on Kab.

Theorem 7.12. If A is not compromised, B is not the spy, and evs, be-
longing to bankerberos, is such that

Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |}

∈ parts(spies evs) and

CryptKab(NumberTa) ∈ parts(spies evs)

and Kab is confidential on evs, then

B Issues A with (CryptKab(NumberTa)) on evs

Unfortunately, the protocol only requires B to reply with an incremented
Ta, so A only understands that B was alive after Ta. In other words, Ta is
being used as a nonce. However, if B inserted the current time in place of
Ta, then A would be informed of the exact instant when B was alive, which
is a desirable outcome from the use of timestamps.

Theorems 7.11 and 7.12 formally prove that BAN Kerberos also achieves
the goal of key distribution. In the next section, we shall see how the same
goal is verified using message reception.
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7.3.2 Using Message Reception

As seen above, proving the goal of key distribution on a protocol signifies
proving to each agent who has obtained a session key via the protocol that
the peer knows the same session key. Using the approach based on message
reception for reasoning about agents’ knowledge, we aim at proving that one
of the peers received the session key on assumptions that the other peer can
verify (§7.2.5). BAN Kerberos allows these proofs, thus achieving the goal
of key distribution.

Let us suppose that an agent B who is not compromised receives an
instance of the third message of the protocol that quotes an agent A who is
not the spy. Assuming that this session key is confidential, the session key
must be known to A (theorem 7.13).

Theorem 7.13. If A is not the spy, B is not compromised, and evs, be-
longing to bankerberos, contains

GetsB {|Crypt(shrKB){|NumberTk ,AgentA,KeyKab|},

CryptKab{|AgentA,NumberTa|}|}

and Kab is confidential on evs, then

KeyKab ∈ analz(knowsA evs)

The proof is simple. Theorem 5.10, which authenticates A to B, can be
updated according to the guidelines given above (§7.2.4) so that its conclu-
sion can be established on the assumptions of theorem 7.13. This is why B
must not be compromised. Then, having that A sends an instance of the
third message, if she is a friendly agent, we can derive by induction that she
received an instance of the second message containing Kab and therefore
can extract the key by definition of knows .

Along with the updated version of theorem 5.10, theorem 7.13 estab-
lishes non-injective agreement of A with B on Kab.

Using the same strategy on the authentication theorem 5.11, we can
prove B’s knowledge of the session key on assumptions verifiable by A (the-
orem 7.14). The two theorems together establish non-injective agreement of
B with A on Kab.

Theorem 7.14. If A is not compromised, B is not the spy, and evs, be-
longing to bankerberos, contains

GetsA (CryptKab(NumberTa)) and

GetsA (Crypt(shrKA){|NumberTk ,AgentB,KeyKab,Ticket |})
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and Kab is confidential on evs, then

KeyKab ∈ analz(knowsB evs)

Theorems 7.13 and 7.14 also signify that BAN Kerberos achieves the
goal of key distribution.

7.4 Revisiting the Guarantees on Kerberos IV

Both approaches to agents’ knowledge scale up to proving non-injective
agreement and key distribution on Kerberos IV. The proofs are, as expected,
longer than those for BAN Kerberos because distinguishing between the two
kinds of session keys and tickets often requires case analyses.

As above, for the sake of readability, the statement “K is confidential
on evs” will replace K 6∈ analz(knows Spy evs).

7.4.1 Using Trace Inspection

As previously mentioned, the authenticity theorem 6.6 establishes weak
agreement of Kas with A. The general strategy (§7.1.2) may be used to
establish that, if Kas sends an instance of the second message, then Kas

is indeed issuing a message that never appeared before. Resolving the as-
sumption of this result by theorem 6.6, we provide A with evidence that Kas

knows the authkey mentioned in the message. The theorem (omitted here)
establishes non-injective agreement of Kas with A on the authkey.

If A is a friendly agent sending an instance of the third message, then
we can prove that A is the creator of the authenticator that the message
contains. Note that, while Kas is certainly not the spy thanks to the in-
jections created by the Isabelle datatype for messages (§3.1.2), the generic
agent A must be explicitly assumed to be friendly in order for the result
to hold. Combining this with the authentication theorem 6.22, we obtain a
guarantee of non-injective agreement of A with Tgs on the authkey authK
(theorem 7.15). Relaxing the confidentiality assumption on authK by the-
orem 6.18, the guarantee can be applied by Tgs within the minimal trust
that A is not compromised. The theorem also informs Tgs that A was alive
at time T2 .

Theorem 7.15. If A is not the spy and evs, belonging to kerberos, is such
that

Crypt authK{|AgentA,NumberT2 |} ∈ parts(spies evs) and
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Crypt(shrK Tgs){|AgentA,Agent Tgs,Key authK ,NumberTa|}

∈ parts(spies evs)

and authK is confidential on evs, then

A Issues Tgs with (Crypt authK{|AgentA,NumberT2 |}) on evs

Like Kas, Tgs also acts legally. So, we can prove that if Tgs sends
an instance of the fourth message, then the message is new. This result
combined with theorem 6.8 (which expressed weak agreement of Tgs with
A) yields a guarantee of non-injective agreement of Tgs with A on the keys
authK and servK (theorem 7.16). The guarantee also tells A that Tgs was
alive at time Ts.

Theorem 7.16. If B is not Tgs and evs, belonging to kerberos, is such that

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs)

and authK is confidential on evs, then

Tgs Issues A with

(Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}) on evs

We can also prove that a friendly agent who sends an instance of the
fourth message does create the authenticator included in the message. Re-
solving the conclusion of theorem 6.23 with the main assumption of the
stated result, we derive non-injective agreement of A with B on the servkey
servK (theorem 7.17). The guarantee also tells B that A was alive at time
T3 .

Theorem 7.17. If A is not the spy, B is not Tgs and is not compromised,
and evs, belonging to kerberos, is such that

Crypt servK{|AgentA,NumberT3 |} ∈ parts(spies evs) and

Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|}

∈ parts(spies evs)

and servK is confidential on evs, then

A Issues B with (Crypt servK{|AgentA,NumberT3 |}) on evs
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Finally, if a friendly agent B sends an instance of the last message sealed
by a confidential servkey, then the message can be proved to be new. This
result can be used to refine theorem 6.24, so expressing non-injective agree-
ment of B with A on the servkey servK (theorem 7.18). Also, B does
not cheat because he is assumed to be friendly. Therefore, as observed on
BAN Kerberos, A learns that B was alive after Ta but could get a stronger
information if B replaced Ta with a fresh timestamp.

Theorem 7.18. If A is not compromised, B is not the spy, and evs, be-
longing to kerberos, is such that

Crypt servK (NumberT3 ) ∈ parts(spies evs) and

Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

∈ parts(spies evs) and

Crypt(shrKA){|Key authK ,Agent Tgs,NumberTa, authTicket |}

∈ parts(spies evs)

and both authK and servK are confidential on evs, then

B Issues A with (Crypt servK (NumberT3 )) on evs

Theorems 7.17 and 7.18 signify that the Kerberos IV guarantees key
distribution. The goal concerns a servkey and its peers. In addition, the-
orems 7.15 and 7.16 signify that key distribution is also met between the
protocol initiator and Tgs on an authkey. In the next section, we shall see
how to study the same goals by message reception.

7.4.2 Using Message Reception

The entire hierarchy of theorems presented below rests on a unique philos-
ophy: the authenticity (§6.3.3) or authentication (§6.3.6) theorems updated
by suitable reception events (§7.2.4) provide guarantees of weak agreement.
Using the definition of knows we prove that specific agents have knowledge
of specific session keys. Combining these guarantees, we derive non-injective
agreement on the session keys.

If an agent who is not compromised receives the instance of the second
message that is sealed by her shared key, an appeal to lemma 7.7 derives the
necessary assumptions to apply theorem 6.6. The resulting theorem, stating
that Kas sent the message received by the agent, establishes weak agreement
of Kas with A. Since Kas knows all shared keys, it can extract and learn
the authkey contained in the message. These two theorems, whose formal
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statement is omitted here, guarantee non-injective agreement of Kas with A
on the authkey.

The updated authentication theorem 6.22 states that, upon reception by
Tgs of an instance of the third message that includes a confidential authkey,
the agent mentioned by the authenticator sent the message. Let A be such
agent. If A is friendly, induction proves that A sends the third message
only upon reception of the second, from which she can extract the authkey.
Hence, Tgs can be assured that A knows the authkey (theorem 7.19). This
and the updated version of 6.22 assert non-injective agreement of A with
Tgs on authK .

Theorem 7.19. If A is not the spy and evs, belonging to kerberos, contains

Gets Tgs {|Crypt(shrK Tgs){|AgentA,Agent Tgs,Key authK ,NumberTa|},

Crypt authK{|AgentA,NumberT2 |},AgentB|}

and authK is confidential on evs, then

Key authK ∈ analz(knowsA evs)

The authenticity theorem 6.8 can be proved assuming the protocol ini-
tiator’s reception of an instance of the fourth message. If A is the initiator,
then the guarantee conveys weak agreement of Tgs with A because it states
that Tgs sent the message to A. Therefore, Tgs must have received the suit-
able instance of the third message, learning the authkey from the authticket.
By definition of knows, Tgs also knows the servkey that it has associated to
the authkey. Agent A can be therefore informed that Tgs knows both ses-
sion keys (theorem 7.20). We have thus established non-injective agreement
of Tgs with A on authK and servK .

Theorem 7.20. If B is not Tgs and evs, belonging to kerberos, contains

GetsA Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |}

and authK is confidential on evs, then

Key authK ∈ analz(knows Tgs evs) and

Key servK ∈ analz(knows Tgs evs)

Theorem 7.9, expressing weak agreement of A with B, is the updated
version of theorem 6.23. If A is friendly, she only sends an instance of the
fifth message upon reception of a suitable instance of the fourth, from which
she can extract the servkey. So, B is informed that A knows the servkey
(theorem 7.21). The two theorems establish non-injective agreement of A
with B on servK .
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Theorem 7.21. If A is not the spy, B is not Tgs and is not compromised,
and evs belonging to kerberos, contains

GetsB {|Crypt(shrKB){|AgentA,AgentB,Key servK ,NumberTs|},

Crypt servK{|AgentA,NumberT3 |}|}

and servK is confidential on evs, then

Key servK ∈ analz(knowsA evs)

Finally, the athentication theorem 6.24 can be updated in terms of re-
ception of the messages it mentions. A friendly agent only sends the last
message of the protocol upon reception of the last but one. He can therefore
extract the servkey from the received servticket. This strategy informs the
initiator A that the servkey she has received is also known to the respon-
der B (theorem 7.22). As a consequence, the protocol grants non-injective
agreement of B with A on servK .

Theorem 7.22. If A is not compromised, B is not the spy and evs belonging
to kerberos, contains

GetsA {|Crypt authK{|Key servK ,AgentB,NumberTs, servTicket |},

Crypt servK (NumberT3 )|} and

GetsA Crypt(shrKA){|Key authK ,AgentTgs,NumberTa, authTicket |}

and both authK and servK are confidential on evs, then

Key servK ∈ analz(knowsB evs)

Theorems 7.19 and 7.20 show that Kerberos IV achieves the goal of key
distribution between the protocol initiator and Tgs on an authkey. Theo-
rems 7.21 and 7.22 guarantee the goal of key distribution between initiator
and responder on a servkey.

7.5 Comparing the Two Approaches

The main aim of formalising agents’ knowledge was to investigate the goals
of non-injective agreement and key distribution. We have verified them on
all classical protocols analysed so far (e.g. Needham-Schroeder, Yahalom,
Otway-Rees, Woo-Lam, etc.) using both our approaches to knowledge (§7.1,
§7.2). Therefore, the approaches can only be compared in respect to the two
goals.
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The analysis of BAN Kerberos supports the claim that the two ap-
proaches might be equivalent. Theorems 7.11 and 7.12, obtained by trace
inspection, appear to convey the same guarantees as theorems 7.13 and 7.14
respectively, which are obtained by message reception.

Since the approach based on trace inspection cannot rely on a formalisa-
tion of the instant of reception, it must refer to some earlier time: messages
are considered when they appear in the traffic. In this light, that approach
could be argued to be stronger because it can enforce guarantees since some
earlier time than the approach based on message reception does. Neverthe-
less, no theorem has practical relevance unless its assumptions are verifiable.
The guarantees proved by either approach become applicable at the same
time, namely upon reception of the suitable messages. Also Kerberos IV
confirms the equivalence: theorems 7.15 to 7.18 appear to be equivalent to
theorems 7.19 to 7.22 respectively.

As demonstrated above, the guarantees obtained by trace inspection on
protocols based on timestamps also add a temporal requisite to the goal
of authentication: establishing that a friendly agent creates a message con-
taining the current time as a timestamp also expresses when the agent was
alive. The approach based on message reception clearly cannot express this,
so the other approach will be used to compare the temporal requisites that
timestamps or nonces add to a protocol design (see §7.6).

Note that both versions of Kerberos require both peers to use a session
key to create new messages. On the contrary, let us consider a protocol that
delivers a session key to a peer without requiring the peer to use it. Since
the approach based on trace inspection expresses knowledge of a message
(and its components) via the ability to create the message, it could certainly
prove no significant property in this case. By contrast, the approach based
on message reception could express the peer’s knowledge of the session key
upon its reception, thus allowing investigation of key distribution and non-
injective agreement. If the delivery of the session key is not the last step
of the protocol, then the goal of key distribution might be met (see §7.5.1)
depending on the protocol design. Otherwise, according to our definition
(§4.7), the goal is certainly not achieved because none of the events occur-
ring during the protocol execution implies that the agent has received the
message that contains the session key. Therefore, the fact that the agent
knows the key cannot become known to the agent’s peer.

7.5.1 On Otway-Rees

The Otway-Rees protocol [31, p.244] offers another term of comparison.
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The responder B obtains the session key from the server and forwards
it to the initiator A in the last message of the protocol (figure 7.3).

1. A → B : M,A,B, {|Na,M,A,B|}Ka

2. B → S : M,A,B, {|Na,M,A,B, |}
Ka
, {|Nb,M,A,B|}Kb

3. S → B : M, {|Na,Kab|}
Ka
, {|Nb,Kab|}Kb

4. B → A : M, {|Na,Kab|}Ka

Figure 7.3: The Otway-Rees protocol

Key distribution is achieved when A receives a session key and gets ev-
idence that her peer B knows it, and B gets the same evidence about A
(§4.7). According to this definition, Otway-Rees does not meet the goal of
key distribution because it delivers the session key to A in the last message.
The delivery of the key to B is not the last event occurring during the pro-
tocol, so we may wonder whether the protocol enforces half key distribution
to B: upon reception of the session key, does A get evidence that B knows
it?

The approach to agents’ knowledge based on trace inspection cannot
help to answer the question because B is simply forwarding a certificate,
containing the session key, that is already in the traffic. So, B certainly
does not issue the certificate. The analysis of the protocol by the BAN
logic came to the following conclusion: “it is interesting to note that this
protocol does not make use of Kab as an encryption key, so neither principal
can know whether the key is known to the other”1 [31, p.247]. We refute
the claim, showing that there exists a protocol similar to Otway-Rees that
does not use the session key as an encryption key but informs one agent
that his peer does know the session key. The BAN logic, in fact, fails to
capture knowledge of the messages that are received, as does our approach
to agents’ knowledge that is based on trace inspection. Our formal account
for message reception lets us discover that the reason why Otway-Rees fails
to guarantee to A that B shares the session key is in fact lack of message
integrity.

Let us consider a protocol that differs from Otway-Rees only in the last
two messages, which are shown in figure 7.4. The new protocol is not much
dissimilar from the original Otway-Rees. For example, the third message
still informs B of M , Nb and Kab but not of Na; the fourth merely forwards

1More precisely, the BAN logic cannot infer the usual formula A |≡B |≡A
Kab
←→ B.
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3. S → B : {|A,M, {|B,M,Na,Kab|}Ka ,Nb,Kab|}Kb

4. B → A : {|B,M,Na,Kab|}Ka

Figure 7.4: A protocol based on Otway-Rees (fragment)

the certificate to A. The main difference is that the new third message
enjoys integrity because it is a cipher (the old one does not because it is
compound). Also the new fourth message is integral but this is irrelevant to
the following reasoning. In particular, the message could be any compound
one quoting the certificate for A, e.g. {|M, {|B,M,Na,Kab|}Ka |}.

The integrity of the third message is crucial because it allows to keep
track of B’s activity, if B is not compromised. When the server sends the
message on a trace evs, the certificate that it contains is not yet visible to
the spy thanks to the message integrity. Precisely, it does not belong to
analz(knows Spy evs). On the contrary, the certificate becomes visible to the
spy after B has acted. This is the leading philosophy of theorem 7.23. Let
or integral be the formal model for the protocol.

Theorem 7.23. If A and B are not compromised and evs, belonging to
or integral, is such that

Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|}

∈ analz(knows Spy evs)

then evs contains

SaysBA (Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|})

The result cannot be proved on the original Otway-Rees where the assump-
tion holds also before B acted. Incidentally, the result does not hold replac-
ing analz by parts because the certificate appears as component of the traffic
even before B acted during the new protocol. The proof is not straightfor-
ward as it requires a new rewriting rule for the analz operator. In particular,
the subgoal arising from the formalisation of the fourth step of the protocol
requires evaluating the assumption

Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|}

∈ analz({KeyK} ∪ (knows Spy evs4 ))

The symbolic evaluation is not trivial. We can prove a rewriting rule to
inform the simplifier that no session key is used to encrypt a cipher in the
protocol (lemma 7.24).
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Lemma 7.24. If K ′ is a session key, evs belongs to or integral, and K is
confidential on evs, then

(CryptKX ∈ analz({KeyK ′} ∪ (knows Spy evs)))

⇐⇒ (CryptKX ∈ analz(knows Spy evs))

The proof can be developed through the conventional strategy for the session
key compromise theorem (§4.5). However, it requires several subsidiary
results, such as the authenticity of the messages issued by the server, which
did not hold of the original Otway-Rees.

The conclusive portion of reasoning asserts that an agent who is not
compromised sends the last message of the protocol only upon reception of
an integral, suitable instance of the last but one (theorem 7.25).

Theorem 7.25. If B is not compromised, and evs, belonging to or integral,
contains

SaysBA (Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|})

then, for some Nb, evs contains

GetsB (Crypt(shrKB){|AgentA,NonceM,

Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|},

NonceNb,KeyKab|}

If B was merely a friendly agent, we could still prove that he sends the
last message upon reception of a suitable one, as seen on similar steps of
BAN Kerberos or Kerberos IV. However, B extracts the message that he
sends from a larger message sealed under his own shared key. Therefore,
B must not be compromised so that this message is integral, which ensures
that it contains two occurrences of the same session key.

We now have all the fragments of A’s reasoning. Upon reception of the
last message of the protocol, A concludes that the certificate is available to
the spy by lemma 7.5 and H ⊆ analzH (and decomposition under analz if
the message was compound). Then, from theorem 7.23, A could derive that
B acted. Therefore, B received an intelligible message quoting the same
session key received by A, as stated by theorem 7.25, and could extract the
key. In conclusion, the protocol informs A that the session key she receives
is also known to her peer B (theorem 7.26).

Theorem 7.26. If A and B are not compromised and evs, belonging to
or integral, contains
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GetsA (Crypt(shrKA){|AgentB,NonceM,NonceNa,KeyKab|})

then

KeyKab ∈ analz(knowsB evs)

We remark that the new protocol only differs from the original Otway-
Rees in the integrity of the message issued by the server. Nevertheless, as
Otway-Rees, the protocol does not make use of Kab as an encryption key
but does inform A that B knows the session key. The new protocol meets
the goal of half key distribution to B.

7.5.2 On Public-Key Protocols

Testing our approaches to agents’ knowledge on the public-key Needham-
Schroeder protocol has unveiled a limitation of the one based on message
reception. For example, let us consider the first step of the protocol and
suppose that it takes place during the history modelled by the trace evs.
Then, evs contains the event

SaysAB (Crypt(pubKB){|AgentA,NonceNa|})

whereby agent A issues a nonce Na and sends it to B inside a cipher
sealed by B’s public key. Since A does not know B’s private key, which
is necessary to decrypt the cipher, we cannot establish that Na belongs to
analz(knowsA evs). However, A in fact knows Na because she has just cre-
ated it. Trace inspection regains its attraction in this case because it could
prove that A creates the entire cipher and therefore knows its components.
Nonetheless, also B will know Na upon reception of the cipher, but this
again requires reasoning with message reception. Therefore, a combination
of the two approaches, which can be easily implemented, will yield the best
results when analysing public-key protocols.

7.6 Timestamps vs. Nonces on the same Design

Our experiments support the claim that, on the same protocol design, time-
stamps add stronger temporal requisites than nonces to the goals of a pro-
tocol [18].

Since timestamps are a linear order, any agent may check the freshness
of a message containing a timestamp at any point, even without having yet
participated in the protocol. The agents only need to know the specific
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lifetime for the timestamp, but lifetimes are in general not secret. However,
all agents must run a synchronisation protocol to synchronise their clocks.
It could be argued that the threats to this protocol might offset any gains
obtained from using timestamps in the cryptographic protocol, but this lies
outside the scope of our research. By contrast, if the protocol is based on
nonces, an agent wanting to check the freshness of a message should have
participated earlier in the protocol and issued a nonce. Then, some other
agent should have inserted the same nonce into the message.

BAN Kerberos may be viewed as the shared-key Needham-Schroeder
“modified with the addition of timestamps” [77]. Thus, we find it signif-
icant to compare the temporal requisites of the goals of authenticity and
authentication achieved by the two protocols (the other goals are indepen-
dent from time).

Recall the protocols from figures 5.1, §5.2 and 2.6, §2.2.4. Since the
model servers can be proved to function reliably (e.g. §5.4.1), they create the
components they send. Therefore, also the approach to agents’ knowledge
based on message reception suffices to express the following reasoning (whose
formal statements are omitted here). The authenticity argument for BAN
Kerberos (theorem 5.3, §5.4.3) assures a non-compromised protocol initiator
A that the message

{|Tk , B,Kab,Ticket |}Ka

originated with the server. Since the server is reliable, the guarantee informs
A that the message and the session key it contains were created at time Tk .
In the same setting, Paulson proves that the message

{|Na, B,Kab,Ticket |}Ka

of the Needham-Schroeder protocol originated with the server. Nonce Na
being A’s nonce, A is assured that the message is more recent than the time
when she issued Na. This requisite also applies to the session key Kab.
Though not identical, the two guarantees may be considered practically
equivalent.

A non-compromised protocol responder B can be assured that the ticket

{|Tk , A,Kab|}Kb

of the BAN Kerberos protocol originated with the server. By the presence
of the timestamp, B derives that the ticket and the session key were created
at time Tk . No such guarantee is available in the same setting to B when
running Needham-Schroeder, because the ticket has the form

{|Kab, A|}Kb
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and so B obtains no information on how recent Kab is.
Concerning the goal of authentication, theorem 7.11 also assures B that

A was alive at time Ta. The analogous guarantee (theorem 7.27) we have
proved on Needham-Schroeder conveys a similar requisite. In fact, B is
informed that A was alive after B created his nonce Nb. (Note that ns shared

denotes the formal protocol model, and that the double concatenation of Nb
formalises the last message of the protocol).

Theorem 7.27. If A is not the spy, B is not compromised, and evs, be-
longing to ns shared, is such that

Crypt(shrKB){|KeyKab,AgentA|} ∈ parts(spies evs) and

CryptKab{|NonceNb,NonceNb|} ∈ parts(spies evs)

and Kab is confidential on evs, then

A Issues B with (CryptKab{|NonceNb,NonceNb|}) on evs

Theorem 7.12 also assures A that B was alive after time Ta (namely,
after A issued Ta — since B does not update Ta, it can be viewed as a
nonce in the last message). The analogous guarantee (theorem 7.28) we
have proved on Needham-Schroeder shows that the authentication goal for
A enjoys no similar requisite.

Theorem 7.28. If A is not compromised, B is not the spy, and evs, be-
longing to ns shared, is such that

Crypt(shrKA){|NonceNa,AgentB,KeyKab,Ticket |}

∈ parts(spies evs) and

CryptKab(NonceNb) ∈ parts(spies evs)

and Kab is confidential on evs, then

B Issues A with (CryptKab(NonceNb)) on evs

In fact, A is simply informed that B creates a message containing the nonce
Nb. Since Nb was issued by B, A cannot deduce any temporal requisite
about B’s presence.

Note that only the first of our approaches to agents’ knowledge can
be used to conduct the reasoning presented above. However, despite the
conclusions obtained on the same design when using either timestamps or
nonces, there exist protocols that make a more scrupulous and complicated
use of nonces. For example, the authentication goals achieved for both peers
by the Yahalom protocol, which is based on nonces, do enjoy significant
temporal requisites [90].
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Chapter 8

Modelling Smart Cards

The Inductive Approach is tailored to the analysis of protocols
that make use of smart cards. The spy is given the chance of
cloning other agents’ cards and exploiting their computational
resources.

The protection of long-term secrets was the main reason for the introduc-
tion of smart cards. Although several researchers believe that no smart
card can be completely tamper-resistant, modern cards offer a high level
of physical security. A cheap integrated-circuit memory card may store a
few kilobytes and provide a strong shell for important information. Addi-
tionally, an integrated-circuit microprocessor card embeds an 8-bit micro-
processor that can perform relatively simple operations such as DES en-
cryption/decryption. Consequently, existing security protocols have been
extended with smart cards (e.g. [51]) and new ones have been designed for
the purpose (e.g. [98]). We refer to the protocols that are based on smart
cards as smart card protocols, as opposed to the traditional protocols, which
are not.

Recently, the microprocessor cards’ operating systems allow the execu-
tion of user-chosen Java programs, cutting the costs of applications such
as pay-TV, mobile or public phones and credit cards. Forrester Research
estimates that e-commerce will attract 40 million clients in the USA within
the first three years of the new millennium [32, 41]. Smart card readers will
become inexpensive pieces of hardware for home computers running smart
card middleware.

Smart cards should strengthen the goals of the protocols that use them,
and there exists an increasing demand for formal guarantees that this tar-
get is reached. However, to our knowledge, there are only two attempts of

107
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establishing such guarantees. Abadi et al. [1] pioneer the use of smart cards
to establish mutual authentication between agents and workstations. Their
treatment develops around the different functionalities of the smart cards
employed, while facing the limited technology of the time, and is based on
a belief logic (§2.1.1) that is a simple extension of the BAN logic. The cal-
culus of the logic is used to prove the mutual authentication and delegation
goals of three protocols which impose different requirements on the cards.
Confidentiality issues are not considered, as belief logics are notoriously in-
adequate for this purpose. Shoup and Rubin [98] design a protocol based
on smart cards and analyse it by provable security (§2.1.3). However, their
treatment is very abstract, as we show in the next chapter.

Motivated by the insufficient research done in the field, we extend the
Inductive Approach towards the verification of smart card protocols [13].
The model cards, which are associated to a new type of the formal language,
can interact with their respective owners by receiving and sending messages.
Each card stores a basic set of long-term secrets, which may depend on the
specific protocol. For example, while a card for key distribution protocols
has only to store specific keys, a card for e-commerce protocols may have to
store a number representing the owner’s balance. The cards are not forced
to perform any computations and may skip some or repeat others. The spy
has stolen an unspecified set of cards but must discover their pins, if they are
pin-operated, to be able to use them. Furthermore, she has cloned another
set of cards, discovering their internal secrets. So, since the spy can act
illegally, there is a set of cards that she can use even if they do not belong
to her, while all other agents can only use their own card.

Several smart card protocols make the assumption of secure means, sig-
nifying that the spy cannot interpose between agents and their cards. So,
messages can be exchanged in clear and each agent’s knowledge of long-term
secrets reduces to nothing. We account for both this and the opposite al-
ternative by simple variations to the definition of spy’s knowledge. Often
in the following text, secure means will abbreviate that the assumption of
secure means does hold; insecure means will abbreviate that the assumption
does not hold.

This chapter begins with a formalisation of smart cards within the In-
ductive Approach (§8.1). Then, it presents the extensions necessary to the
datatype of events (§8.2) and to the definition of agents’ knowledge (§8.3).
The spy’s illegal operations now exploit certain smart cards that she does
not legally own (§8.4), while the protocol model may require some extensions
to account for this (§8.5). This extended approach will be demonstrated in
the next chapter.
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8.1 Smart cards

We aim at representing the operational aspects of smart cards, so we intro-
duce a new free type card with several associated functions. There exists a
bijective correspondence between agents and smart cards

Card : agent −→ card

In the real world, the cards’ CPUs only provide certain, limited resources:
a card will produce a specific output only if fed with the correct input. For
example, if a card can compute a session key K from an input X, the
card must necessarily be fed with X in order to obtain K. The formal
protocol model can easily account for this. It will only allow for the outputs
encompassed by the protocol under the condition that the cards are fed with
the corresponding, specific inputs. It will not construct other outputs, even
from cloned cards (see next section). As a consequence, there exists no card
whose use can give the spy unlimited power.

8.1.1 Card Vulnerabilities

The model cards suffer from a number of realistic vulnerabilities due to theft,
cloning and internal failures.

Theft

The small dimensions of the smart cards confer their portability but also
raise the risk of loss or theft. In the worst case, all smart cards that have
been lost by their owners or stolen to them will end up in the spy’s hands.
These cards, which can no longer be used by their owners, are modelled by
the set stolen, such that stolen ⊆ card.

Cloning

The spy is not necessarily able to use a stolen card actively, unless she
knows its pin. Nevertheless, she could be able to use modern techniques
(such as microprobing [8]), break the physical security of the card, access its
EEPROM1 where the long-term secrets are stored and, in the worst case,
reverse engineer the whole card chip. At this stage, the spy would be able
to build a clone of the card for her own use. If this process succeeds, the
card belongs to the set cloned in the model, and cloned ⊆ card.

1Electrically-Erasable Programmable Read-Only Memory.
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Cloning without apparent theft

All cloning techniques that are currently known are invasive, in the sense
that they spoil the original card. The chip of the card must be disembedded
from its frame by suitable chemicals, and its layout often modified using
laser cutter microscopes. These alterations are irreversible. However, the
spy might steal a card, build two clones of it and return one to the card
owner, who would not suspect anything. Alternatively, the spy might even
be able to tailor non-invasive techniques (such as fault generation [68, 59]
by exploiting the power and clock supply lines) to cloning in the near future,
and return the original card to its owner after building a clone for herself.
Modelling these opportunities simply requires stating no relation between
the sets stolen and cloned, so that a card could be cloned and not be stolen.
Such a card could be used both by its legal owner and by the spy, granting
them identical computational resources.

Data bus failure

All cards’ data buses are corrupted so that the travelling messages can be
either forgotten (due to electronic decay), permuted or fed to the CPU
repeatedly (due to simple layout modifications).2 Therefore, a smart card
can omit some computations or repeat others. In the worst case, the spy
has caused all cards to deteriorate in this fashion before they are delivered
to their respective owners, leaving no visible trace of tampering. To model
this, events only occur by firing of inductive rules in the formal protocol
model, but rules are not forced to fire even when their preconditions are
met. Also, rules may fire in any order or fire more than once, and each of
these possibilities is recorded by a trace.

Global internal failure

Smart cards may suffer unexpected failures and stop working at some point.
The formal protocol model reflects this scenario by including traces that do
not involve those cards after some event.

8.1.2 Card Usability

Agents other than the spy only conduct legal operations, while the spy can
act both legally and illegally. A card that has not been stolen can be used by

2Allowing message alteration or leakage at this level would give the spy excessive power:
many protocols explicitly rely on a secure means between agents and smart cards.
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its owner, namely it can be used legally. The spy cannot handle a non-stolen
card unless it is her own.

Definition 8.1. legallyU(CardA) ≡ (CardA) 6∈ stolen.

When the assumption of secure means does not hold, the spy can listen
in between any agent and his smart card, so she has electronic access to
those cards of which she knows the pins.3 Pins are sent between agents
and cards (never between agents), so the spy might learn some of them on
certain traces. On the contrary, should the cards not be pin-operated, they
would all be illegally usable.

Definition 8.2. Let the assumption of secure means not hold;

illegallyU(CardA) on evs ≡







the spy knows A’s pin on evs

if cards are pin-operated

true

if cards are not pin-operated

The informal predicate the spy knows A’s pin on evs will be refined by the
formal definition of agents’ knowledge (see §8.3).

In case the assumption of secure means does hold, the spy needs to gain
physical access to the cards in addition to the knowledge of their pins. Since
she cannot monitor the events involving the smart cards, she has no chance
of discovering any pins via any events. She can only know them initially (see
§8.3), so the definition of illegal usability does not depend on the trace. If
the cards are not pin-operated, we only need characterise the physical access
to the card.

Definition 8.3. Let the assumption of secure means hold,

illegallyU(CardA) ≡







(CardA) ∈ cloned ∨ ((CardA) ∈ stolen ∧
the spy knows A’s pin )

if cards are pin-operated

(CardA) ∈ cloned ∨ (CardA) ∈ stolen

if cards are not pin-operated

The informal predicate the spy knows A’s pin will be refined below.
The spy must be able to use her own card legally because she must be

given the opportunity to act legally. However, she does not need to use her

3If a smart card is pin-operated, then it accepts no communication unless it is activated
by means of its pin.
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card illegally because she cannot acquire additional knowledge from it. So,
we assume

Card Spy 6∈ stolen ∪ cloned

The same assumption is made on the card that belongs to the server.

We stress that, since certain cards may be cloned and at the same time
not be stolen, there may exist cards that are both legally and illegally usable.

Every agent is able to verify whether his own card is stolen by checking
that he holds it. All other assumptions about the agent’s card or the agent’s
peer’s card now belong to the minimal trust (§4.8).

8.1.3 Card Secrets

A smart card typically contains two long-term symmetric keys: the pin to
activate its functionality and the card key.

pin : agent −→ key crdK : card −→ key

The first of the two functions could be equivalently defined on cards rather
than on agents. The card key serves to limit the data that must be stored
in the card RAM. Suppose that when the card is required to issue a fresh
nonce it also outputs the nonce encrypted under its key. This cipher may
be used later to assess the nonce authenticity to the card, even if the card
did not store the nonce, assuming that the card key is secure.

In case of key distribution protocols, each card also stores its owner’s
long-term key, which is not known to the agent in contrast with traditional
protocols. We keep the original definition [88, §3.5]

shrK : agent −→ key

Note that, since the model is operational, the notion of the smart cards’
storing some secrets need not be formalised explicitly. We only need to
define how these secrets are used, namely in which circumstances and to
whom they will become known. This increases the flexibility of the approach.
If the smart cards store additional secrets in certain applications, once such
secrets are formalised by suitable functions, only the definition of agents’
knowledge must be updated.

We assume that collision of keys is impossible, so all functions declared
above are injective and their ranges are disjoint.
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8.2 Events

Let us suppose that the assumption of secure means does not hold. If a
message is sent by a card to its owner (or vice versa), its reception is not
guaranteed. So, both events must be formalised. We upgrade the Isabelle
datatype for events as follows.

datatype event = Says agent agent msg

| Notes agent msg

| Gets agent msg

| Inputs agent card msg

| Gets c card msg

| Outputs card agent msg

| Gets a agent msg

The known network events (sending, noting and receiving a message, §7.2)
have been extended with the new card events. Agents may send inputs to
the cards (Inputs) and the cards may receive them (Gets c); similarly, the
cards may send outputs to the agents (Outputs) and the agents may receive
them (Gets a). An agent can distinguish the messages received from the
network from those received from his smart card reader because they arrive
on separate channels, so we provide two different events. However, in both
cases the messages could have been forged by the spy.

Extending the reception invariant (§7.2), the protocol model only allows
the cards to receive by a Gets c event the messages that have been sent by
an Inputs event, and the agents to receive by a Gets a event the messages
that have been sent by an Outputs event (see §8.5).

If the assumption of secure means does hold, then the events Gets c and
Gets a can be omitted. As a matter of fact, a card certainly receives its
owner’s inputs, and an agent certainly receives his card outputs. Conse-
quently, a smart card C can verify whether an event InputsAC X occurred
and an agent A can verify whether an event OutputsC AX occurred, while
this is impossible on insecure means.

The formal definition of the function used (§3.3, §7.2) must be extended
to cope with the new events

− used((InputsAC X) # evs) , parts{X} ∪ used evs

− used((Gets cAX) # evs) , used evs

− used((OutputsC AX) # evs) , parts{X} ∪ used evs

− used((Gets aAX) # evs) , used evs

The cases concerning Gets c and Gets a do not extend the set of used com-
ponents because the corresponding events only take place on messages that
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have already been accounted for by the reception invariant. If the assump-
tion of secure means holds, both cases are omitted.

8.3 Agents’ Knowledge

The function initState formalising agents’ initial knowledge [88, §3.5] must
be redefined to account for the secrets stored in smart cards. We quote here
a fairly general definition for smart card protocols with pin-operated cards.
The original datatype of agents is employed (§3.1.1).

The server’s initial knowledge consists of all long-term secrets.

initState S , {Key (pinA)} ∪ {Key (crdKC)} ∪ {Key (shrKA)}

Friendly agents’ initial knowledge consists of their respective pins.

initState (Friend i) , {Key (pin (Friend i))}

The spy’s initial knowledge consists of the compromised agents’ initial knowl-
edge and the secrets contained in the cloned cards (even if some cards store
the secrets in a blinded or an encrypted form, the spy may discover them in
the worst case).

initState Spy , {Key (pinA) | A ∈ bad ∨ (Card A) ∈ cloned} ∪

{Key (crdKC) | C ∈ cloned} ∪

{Key (shrKA) | (Card A) ∈ cloned}

Note that this definition is not influenced by the assumption of secure means
because it formalises the situation before any protocol sessions have taken
place.

The knowledge that agents can extract from traces, defined by the func-
tion knows (§7.2.1), must be extended to account for the card events.

4. An agent knows what he inputs to any card on a trace; in particular,
the spy also knows all messages ever input on it.

knowsA ((InputsA′C X) # evs) ,
{

{X} ∪ knowsA evs if A = A′ ∨ A = Spy

knowsA evs otherwise

5. No agent, including the spy, can extend his knowledge with any of
the messages received by any smart card on a trace. The spy and
the message originators already know them by case 4 thanks to the
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reception invariant.

knowsA ((Gets cA′X) # evs) , knowsA evs

6. An agent knows no cards’ outputs on a trace, as the means is insecure;
the spy knows all of them, as she controls the means.

knowsA ((OutputsC A′X) # evs) ,
{

{X} ∪ knowsA evs if A = Spy

knowsA evs otherwise

7. An agent, other than the spy, knows what he receives from his card
on a trace. The spy knows all messages received by any smart card by
case 6, due to the reception invariant.

knowsA ((Gets aA′X) # evs) ,
{

{X} ∪ knowsA evs if A = A′ ∧ A 6= Spy

knowsA evs otherwise

At this stage, definition 8.2 can be refined. Recall that the function analz

extracts all message components from a set of messages using keys that are
recursively available [88, §3.2].

Definition 8.2′. Let the assumption of secure means not hold;

illegallyU(CardA) on evs ≡







Key (pinA) ∈ analz(knows Spy evs)

if cards are pin-operated

true

if cards are not pin-operated

In particular, a cloned card or a card whose owner is compromised is illegally
usable on any trace (by definition of initState, base case of knows, definition
of analz). As expected, the illegal usability of a card over insecure means
does not necessarily imply the spy’s physical access to the card.

If the assumption of secure means does hold, the definition of knows

simplifies (the implementation may be found in Appendix C). The base case
and those corresponding to the network events remain unchanged. Cases (5)
and (7) must be pruned, for the corresponding events are no longer defined.
If an agent sends an input to his card, or the card sends him back an output,
both messages are certainly received because the spy cannot listen in. Hence,
cases (4) and (6) must be amended accordingly.
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4′. An agent, including the spy, knows what he inputs to any card on a
trace.

knowsA ((InputsA′C X) # evs) ,
{

{X} ∪ knowsA evs if A = A′

knowsA evs otherwise

6′. An agent, including the spy, knows what he is output from any card
on a trace.

knowsA ((OutputsC A′X) # evs) ,
{

{X} ∪ knowsA evs if A = A′

knowsA evs otherwise

As it was desired, these cases forbid the spy from learning anything from
the card events. Therefore, she knows a pin if and only if she knows it
initially. By definition of initState and base case of knows, definition 8.3 can
be refined.

Definition 8.3′. Let the assumption of secure means hold;

illegallyU(CardA) ≡







(CardA) ∈ cloned ∨ ((CardA) ∈ stolen ∧ A ∈ bad)

if cards are pin-operated

(CardA) ∈ cloned ∨ (CardA) ∈ stolen

if cards are not pin-operated

This definition insists on the spy’s physical access to the illegally usable
cards over secure means. Only when the cards are not pin-operated over
secure means, does it hold that if a card is not illegally usable, then it is
legally usable. This does not hold in general, nor does the converse.

The function knows could be extended to smart cards, but reasoning
about cards’ knowledge may be of little significance due to their limited
RAM.

8.4 Spy’s Illegal Behaviour

As demonstrated in chapters 5 and 6, the spy’s illegal behaviour with tradi-
tional protocols is typically specified by a single inductive rule that extends
the protocol model.4

4Only the model of the TLS protocol [89] contains a second rule, which allows the spy
to construct a session key because the algorithm is public.
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In modelling smart card protocols, the spy must be allowed to exploit
the illegally usable smart cards. If the assumption of secure means does not
hold, not only can the spy send fake messages as inputs to the illegally usable
cards, but she can also send fake outputs to any agents, pretending that her
own card could produce them. This is done in addition to sending the fake
messages on the network because receiving the same message from the card
reader or from the network may induce an agent to different reactions. The
Fake rule must be amended as outlined in figure 8.1. Note the condition of
illegal usability over insecure means stated on A’s card.

Fake

[| evsF ∈ smart p insecure m; illegallyU(Card A) on evs;

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X # Outputs (Card Spy) C X

# evsF ∈ smart p insecure m

Figure 8.1: Spy’s illegal operation in case of insecure means

If the assumption of secure means holds, then the spy cannot send fake
card outputs to the agents. Figure 8.2 presents the corresponding, new Fake

rule. Note the condition of illegal usability over secure means stated on A’s
card.

Fake

[| evsF ∈ smart p secure m; illegallyU(Card A);

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X

# evsF ∈ smart p secure m

Figure 8.2: Spy’s illegal operation in case of secure means

In this scenario, by definition of knows, the spy gains no knowledge from
the card events that do not concern her. Therefore, we must ensure that an
illegally usable card outputs towards the spy rather than towards its owner.
This is realistic because, over insecure means, the illegally usable cards lie
in the spy’s hands. Suppose that A’s card outputs X ′ when it is fed X. The
formal protocol model will contain rule Name (figure 8.3), which requires
the card to be legally usable. Hence, rule Name Fake must be added to
allow A’s card to output X ′ towards the spy in case the card is illegally
usable and was input X by the spy. The spy learns X ′ from the firing of the
latter rule, not the former. Any extra assumptions in Name must be kept
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Name

[| evsN ∈ smart p secure m; legallyU(Card A);

Inputs A (Card A) X ∈ set evsN |]

=⇒ Outputs (Card A) A X’ # evsN ∈ smart p secure m

Name Fake

[| evsNF ∈ smart p secure m; illegallyU(Card A);

Inputs Spy (Card A) X ∈ set evsNF |]

=⇒ Outputs (Card A) Spy X’ # evsNF ∈ smart p secure m

Figure 8.3: Pair of rules for each output in case of secure means

in Name Fake. Should A’s card be both legally and illegally usable, both
rules would be enabled to fire. Rule Name Fake is unnecessary over insecure
means, where the spy monitors all card events.

8.5 Formal Protocol Model

The formal model for a smart card protocol requires additional features if
the assumption of secure means does not hold. Smart cards must be allowed
to receive the inputs that they were sent from agents and, likewise, agents
must be allowed to receive the outputs sent from cards. For these purposes,
we introduce rules Reception c and Reception a respectively (figure 8.4),
which are inspired to the Reception rule that allows reception of messages
sent over the network (§7.2.2). Since the rules are not forced to fire, no kind
of reception (either on the network or on the agent-smart-card means) is
guaranteed, as it is the case in a world where the spy controls all means.

Reception c

[| evsRc ∈ smart p insecure m; Inputs A (Card B) X ∈ set evsRc |]

=⇒ Gets c (Card B) X # evsRc ∈ smart p insecure m

Reception a

[| evsRa ∈ smart p insecure m; Outputs (Card A) B X ∈ set evsRa |]

=⇒ Gets a B X # evsRa ∈ smart p insecure m

Figure 8.4: Rules for reception in case of insecure means

If the assumption of secure means does hold, then reception over the agent-
smart-card means is guaranteed, so the rules of figure 8.4 are not needed.



Chapter 9

Verifying a Smart Card

Protocol

The “provably secure” Shoup-Rubin protocol, which is based on
smart cards, is mechanised. Two weaknesses due to lack of ex-
plicitness are unveiled, which affect the goals of confidentiality,
authentication and key distribution.

Shoup and Rubin [98] take into account an existing session key distribu-
tion protocol due to Leighton and Micali [60] and prove it secure using the
Bellare and Rogaway’s framework [24]. Then, they develop a new protocol,
based on the design by Leighton and Micali, for session key distribution in a
three-agent setting where each agent is endowed with a smart card that can
compute a few PRFs. Finally, they extend Bellare and Rogaway’s approach
to account for smart cards, and argue that the new protocol enjoys the two
following properties. First, a pair of agents running the protocol share the
same session key at the end of a protocol session in which the spy does not
prevent the delivery of the relevant messages. There is no proof for this
property, although this may not be obvious to readers unfamiliar with the
formalism. Second, the adversary is shown by mathematical proof to have
a negligible advantage, signifying that the session key remains confidential.
The reasoning is performed without any kind of mechanised support.

We have applied the extended Inductive Approach described in the pre-
vious chapter to the Shoup-Rubin protocol and verified its goals of authen-
ticity, unicity, confidentiality, authentication and key distribution [14]. We
argue that the confidentiality stated of the protocol in terms of provable
security is highly theoretical. We have discovered that the confidentiality
theorems that hold of the protocol model cannot be applied by the peers,

119
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so the protocol lacks goal availability (§4.8). This is due to the lack of ex-
plicitness of two crucial protocol steps. Inspecting the corresponding proofs
suggests a simple fix, which can be verified to be effective. To our knowl-
edge, this work represents the first mechanisation of a full protocol based
on smart cards.

This chapter presents the Shoup-Rubin protocol (§9.1), its modelling
(§9.2) and its verification (§9.3). The verification is extended on an upgraded
version of the protocol (§9.4) that achieves stronger goals.

9.1 The Shoup-Rubin Protocol

We present an abstract version of the protocol obtained both from the de-
signers and the implementors’ presentations. We denote an agent P ’s long-
term key (shared with the server) by Kp, P ’s smart card by Cp and P ’s
smart card long-term key by KCp .

The protocol relies on the concept of pairkey (due to Leighton and Mi-
cali [60]) to establish a long-term secret between the smart cards of a pair of
agents. The pairkey is historically referred to the pair of agents: the one for
agents A and B is Πab = {|A|}Kb⊕{|B|}Ka , where ⊕ is the bit-wise exclusive-
or operator. While A’s card can compute {|B|}Ka and then πab = {|A|}Kb

from Πab , B’s card can compute πab directly. Hence, the two cards share
the long-term secret πab , which we call pair-k for A and B.

The full protocol (figure 9.1) develops through seven phases. The odd-
numbered ones take place over the network, while the even-numbered ones
cover the communication between agents and smart cards.

Phase I. An initiator A tells the trusted server that she wants to initiate
a session with a responder B, and receives in return the pairkey Πab

and its certificate encrypted under her long-term key.

Phase II. A queries her card and receives a fresh nonce and its certificate
encrypted under the card long-term key. The form of A’s query is
specified neither by the designers nor by the implementors, so our
choice of message 3 is arbitrary.

Phase III. A contacts B sending her identity and her nonce Na.

Phase IV. B queries his card with the data received from A, and obtains
a new nonce Nb, the session key Kab, a certificate for Na and Nb, and
a certificate for Nb; Kab is constructed as a function of Nb and πab .
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I : 1. A → S : A,B
2. S → A : Πab , {|Πab , B|}Ka

II : 3. A → Ca : A
4. Ca → A : Na, {|Na|}KCa

III : 5. A → B : A,Na

IV : 6. B → Cb : A,Na
7. Cb → B : Nb,Kab, {|Na,Nb|}

πab
, {|Nb|}

πab

V : 8. B → A : Nb, {|Na,Nb|}
πab

VI : 9. A → Ca : B,Na,Nb,Πab ,
{|Πab , B|}Ka , {|Na,Nb|}πab

, {|Na|}KCa

10. Ca → A : Kab, {|Nb|}
πab

VII : 11. A → B : {|Nb|}
πab

Figure 9.1: The Shoup-Rubin protocol

Phase V. B forwards his nonce Nb and the certificate for Na and Nb to A.

Phase VI. A feeds her card B’s name, the two nonces (she has just received
Nb), the pairkey and its certificate, the two certificates for the nonces;
A’s card computes πab from Πab and uses it with the nonce Nb to
compute the session key Kab; the card outputs Kab and the certificate
for Nb, which is encrypted under πab

Phase VII. A forwards the certificate for Nb to B.

The protocol makes the assumption of secure means, so that the spy cannot
listen in between agents and their respective cards. The cards indeed output
the session keys in clear. Although this feature may seem unrealistic to use
on a vast scale, in general it adds robustness to a protocol by reducing each
agent’s knowledge to the pin to activate his card. The current version of
Shoup-Rubin in fact employs smart cards that are not pin-operated,1 so no
agent knows any long-term secrets.

1Although this is explicitly stated neither in the designers nor the implementors’ pa-
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Nevertheless, other features may seem incautious. The protocol reveals
A’s nonce to the spy in step 5, and B’s in step 8. An informal account for
the consequences can be hardly given. We formally verify that, even if the
session key is computed out of B’s nonce, the knowledge of this nonce does
not help the spy to discover the session key as long as she cannot use A and
B’s cards.

9.2 Modelling Shoup-Rubin

The protocol never uses a pairkey as a cryptographic key but merely as a
means to establish the corresponding pair-k. Moreover, a pairkey remains
secret as long as the spy does not observe or compute it. Therefore, our
model treats pairkeys as nonces.

Pairkey : agent ∗ agent −→ nat

On the contrary, a pair-k is used as a proper cryptographic key. The session
key is constructed from a nonce and a pair-k.

pairK : agent ∗ agent −→ key sesK : nat ∗ key −→ key

At the operational level, we do not need to explore the implementation
details beyond these components: by contrast, we are interested in their ab-
stract properties. The function Pairkey cannot be declared collision-free be-
cause it represents an application of the exclusive-or operator. As expected,
this will influence the corresponding confidentiality argument. Assuming
that collision of keys is impossible, the other two functions are declared
as collision-free, and their ranges as disjoint. Also, they are respectively
disjoint from the ranges of the functions formalising other long-term keys
(§8.1.3), so that any pair-k differs from a card key and so forth.

The definition of initState must be updated (the implementation may
be found in Appendix C). The protocol relies on cards that are not pin-
operated, so all occurrences of the function pin may be omitted. The server’s
initial knowledge must also comprise all pairkeys and all pair-k’s.

initState S , {Key (crdKC)} ∪ {Key (shrKA)} ∪

{Key (pairK(A,B))} ∪ {Nonce (Pairkey(A,B))}

The friendly agents’ initial knowledge is empty, so they are not able to reveal
any secrets to the spy.

pers, Peter Honeyman — one of the implementors — kindly clarified it during a private
conversation.
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initState (Friend i) , {}

Recall the definition of pairkey and pair-k from the previous section. The
spy’s initial knowledge must be extended on the pair-k for a pair of agents
in case the card of the second agent is cloned, because the spy knows the
agent’s shared key. A pairkey must be included if both the corresponding
cards are cloned.

initState Spy , {Key (crdKC) | C ∈ cloned} ∪

{Key (shrKA) | (Card A) ∈ cloned} ∪

{Key (pairK(A,B)) | (Card B) ∈ cloned} ∪

{Nonce (Pairkey(A,B)) | (Card A) ∈ cloned ∧

(Card B) ∈ cloned}

The formalisations of smart cards, events and spy are inherited from the
general treatment presented in the previous chapter. However, the server
never uses its smart card in this protocol.

We declare the constant shouprubin as a set of lists of events. It designates
the formal protocol model and is defined in the rest of the section by means
of inductive rules. Since the protocol assumes secure means and the cards
are not pin-operated, definition 8.3′ of illegal usability (§8.3) applies.

9.2.1 Basics

The basic rules of a formal protocol model are presented in figure 9.2. The
empty trace formalises the initial scenario, in which no protocol session has
taken place. Rule Base settles the base of the induction stating that the

Base

[ ] ∈ shouprubin

Reception

[| evsR ∈ shouprubin; Says A B X ∈ set evsR |]

=⇒ Gets B X # evsR ∈ shouprubin

Figure 9.2: Modelling Shoup-Rubin: basics

empty trace is admissible in the protocol model. All other rules represent
inductive steps, so they detail how to extend a given trace of the model.
In particular, rule Reception allows messages sent on the network to be
received by their respective intended recipients. Rule Fake is treated later
(see §9.2.9).
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9.2.2 Phase I

The rules modelling phase I of the protocol are presented in figure 9.3. Any
agent except the server may initiate a protocol session at any time, hence
the corresponding event may extend any trace of the model (SR1). Upon

SR1

evs1 ∈ shouprubin

=⇒ Says A Server {|Agent A, Agent B|} # evs1 ∈ shouprubin

SR2

[| evs2 ∈ shouprubin; Gets Server {|Agent A, Agent B|} ∈ set evs2 |]

=⇒ Says Server A {|Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|}

|} # evs2 ∈ shouprubin

Figure 9.3: Modelling Shoup-Rubin: phase I

reception of a message quoting two agent names — initiator and responder
of the session — the server computes the pairkey for them and sends it with
a certificate to the initiator (SR2). Although the pairkey is sent in clear,
it does not reveal its peers. This information is carried by the certificate,
which explicitly creates the association between pairkey and peers.

9.2.3 Phase II

The rules modelling phase II of the protocol are presented in figure 9.4.
The initiator of a protocol session may query her own smart card provided
that she received a message containing a nonce and a certificate (SR3).

SR3

[| evs3 ∈ shouprubin; legallyU(Card A);

Says A Server {|Agent A, Agent B|} ∈ set evs3;

Gets A {|Nonce Pk, Cert|} ∈ set evs3 |]

=⇒ Inputs A (Card A) (Agent A) # evs3 ∈ shouprubin

SR4

[| evs4 ∈ shouprubin; legallyU(Card A); Nonce Na 6∈ used evs4;

Inputs A (Card A) (Agent A) ∈ set evs4 |]

=⇒ Outputs (Card A) A {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

# evs4 ∈ shouprubin

Figure 9.4: Modelling Shoup-Rubin: phase II
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The initiator gets no assurance that the nonce is in fact the pairkey for
her and the intended responder, or that the certificate is specific for the
pairkey. Since the message traversed the network in clear, the spy might
have tampered with it. It would seem sensible that the agent forwarded
the entire message to the smart card, which would be able to decrypt the
certificate and verify the integrity and authenticity of the pairkey. However,
the protocol specification does not encompass this, so we are analysing the
protocol with a simpler input message containing only the initiator’s name.
Given the input, the card issues a fresh nonce and a certificate for it (SR4).
The card keeps no record of the nonce in order to conserve memory. The
certificate will subsequently show the card the authenticity of the nonce.
Both steps rest on a legally usable smart card because they express some of
the legal operations by the card owner.

9.2.4 Phase III

The rules modelling phase III of the protocol are presented in figure 9.5.
When the initiator obtains a nonce and a certificate from her smart card,
she may forward the nonce along with her identity to the intended responder
(SR5). Later (phase V, §9.2.6), the responder obtains a message of the

SR5

[| evs5 ∈ shouprubin;

Says A Server {|Agent A, Agent B|} ∈ set evs5;

Outputs (Card A) A {|Nonce Na, Cert|} ∈ set evs5;

ALL p q. Cert 6= {|p, q|} |]

=⇒ Says A B {|Agent A, Nonce Na|} # evs5 ∈ shouprubin

Figure 9.5: Modelling Shoup-Rubin: phase III

same form with a different certificate, and must perform different events.
At that stage, should the responder initiate another protocol session with
a third agent, he could not decide whether to behave according to phase
III or to phase V unless he checks the certificate. If it is a one-component
cipher, then phase III follows; if it is a compound message, then phase V
follows. These alternatives may be discerned in practice by the length of
the certificate. However, since they are mutually exclusive, our treatment
of phase III simply requires the certificate not to be a compound message.
Both the designers and the implementors of the protocol omit to state this
check, which introduces ambiguity in the specification. Incidentally, recall
that, when the certificate is a cipher, no agent can check its internal structure
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because its encryption key is only known to a smart card.

9.2.5 Phase IV

The rules modelling phase IV of the protocol are presented in figure 9.6.
This phase sees the responder forward a clear-text message received from
the network to his smart card, provided that the card is legally usable (SR6).
The smart card issues a fresh nonce, computes the pair-k for initiator and

SR6

[| evs6 ∈ shouprubin; legallyU(Card B);

Gets B {|Agent A, Nonce Na|} ∈ set evs6 |]

=⇒ Inputs B (Card B) {|Agent A, Nonce Na|} # evs6 ∈ shouprubin

SR7

[| evs7 ∈ shouprubin; legallyU(Card B);

Nonce Nb 6∈ used evs7; Key (sesK(Nb,pairK(A,B))) 6∈ used evs7;

Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs7|]

=⇒ Outputs (Card B) B {|Nonce Nb, Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},

Crypt (pairK(A,B)) (Nonce Nb)|}

# evs7 ∈ shouprubin

Figure 9.6: Modelling Shoup-Rubin: phase IV

responder, and uses these components to produce a session key. The nonce
being fresh, the session key is also fresh. Finally, the card outputs the nonce,
the session key and two certificates (SR7). One certificate establishes the
association between the initiator’s nonce and the responder’s, and will be
inspected by the initiator’s card in phase VI. The other certificate will be
retained by the responder, who will make certain of obtaining it again from
the network in the final phase.

9.2.6 Phase V

The rules modelling phase V of the protocol are presented in figure 9.7.
When the responder obtains from his card a nonce followed by a key and
two certificates, he prepares for sending the nonce and one certificate to
the initiator (SR8). However, he must recall having previously quoted the
initiator’s identity to the card, trusting the card output to refer to his specific
input. Note that the three components following the nonce in the card
output might be seen as a unique certificate, thus inviting the ambiguity
discussed above (§9.2.4).
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SR8

[| evs8 ∈ shouprubin;

Inputs B (Card B) {|Agent A, Nonce Na|} ∈ set evs8;

Outputs (Card B) B {|Nonce Nb, Key K, Cert1, Cert2|} ∈ set evs8 |]

=⇒ Says B A {|Nonce Nb, Cert1|} # evs8 ∈ shouprubin

Figure 9.7: Modelling Shoup-Rubin: phase V

9.2.7 Phase VI

The rules modelling phase VI of the protocol are presented in figure 9.8.
The scenario returns to the initiator. Before she queries her legally usable
card, she verifies that she has taken hold of three messages, each containing
a nonce and a certificate. She takes on trust the nonce Pk as the pairkey

SR9

[| evs9 ∈ shouprubin; legallyU(Card A);

Says A Server {|Agent A, Agent B|} ∈ set evs9;

Gets A {|Nonce Pk, Cert1|} ∈ set evs9;

Outputs (Card A) A {|Nonce Na, Cert2|} ∈ set evs9;

Gets A {|Nonce Nb, Cert3|} ∈ set evs9;

ALL p q. Cert2 6= {|p, q|} |]

=⇒ Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce Pk,

Cert1, Cert3, Cert2|}

# evs9 ∈ shouprubin

SR10

[| evs10 ∈ shouprubin; legallyU(Card A);

Inputs A (Card A) {|Agent B, Nonce Na, Nonce Nb, Nonce (Pairkey(A,B)),

Crypt (shrK A) {|Nonce (Pairkey(A,B)), Agent B|},

Crypt (Pairkey(A,B)) {|Nonce Na, Nonce Nb|},

Crypt (crdK (Card A)) (Nonce Na)|} ∈ set evs10 |]

=⇒ Outputs (Card A) A {|Key (sesK(Nb,pairK(A,B))),

Crypt (pairK(A,B)) (Nonce Nb)|}

# evs10 ∈ shouprubin

Figure 9.8: Modelling Shoup-Rubin: phase VI

and Cert1 as its certificate. She recalls having obtained from her smart
card a nonce Na with a certificate that is not a compound message, which
signifies that the nonce was issued for her when she was acting as initiator.
Then, she treats Nb as the responder’s nonce and Cert3 as a certificate for
Na and Nb. Finally, she feeds these components to her smart card (SR9).
The card checks that all the received components have the correct form and,
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if so, computes the pair-k from the pairkey and then produces the session
key and a certificate for the responder’s nonce (SR10).

9.2.8 Phase VII

The rules modelling phase VII of the protocol are presented in figure 9.9.
Upon reception of a cryptographic key and a certificate from her smart card,
the initiator forwards the certificate to the responder.

SR11

[| evs11 ∈ shouprubin;

Says A Server {|Agent A, Agent B|} ∈ set evs11;

Outputs (Card A) A {|Key K, Cert|} ∈ set evs11 |]

=⇒ Says A B (Cert) # evs11 ∈ shouprubin

Figure 9.9: Modelling Shoup-Rubin: phase VII

9.2.9 Threats

In addition to the legal behaviour described above, the spy may also act
illegally. She observes the traffic on each trace, extracts all message com-
ponents, and builds all possible fake messages to send on the network or
to input to the illegally usable cards. This is modelled by rule Fake in
figure 9.10 (which is drawn from figure 8.2, §8.4).

Fake

[| evsF ∈ shouprubin; illegallyU(Card A);

X ∈ synth (analz (knows Spy evsF)) |]

=⇒ Says Spy B X # Inputs Spy (Card A) X # evsF ∈ shouprubin

Figure 9.10: Modelling Shoup-Rubin: threats on messages

We assume that the algorithm used by the cards to compute the session
keys is publicly known. Therefore, should the spy know the relevant compo-
nents of a session key, she would be able to compute the key. We allow this
by Paulson’s strategy for the TLS protocol [89] rather than by extending the
definition of synth, which would complicate the mechanisation process. If
the spy obtains a nonce and a pair-k, she can note the corresponding session
key by the rule Forge in figure 9.11, thus acquiring knowledge of it. Since
the pair-k’s are never sent on the network but merely used as encryption
keys, they can only be known initially by definition of initState.
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Forge

[| evsFo ∈ shouprubin; Nonce Nb ∈ analz (knows Spy evsFo);

Key (pairK(A,B)) ∈ knows Spy evsFo |]

=⇒ Notes Spy (Key (sesK(Nb,pairK(A,B)))) # evsFo ∈ shouprubin

Figure 9.11: Modelling Shoup-Rubin: threats on session keys

The means between agents and smart cards being assumed secure, the
model must be extended to allow the spy to obtain the outputs of the illegally
usable cards. According to the template in figure 8.3 (§8.4), we introduce
a further rule for each card output. Rule SR4 Fake in figure 9.12 is built
from SR4, while analogous rules SR7 Fake (built from SR7) and SR10 Fake

(built from SR10) are also needed but omitted here.

SR4 Fake

[| evs4F ∈ shouprubin; illegallyU(Card A); Nonce Na 6∈ used evs4F;

Inputs Spy (Card A) (Agent A) ∈ set evs4F |]

=⇒ Outputs (Card A) Spy {|Nonce Na, Crypt (crdK (Card A)) (Nonce Na)|}

# evs4F ∈ shouprubin

Figure 9.12: Modelling Shoup-Rubin: threats on card outputs

9.2.10 Accidents

We complete the model by allowing accidents (or breaches of security) on
session keys 9.13. This is typically done by a single rule (as seen on BAN
Kerberos, §5.3), or by two rules leaking two different kinds of session keys (as

OopsB

[| evsOb ∈ shouprubin;

Outputs (Card B) B {|Nonce Nb, Key K, Cert,

Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evsOb |]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOb ∈ shouprubin

OopsA

[| evsOa ∈ shouprubin;

Outputs (Card A) A {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|}

∈ set evsOa |]

=⇒ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} # evsOa ∈ shouprubin

Figure 9.13: Modelling Shoup-Rubin: accidents
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seen on Kerberos IV, §6.2.5). Shoup-Rubin requires both peers to handle the
same session key, respectively in phases IV and VI. Therefore, the spy has
a chance to discover the session key from both of them. In the worst case,
she will also discover the nonce used to compute the key and the identity of
its peers (OopsA, OopsB).

The spy could not learn any pair-k’s by accident because no agent ever
sees any. By definition of initState, she can only know some initially by
exploiting the relevant cloned cards.

9.3 Verifying Shoup-Rubin

The guarantees proved for a smart card protocol may, in general, also be ex-
pressed from the viewpoint of smart cards, helping optimise their hardware
or software design. This section discusses those established about Shoup-
Rubin. Note that a guarantee that requires inspecting the form of a cer-
tificate may be useful to cards but is never useful to agents, who cannot
decipher any certificates since they know no long-term keys. The minimal
trust now includes that certain cards be not usable by the spy.

The reliability theorems show that the model makes the expected use
of smart cards (§9.3.1) and that messages 7 and 10 crucially lack explicit-
ness. Suitable regularity lemmas can be expressed about all three kinds of
long-term keys employed by the protocol (§9.3.2). While the authenticity
argument (§9.3.3) only yields a single guarantee for the card that belongs to
the protocol initiator, the unicity argument (§9.3.4) will provide guarantees
for both initiator and responder. Confidentiality (§9.3.5) is weakened by the
mentioned lack of explicitness and so are the goals of authentication (§9.3.6)
and key distribution (§9.3.7).

9.3.1 Reliability of the Shoup-Rubin Model

The model server functions reliably (theorem 9.1). However, this theorem
cannot be made useful to A (unlike theorem 6.3 was made by theorem 6.6).
The authenticity argument about the message {|NoncePk ,Cert |} is extremely
weak. Should A receive such message, she cannot be guaranteed that it is an
instance of message 2, namely that the server sent it, because the message
is compound; nor can she inspect the form of the certificate.

Theorem 9.1. If evs contains

Says Server A {|NoncePk ,Cert |}
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then there exists B such that

Pk = Pairkey(A,B) and

Cert = Crypt(shrKA){|Nonce (Pairkey(A,B)),AgentB|}

Further guarantees concern the use of the smart cards allowed by the
protocol, the outputs that they produce and the inputs that the friendly
agents send them.

On the Use of the Smart Cards

If a friendly agent queries a smart card or receives a message from it, then
the card must belong to that agent and must be legally usable (theorem 9.2).
This signifies that a friendly agent can only use his own card and can only
use it legally, as we required.

Theorem 9.2. If A is not the spy, and evs contains either

InputsAC X or OutputsC AY

then

C = (CardA) and legallyU(CardA)

Our spy can act both legally and illegally. In fact, if the spy uses a smart
card, then the card must be either the spy’s own card, which is legally usable,
or some other agent’s card that is illegally usable (theorem 9.3). Since the
spy’s card is not illegally usable, the agent A mentioned by the theorem
certainly differs from the spy.

Theorem 9.3. If evs contains either

Inputs SpyC X or Outputs SpyAY

then

(C = (Card Spy) and legallyU(Card Spy)) or

(∃A. C = (CardA) and illegallyU(CardA))
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On the Outputs of the Smart Cards

To establish that the model smart cards work reliably, two categories of
guarantees can be proved on the Outputs events.

One category states that the cards only give the correct outputs when
fed with the expected inputs, so the cards cannot grant the spy unlimited
resources. The case for step 10 of the protocol is presented below (theo-
rem 9.4), while those for steps 4 and 7 are similar and omitted here.

Theorem 9.4. If evs contains

Outputs (CardA)A {|Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B))(NonceNb)|}

then there exists Na such that evs also contains

Inputs A (CardA) {|AgentB,NonceNa,NonceNb,Nonce (Pairkey(A,B)),
Crypt(shrKA){|Nonce (Pairkey(A,B)),AgentB|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(crdK(CardA))(NonceNa) |}

Another category of reliability theorems states that the cards’ CPUs
work correctly. So, given a specific output, the form of its component can
be tracked down. One such guarantee can be established on an instance
of message 4 (theorem 9.5). The length of the certificate must be checked
because of the protocol ambiguity already encountered (§9.2.4). Recall that
an event OutputsC AX also models A’s reception of X, so the theorem is
applicable also by A.

Theorem 9.5. If evs contains

Outputs (CardA)A {|NonceNa,Cert |}

and Cert is not compound, then

Cert = Crypt(crdK(CardA))(NonceNa)

Analogous considerations apply to message 7. Upon B’s reception of
an output, we can guarantee its form for some peer A and some nonce Na
(theorem 9.6). The existential form of the assertion tells that B receives the
session key in a message that does not inform him of the peer with whom
the key is to be used. This violates a well-known explicitness principle (per-
haps unknown at the time of the design): “Every message should say what
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it means. The interpretation of the message should depend only on its con-
tent.” [4, §2.1]. The underlying transport protocol cannot reveal the peer’s
identity either. If B uses the session key with the wrong peer, the conse-
quences should not be disastrous provided that the key remains confidential.
But, this lack of explicitness does weaken the confidentiality, authentication
and key distribution guarantees accomplished by the protocol, as discussed
in the sequel.

Theorem 9.6. If evs contains

Outputs (CardB)B {|NonceNb,KeyKab,Cert1 ,Cert2 |}

then there exist A and Na such that

Kab = sesK(Nb, pairK(A,B)) and

Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|} and

Cert2 = Crypt(pairK(A,B))(NonceNb)

The cards’ CPUs are also reliable when producing an instance of message
10 (theorem 9.7). The existential form of the assertion reveals another lack
of explicitness of the protocol design. When A receives the session key, she
has to infer from the context the identity of the peer with whom to use the
key. This task is entirely heuristic: the card might give outputs in the wrong
order. Likewise, the nonce associated with the key is not explicit from the
message.

Theorem 9.7. If evs contains

Outputs (CardA)A {|KeyKab,Cert |}

then there exist B and Nb such that

Kab = sesK(Nb, pairK(A,B)) and

Cert = Crypt(pairK(A,B))(NonceNb)

The theorem also shows that step 10 binds the form of the session key to
the card that creates it, and associates the session key with the certificate.
Therefore, should the former be inspectable, the structure of the latter could
be derived (corollary 9.8), and vice versa.

Corollary 9.8. If evs contains

Outputs (CardA)A {|Key (sesK(Nb, pairK(A′, B))),Cert |}

then,

A = A′ and Cert = Crypt(pairK(A,B))(NonceNb)
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On the Inputs of the Smart Cards

The analogous categories of guarantees can be established for the Inputs

events.
The friendly agents must use the legally usable smart cards in a legal

manner. Therefore, the friendly agents produce inputs whose origin can be
documented. For example, let us assume that an agent A queries a card as
in step 9 of the protocol (by theorem 9.4, the card belongs to A) quoting
an agent B. We can prove that A initiated a session with B, and received
the components of the query either from the network or from the card, by
means of suitable events (theorem 9.9).

Theorem 9.9. If A is not the spy, and evs contains

InputsAC {|AgentB,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then evs also contains

SaysA Server {|AgentA,AgentB|} and

GetsA {|NoncePk ,Cert1 |} and

GetsA {|NonceNb,Cert2 |} and

Outputs C A {|NonceNa,Cert3 |}

Although the first event of the conclusion highlights A’s intention to com-
municate with B, none of the remaining events mentions B. So, A cannot
be assured to be feeding her card the components meant for the session with
B. Even if the Gets events mentioned B, his identity would not be reliable
as the spy can tamper with compound messages coming from the network.
The Outputs event could mention B reliably as it takes place over a secure
means, but fails to do so. However, by theorem 9.4, A will get an output
from her card only if she uses the correct components as input.

Similar theorems regard the other queries to the smart cards, respec-
tively steps 3 and 6 of the protocol.

The form of the inputs created in steps 3 and 6 of the protocol are self-
explanatory. Step 9 is more complicated. While most of such input was
exposed to the network risks, the certificate that was produced earlier by
A’s card has not, so its form can be derived (theorem 9.10) signifying that
all agents use their own card correctly.

Theorem 9.10. If evs contains
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InputsA (CardA) {|AgentB,NonceNa,NonceNb,NoncePk ,

Cert1 ,Cert2 ,Cert3 |}

then

Cert3 = Crypt(crdK(CardA))(NonceNa)

Note that the guarantee also applies to the spy’s use of her own card. Upon
reception of a message, A’s card can determine whether it is an instance of
message 9 by looking at its cleartext part. The card should inspect carefully
the second and third certificates because they could be fake. Their form is
in fact not provable in the model. Having proved the integrity of the third
certificate may suggest that it is superfluous to the design, and that the card
could avoid checking it. Nevertheless, should an agent insert a fake nonce
as second component of message 9, inspecting the third certificate would
detect the misbehaviour. However, in our model friendly agents only act
legally.

9.3.2 Regularity

The protocol sends no long-term keys over the network, so the spy could do
so if and only if she knows them before the protocol begins. The spy can
discover a card key and the card owner’s key only from cloning the card (see
definition of initState, §9.2). Using the latter key, she can compute all the
pair-k’s meant for the card owner.

Lemma 9.11.

(Key (shrKA) ∈ analz(knows Spy evs))⇐⇒ (CardA ∈ cloned)

Lemma 9.12.

(Key (crdKC) ∈ analz(knows Spy evs))⇐⇒ (C ∈ cloned)

Lemma 9.13.

(Key (pairK(P,B)) ∈ analz(knows Spy evs))⇐⇒ (CardB ∈ cloned)

9.3.3 Authenticity

The proof scripts of the theorems discussed in this section may be found in
Appendix D. All Shoup-Rubin’s certificates are sealed under long-term keys,
so the agents get no authenticity guarantees about them. However, since
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the long-term keys are stored into the smart cards, in general the authentic-
ity argument can be directed towards the smart cards, possibly helping to
optimise their design. Shoup-Rubin inputs a smart card with encrypted cer-
tificates only in step 9. We develop the corresponding authenticity argument
via some subsidiary authenticity lemmas that are not directly applicable ei-
ther by agents or by cards. Incidentally, from the assumption of secure
means, it follows that, if a card receives a certificate as part of an input on
a trace evs, the definition of knows does not imply that the certificate is in
the network traffic, namely in parts(knows Spy evs).

Along with a pairkey, the server issues a certificate that verifies it. When
the certificate is in the traffic, we can prove that it originated with the server
if the regularity lemma 9.11 is applicable. Therefore, given that the peer’s
card is not cloned, the certificate is authentic (lemma 9.14). At this stage,
the form of the pairkey may be specified via theorem 9.1.

Lemma 9.14. If A’s card is not cloned, and evs is such that

Crypt(shrKA){|NoncePk ,AgentB|} ∈ parts(knows Spy evs)

then evs contains

Says Server A {|NoncePk ,Crypt(shrKA){|NoncePk ,AgentB|}|}

We can verify formally that the certificate that associates A and B’s
nonces is built in step 7 (lemma 9.15). Since the certificate is sealed under
the corresponding pair-k, investigating its origin requires an appeal to the
regularity lemma 9.13, which prescribes B’s card not to be cloned. However,
a stronger assumption is needed on B’s card to solve case SR7 Fake: the
card must not be illegally usable, otherwise it could also output towards the
spy.

Lemma 9.15. If B’s card is not illegally usable, and evs is such that

Crypt(pairK(A,B)){|NonceNa,NonceNb|} ∈ parts(knows Spy evs)

then evs contains

Outputs (CardB)B {|NonceNb,Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B)){|NonceNa,NonceNb|},

Crypt(pairK(A,B))(NonceNb) |}

Message 7 ends with another certificate that verifies B’s nonce, {|Nb|}
πab

.
So, we can prove a theorem, omitted here, that is identical to theorem 9.15,
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except for the certificate considered and the assertion being in the scope of
an existentially quantified nonce Na. The same certificate is also output
by A’s card in message 10. Proving this result (lemma 9.16) also requires
B not to be the spy in order to solve case SR7 (so that the corresponding
event does not introduce the certificate in the traffic), and A’s card not to
be illegally usable to solve case SR10 Fake.

Lemma 9.16. If B is not the spy, A and B’s cards are not illegally usable,
and evs is such that

Crypt(pairK(A,B))(NonceNb) ∈ parts(knows Spy evs)

then evs contains

Outputs (CardA)A {|Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B))(NonceNb) |}

The authenticity lemmas serve to prove an authenticity theorem that is
applicable by A’s card (theorem 9.17). So, the theorem must include the
assumptions on agents and cards required by the lemmas. Upon reception of
message 9, the card must inspect the first two certificates, as advised by the-
orem 9.10. If the first certificate has the expected form, then theorem 9.9
and lemma 9.14 prove the first event of the assertion (once a message is
received, its components appeared in the traffic). Similarly, if the second
certificate is as expected, then theorem 9.9 and lemma 9.15 prove the sec-
ond event. The third certificate does not need to be inspected thanks to
its provable integrity, so theorem 9.9 alone justifies the third event of the
assertion. This reasoning is mechanisable by one Isabelle command that
applies theorem 9.9 only once, and then the necessary authenticity lemma.

Theorem 9.17. If A is not the spy, A’s card is not cloned, B’s card is not
illegally usable, and evs contains

Inputs A (CardA) {|AgentB,NonceNa,NonceNb,NoncePk ,
Crypt(shrKA){|NoncePk ,AgentB|},
Crypt(pairK(A,B)){|NonceNa,NonceNb|},Cert3 |}

then evs also contains

Says Server A {|NoncePk ,Crypt(shrKA){|NoncePk ,AgentB|}|} and

Outputs (CardB) B {|NonceNb,Key (sesK(Nb, pairK(A,B))),
Crypt(pairK(A,B)){|NonceNa,NonceNb|},
Crypt(pairK(A,B))(NonceNb) |} and

Outputs (CardA)A {|NonceNa,Cert3 |}
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The authenticity of the crucial message components can be investigated
in the same fashion as that of the certificates. Let us consider the authentic-
ity of pairkeys. Only the server is entitled to issue Pairkey(A,B), which does
not belong to the initial knowledge of the spy if either A or B’s card is not
cloned. For example, let us suppose that A’s card is not cloned. Apparently,
this should enforce that if a pairkey is in the traffic, then it was issued by
the server. However, attempting to prove that if evs is such that

Pairkey(A,B) ∈ parts(knows Spy evs)

then, for some Cert , evs contains

Says Server A {|Nonce (Pairkey(A,B)),Cert |}

leaves the following subgoal arising from case Base

[| Card A 6∈ cloned;

Pairkey(A,B) = Pairkey (A’,B’);

Card A’ ∈ cloned; Card B’ ∈ cloned |] =⇒ False

We cannot derive that A = A′ because the pairkey is implemented in terms
of the exclusive-or operator, which is not collision-free. The subgoal can be
in fact falsified because there may exist two pairs of distinct agents A, A′

and B, B′ who satisfy the premises. This proof attempt teaches us that the
spy might exploit the collisions suffered by the exclusive-or operator and
forge a pairkey without knowing its original components but others. The
probability of this happening is influenced by the redundancy introduced by
the encryption function and by the length of the ciphers.

We now examine the authenticity of the session key. This crucial mes-
sage component is only sent between cards and agents, never through the
network. Despite this, the spy could either forge it (by Forge), or obtain it
from her own card if she is one of the peers (by SR7 or SR10), or learn it
from the illegally usable cards (by SR7 Fake or SR10 Fake). Let us make
the assumptions that prevent all these circumstances. For example, if the
responder’s card is not illegally usable and therefore not cloned, then the
session key cannot be forged by lemma 9.13. Then, if a session key ever ap-
pears in the traffic, one of its peers necessarily leaked it by accident, while
the trace recorded the corresponding oops event (lemma 9.18). This is in
fact a counterguarantee of authenticity because it emphasises the conditions
under which a session key that is in the traffic is not authentic: the spy
in fact introduced it. However, it will be fundamental to assess a form of
session key confidentiality.
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Lemma 9.18. If A and B are not the spy, their cards are not illegally
usable, and evs is such that

Key (sesK(Nb, pairK(A,B))) ∈ parts(knows Spy evs)

then evs contains

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,AgentB|}

Proving the authenticity lemmas requires a common strategy (simpler
than Paulson’s for the authenticity theorems on traditional protocols [88,
§4.7]). We present below the strategy for Shoup-Rubin, which can be gen-
eralised straightforwardly to any smart card protocol.

1. Apply induction.

2. If the lemma concerns

• a certificate sealed under a shared key, then simplify case Fake

by lemma 9.11;

• a certificate sealed under a card key, then simplify case Fake by
lemma 9.12;

• a certificate sealed under a pair-k, then simplify case Fake by
lemma 9.13;

• a session key, then apply “H ⊆ partsH” to case Forge and sim-
plify it by lemma 9.13.

3. Solve case Fake by a standard tactic [88, §4.5].

4. Apply the theorems assessing the reliability of the cards’ functioning
as follows: theorem 9.5 to case SR9, theorem 9.6 to cases SR8 and
OopsB, theorem 9.7 to case SR11, and a variant of theorem 9.7 —
which binds the form of the certificate, given the form of the session
key — to case OopsA.

5. Simplify remaining cases.

9.3.4 Unicity

Shoup-Rubin requires B’s card to build a fresh session key in message 7.
The key is bound uniquely to the remaining components of the message
(theorem 9.19). When proving this result, after induction and simplification
two subgoals remain, which are about SR7 and SR7 Fake. The latter is
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easily solvable because it forces the spy to use her own card illegally, which
is impossible. The other case is solved by freshness: the session key could
not appear before. Message 7 also contains B’s fresh nonce, so a variant of
the theorem may be proved using the nonce as pivot.

Theorem 9.19. If evs contains

Outputs (CardB)B {|NonceNb,KeyKab,Cert1 ,Cert2 |} and

Outputs (CardB′)B′ {|NonceNb ′,KeyKab,Cert1 ′,Cert2 ′|}

then

B = B′ and Nb = Nb ′ and Cert1 = Cert1 ′ and Cert2 = Cert2 ′

A similar theorem, here omitted, holds about the output of step 4, ex-
ploiting the freshness of A’s nonce. More surprisingly, it holds about the
output of message 10 too (theorem 9.20), although the card uses no fresh
components on that occasion. Corollary 9.8 supplies. Whenever a specific
session key appears, the form of the corresponding certificate can be as-
sessed, so the same key cannot stand by two different certificates. This
strategy solves the subgoal about SR10, while the one about SR10 Fake is
terminated routinely.

Theorem 9.20. If evs contains

Outputs (CardA)A {|KeyKab,Cert |} and

Outputs (CardA′)A′ {|KeyKab,Cert ′|}

then

A = A′ and Cert = Cert ′

The unicity theorems may teach agents a lot. For example, if in the
real world B receives the same session key within two different instances of
message 7, he may suspect that something wrong has happened. Having
violated theorem 9.19, the scenario is due to problems that lie outside our
model, ranging from a malfunction of B’s card to a spy’s break-in between
the agent and his card. Theorem 9.20 provides the equivalent information
to A.

However, if B happens to receive the same session key within the same
message more than once, theorem 9.19 would not be violated. Still, the
scenario is unaccountable in the model, and thus should alarm B. Since all
cards’ CPUs function correctly, B’s card must always compute a fresh key.
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As a matter of fact, a further guarantee may be designed to assist B in this
circumstance. Upon reception of any output commencing with a nonce, B
can be assured that the corresponding event is unique (theorem 9.21). After
expanding the definition of the predicate, the cases about SR4 and SR7 are
solved by freshness of the nonce. The result also applies to the output of
A’s card in step 4. No similar theorem can be established about step 10,
which does not involve any fresh components.

Theorem 9.21. If evs contains

Outputs (CardB)B {|NonceNb, rest |}

then

Unique (Outputs (CardB)B {|NonceNb, rest |}) on evs

9.3.5 Confidentiality

Some counterguarantees of confidentiality can be easily obtained. Even if
a specific pairkey has not been issued by the server and its components
cannot be forged, the pairkey cannot be proved confidential because of the
weakness discovered by the authenticity argument (§9.3.3). Besides, it is
straightforward to notice from messages 6 and 8 that neither A’s nor B’s
nonce remain confidential.

On the contrary, the regularity lemmas may be viewed as non-trivial
confidentiality guarantees. Moreover, applying analzH ⊆ partsH to the au-
thenticity theorem 9.18, we obtain a guarantee of session key confidentiality.
Any session key that cannot be forged and that has not been leaked by acci-
dent is confidential (theorem 9.22). Unfortunately, the theorem is not useful
to agents because the structure of the session key must be inspected.

Theorem 9.22. If A and B are not the spy, their cards are not illegally
usable, and evs does not contain

Notes Spy {|Key (sesK(Nb, pairK(A,B))),NonceNb,AgentA,AgentB|}

then

Key (sesK(Nb, pairK(A,B))) 6∈ analz(knows Spy evs)

This result cannot be strengthened sufficiently: we have discovered that
the theorems of session key confidentiality cannot be applied by the peers
within the minimal trust due to the lack of explicitness that affects two
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protocol steps [15]. It follows that the Shoup-Rubin protocol grants weak
confidentiality guarantees to its peers unless the design is slightly modified
(see §9.4). However, the guarantees presented below can be applied by
the smart cards within the minimal trust, which is in general a significant
outcome for a smart card protocol.

We follow Paulson’s general strategy for verifying confidentiality (§4.5).
The proof scripts of the resulting theorems may be found in Appendix D.
The necessary simplification law for analz, the session key compromise the-
orem, is fairly easy to obtain, since Shoup-Rubin never sends session keys
over the network. The confidentiality argument for a protocol responder B
must develop on an event that B can verify: his card sending a message that
contains the session key in step 7 of the protocol. The event formalising such
step,

Outputs (CardB)B {|NonceNb,KeyKab,Cert1 ,Cert2 |}

includes two certificates, Cert1 and Cert2 , that B cannot inspect because
they are sealed by specific long-term keys (no agent knows any long-term
keys).

We have attempted to prove Kab confidential on a trace evs that contains
no oops event leaking Kab but that does contain the mentioned event. Also,
B’s card must be assumed not to be cloned otherwise the spy would know
pairK(P,B) for any agent P and could so be able to forge the session key
by rule Forge. The proof leaves two subgoals unsolved, respectively arising
from cases SR10 and SR10 Fake. The inspection of the former teaches that
B’s peer might be the spy, who could so obtain a copy of Kab from her
own smart card. The latter subgoal shows that B’s peer’s card could be
illegally usable regardless the identity of the peer; the spy would be able to
use this card to compute Kab. While the protocol requires B’s card to issue
a new session key in step 7, his peer in fact computes a copy of the key from
available components in step 10.

Therefore, further assumptions are necessary on B’s peer and her card,
but the message obtained by B does not state the identity of such peer.
This signifies that B does not obtain explicit information about the peer
with which the session key is to be used, which violates a well-known explic-
itness principle due to Abadi and Needham: “If the identity of a principal
is essential to the meaning of a message, it is prudent to mention the princi-
pal’s name explicitly in the message” [4, §4]. If we inspect either one of the
certificates, then B’s peer, A, becomes explicit, so the relevant assumptions
can be stated and theorem 9.23 proved.



9.3. VERIFYING SHOUP-RUBIN 143

Theorem 9.23. If A and B are not the spy, A’s card is not illegally usable,
B’s card is not cloned, and evs contains

Outputs (CardB)B {|NonceNb,KeyKab,Cert ,

Crypt(pairK(A,B))(NonceNb)|}

but does not contain

Notes Spy {|KeyKab,NonceNb,AgentA,AgentB|}

then

KeyKab 6∈ analz(knows Spy evs)

From B’s viewpoint, trusting that the peer is not malicious and her
card cannot be used by the malicious entity is indispensable. So is trusting
that the key has not been leaked by accident. These assumptions constitute
B’s minimal trust. What is more important is that B cannot verify that
the main event of the theorem ever occurs because he cannot inspect the
certificate. Therefore, he cannot apply the theorem.

Shoup and Rubin’s analysis based on provable security asserts an anal-
ogous property requiring that the peers’ cards be “unopened” [98, §3.1],
which may be interpreted as “not cloned” within our approach. However,
the treatment does not highlight the lack of explicitness unveiled here, failing
to investigate whether the property is in fact useful to the peers.

Similar considerations arise when reasoning from A’s viewpoint in the at-
tempt to prove confidentiality on the assumption that the event formalising
step 10,

Outputs (CardA)A {|KeyKab,Cert |}

occurs, leaving the subgoals arising from SR7 and SR7 Fake unsolved. They
highlight that A could be communicating either with the spy or with an
agent whose card is illegally usable. As a matter of fact, step 10 fails to
express A’s peer. Like the previous theorem, also this one can be proved if
the form of Cert is explicit, resulting in a guarantee that can be applied by
A’s card but not by A (theorem 9.24).

Theorem 9.24. If A and B are not the spy, A and B’s cards are not
illegally usable, and evs contains

Outputs (CardA)A {|KeyKab,Crypt(pairK(A,B))(NonceNb)|}

but does not contain
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Notes Spy {|KeyKab,NonceNb,AgentA,AgentB|}

then

KeyKab 6∈ analz(knows Spy evs)

The analysis based on provable security does not account for this weakness.
We stress that, since theorems 9.23 and 9.24 are applicable by the smart
cards, they reveal lack of explicitness only through the verification of our
principle of goal availability (§4.8).

9.3.6 Authentication

The lack of explicitness that affects messages 7 and 10 also weakens the
goals of authentication. Only A’s card obtains a useful guarantee and so
can detect whether certain components are being used with the wrong peer.

Phase V terminates B’s role in the protocol. Then, B’s peer, A, obtains
the session key from message 10, but the identity of B remains unspecified
unless the certificate is inspected. If the certificate is not fake, induction
proves it to have appeared with the instance of message 7 that concerns
B (theorem 9.25). Although A cannot appeal to the theorem, it becomes
significant to A’s card, which can inspect the certificate. When the card
issues A with the session key, it is guaranteed that both B and his card were
present on the network and that B’s card, which is using the pair-k for A
and B, is participating in a session with A. The proof observes that the
event of the assumption implies that the certificate {|Na,Nb|}

πab
appears in

the traffic for some Na; then, it applies lemma 9.15.

Theorem 9.25. If B’s card is not illegally usable, and evs contains

Outputs (CardA)A {|KeyKab,Crypt(pairK(A,B))(NonceNb)|}

then, for some Na, evs also contains

Outputs (CardB)B {|NonceNb,KeyKab,

Crypt(pairK(A,B)){|NonceNa,NonceNb|},

Crypt(pairK(A,B))(NonceNb) |}

This result may be interpreted as weak agreement of B’s card with A’s.
The cards certainly know the components of their outputs, so the result
also may be viewed as non-injective agreement of B’s card with A’s on Kab.
However, expressing this formally requires extending the function knows on
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smart cards (§8.3), which may be of little significance due to the limited
memory of the cards.

A relevant authentication guarantee for B should establish that A is ac-
tive after B creates the session key. At the end of the protocol, B may receive
from the network the certificate for his nonce. Provided that lemma 9.16 is
applicable, A’s card can be proved to have sent a suitable instance of mes-
sage 10, which establishes A and her card’s presence, and A’s card intention
to communicate with B (theorem 9.26).

Theorem 9.26. If B is not the spy, A and B’s cards are not illegally usable,
and evs contains

GetsB (Crypt(pairK(A,B))(NonceNb))

then evs also contains

Outputs (CardA)A {|Key (sesK(Nb, pairK(A,B))),

Crypt(pairK(A,B))(NonceNb) |}

Is this theorem useful to B? The answer is “no” because the agent cannot
inspect the encrypted certificate. So, in practice B obtains no information
about the sender of the certificate, and his peer remains unknown. Observ-
ing that the certificate was originally created in message 7 does not help
because that message does not state the peer either (see theorem 9.6). A
possible solution, which we have verified, is concluding the protocol with two
additional steps: B forwarding the certificate to his card, and the card re-
sponding with A’s identity. The card should use the right pair-k to decrypt
the certificate, thus identifying A. While adding explicitness to message 7 is
a simpler fix (as demonstrated below, §9.4), making the guarantee available
also to B’s card necessarily requires the additional steps.

9.3.7 Key Distribution

The Shoup-Rubin protocol does not achieve the goal of key distribution in
the sense that each peer obtains no evidence that he shares the session key
with the other one. This is due to the mentioned lack of explicitness. Nev-
ertheless, A’s card can be informed that the session key is known to B.

Applying the definition of knows to the conclusion of theorem 9.25 yields
that, when A’s card computes the session key for A, the key is already
known to B (theorem 9.27); A cannot profit from this result. Note that the
guarantee itself does not prevent B from being the spy.
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Theorem 9.27. If B’s card is not illegally usable, and evs contains

Outputs (CardA)A {|KeyKab,Crypt(pairK(A,B))(NonceNb)|}

then

KeyKab ∈ analz(knowsB evs)

Let us attempt to design the corresponding guarantee for B. His session
key is obtained via message 7. By theorem 9.26, if B receives the last
message of the protocol, he infers that A obtained some session key. The
two events must be correlated in order to assure that both peers hold the
same key. This can only be done by inspecting one of the certificates of
message 7, so to make A explicit. Then, theorem 9.6 specifies the form of
the session key that is output by B’s card (theorem 9.28).

Theorem 9.28. If B is not the spy, A and B’s cards are not illegally usable,
and evs contains

Outputs (CardB)B {|NonceNb,KeyKab,Cert ,
Crypt(pairK(A,B))(NonceNb)|} and

GetsB (Crypt(pairK(A,B))(NonceNb))

then

KeyKab ∈ analz(knowsA evs)

No stronger result than this can be envisaged because there exists no proto-
col message that binds the session key with both of its peers. Can B inspect
any of the certificates of message 7 ? Or, can B’s card inspect that of the
last message? Both answers being negative, theorem 9.28 turns out to be
applicable neither to B nor to his card, which is a poor outcome for the
protocol.

9.4 Verifying an Upgraded Shoup-Rubin

Omitting B’s name from message 2 of the public-key Needham-Schroeder
protocol led to the well-known Lowe’s attack [63]. Although public-key cryp-
tography attempted to enforce confidentiality of the nonces, the spy could
intercept the messages while interleaving two sessions, learn an important
nonce and violate the authentication of the initiator to the responder. With
Shoup-Rubin, the secure contexts between agents and smart cards prevent
this. However, since the cards’ data buses are not reliable (§8.1.1), when
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lack of explicitness affects the cards’ outputs, the agents cannot distinguish
which protocol session a single output belongs to.

Abadi and Needham demonstrate that lack of explicitness may crucially
affect the interpretation of a message — “The names relevant for a message
can sometimes be deduced from other data and from what encryption keys
have been applied. However, when this information cannot be deduced, its
omission is a blunder with serious consequences.” [4, §4].

As mentioned above, message 7 of Shoup-Rubin cannot inform B of A’s
identity both because the session key does not state its peers and because
the two ciphers cannot be decrypted by agents. Nor can message 10 inform
A of B’s identity. Besides, while message 7 quotes the nonce Nb that is
used to build the session key, message 10 fails to do so. These components
cannot be learnt from the underlying transport protocol. Therefore, upon
reception of an instance of message 10, agent A cannot derive the complete
form of the instance of message 7 sent during that session.

However, messages 6 and 9 do quote the identity of the respective, in-
tended peer. So, it could be argued that, should the cards’ data buses be
reliable, the calling agent could store the identity of the peer until the card
returned, and associate the session key just received to that peer. Neverthe-
less, the messages 7 and 10 do violate the explicitness principles that have
been mentioned throughout this chapter. Indeed, we have shown how they
weaken the protocol goals when the extra assumption of reliable cards’ data
buses is not made.

These considerations suggest upgrading messages 7 and 10 by the com-
ponents underlined in figure 9.14, while leaving the rest of the protocol
unaltered. It is straightforward to upgrade the formal protocol model ac-
cordingly.

7. Cb → B : Nb, A,Kab, {|Na,Nb|}
πab

, {|Nb|}
πab

10. Ca → A : B,Nb,Kab, {|Nb|}
πab

Figure 9.14: Upgrading the Shoup-Rubin protocol

In the new model, many of the theorems discussed above obtain slightly
modified assertions and, crucially, assumptions that never inspect the ci-
phers. So, the assumptions have become verifiable by agents, signifying
that the upgraded protocol makes its guarantees available to them. For
example, theorem 9.4 can now be enforced on the event

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert |}
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The assertion of theorem 9.6 can be stripped of one existential, so B
learns the peer for the session key (theorem 9.6′). One existential still con-
strains the form of one of the certificates, but B’s knowledge is not signifi-
cantly affected.

Theorem 9.6′. If evs contains

Outputs (CardB)B {|NonceNb,AgentA,KeyKab,Cert1 ,Cert2 |}

then

Kab = sesK(Nb, pairK(A,B)) and

Cert2 = Crypt(pairK(A,B))(NonceNb)

and there exists Na such that

Cert1 = Crypt(pairK(A,B)){|NonceNa,NonceNb|}

Similarly, proving theorem 9.7 on the event

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert |}

avoids the existential quantifiers in the assertion because both B and Nb are
already bound. The second event enforced by theorem 9.7 obtains an extra
component, while the rest of the authenticity argument remains unaltered.

The unicity results continue to hold. For example, theorem 9.20 must
now cope with the additional components (theorem 9.20′).

Theorem 9.20′. If evs contains

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert |} and

Outputs (CardA′)A′ {|AgentB′,NonceNb ′,KeyKab,Cert ′|}

then

A = A′ and B = B′ and Nb = Nb ′ and Cert = Cert ′

Theorem 9.23 gets a simpler main assumption

Outputs (CardB)B {|NonceNb,AgentA,KeyKab,Cert1 ,Cert2 |}

which is verifiable by B, and so does theorem 9.24, which rests on

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert |}
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As a consequence, the peers will be able to decide, within the minimal level
of trust, whether the session key they obtain is confidential.

Both authentication theorems are strengthened. Agent A can now be
informed that B and his card were present on the network and that B’s
card intended to communicate with A (theorem 9.25′). Agent A must only
verify receiving from her card a message with four components: an agent
name, a nonce, a key, a cipher. The theorem could be more specific on the
form of Cert1, but this would not enrich A’s knowledge substantially.

Theorem 9.25′. If B’s card is not illegally usable, and evs contains

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert2 |}

then, for some Cert1 , evs also contains

Outputs (CardB)B {|NonceNb,AgentA,KeyKab,Cert1 ,Cert2 |}

The result may be interpreted (§9.3.6) as non-injective agreement of B and
his card with A and her card on Kab.

Also theorem theorem 9.26 can be reformulated (theorem 9.26′) as to
become applicable by B, who can check the reception from the network of
a cipher previously obtained from his card.

Theorem 9.26′. If B is not the spy, A and B’s cards are not illegally
usable, and evs contains

Outputs (CardB)B {|NonceNb,AgentA,KeyKab,Cert1 ,Cert2 |} and

GetsB (Cert2 )

then evs also contains

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert2 |}

Note that the result is not applicable by B’s card. It expresses non-injective
agreement of A and her card with B on Kab.

Theorem 9.27 can be enforced on the same assumptions as those of the-
orem 9.25′, so becoming applicable by A (theorem 9.27′).

Theorem 9.27′. If B’s card is not illegally usable, and evs contains

Outputs (CardA)A {|AgentB,NonceNb,KeyKab,Cert2 |}

then,

KeyKab ∈ analz(knowsB evs)

Similarly, the assertion of theorem 9.28 can be proved on the assumptions
of theorem 9.26′ and become useful to B. The resulting theorem and theo-
rem 9.27′ signify that the upgraded protocol achieves the goal of key distri-
bution.
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Chapter 10

Conclusions

The summary of the research presented throughout the disserta-
tion is drawn and discussed. The treatment concludes with some
statistics and some ideas for future work.

Establishing secure communication sessions with remote computers is vital.
Security in this context may signify a variety of goals, which depend on the
application domain. Enforcing them can be daunting. Practical experience
has confuted many informal claims of protocol security and some formal
ones. As a consequence, computer practitioners are still highly reluctant
towards entering personal data into a network even when some cryptographic
protocol is provided.

The main argument of this dissertation is that formal methods may sub-
stantially help to verify whether a protocol achieves the goals of authenticity,
unicity, confidentiality, authentication and key distribution. We conduct this
argument by extending Paulson’s Inductive Approach [88] in such a way that
it scales up to real-world protocols. We achieve the first full mechanisation
of the following protocols: BAN Kerberos, Kerberos IV and Shoup-Rubin.
The first requires the modelling of timestamps, the second necessitates of a
meticulous distinction between different kinds of session keys, and the third
makes it necessary to account for smart cards. Our treatment confirms
and strengthens the importance of explicitness in designing protocols and
supports a new principle, goal availability, which is met when there exist
suitable guarantees assuring both peers that the protocol achieves its goals.
Violating this principle raises the risk of attacks, as is the case with Kerberos
IV, which makes a crucial confidentiality guarantee available to its initiator
but not to its responder.

Also, it could be argued that the explicitness principles are not con-
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structive. For example, when is the “identity of a principal essential to the
meaning of a message” [4] ? By contrast, investigating goal availability is
simple — it only requires viewing the existing formal guarantees by taking
into account the agents’ knowledge. We believe that, in general, checking
goal availability may pinpoint unknown lack of explicitness, as demonstrated
with the Shoup-Rubin protocol.

10.1 Summary

Chapter 2 presents the state of the art in reasoning about cryptographic
protocols. The complexity of the formal approaches used to obtain some
guarantee does not influence the relevance of the guarantee itself. On the
contrary, a complex approach might reduce the importance of an eventual
guarantee by making it obscure. Nonetheless, the guarantees that, at first,
are easy to grasp may necessitate a more careful interpretation.

Chapter 3 outlines the original Inductive Approach to verifying crypto-
graphic protocols, which is due to Paulson [88]. Rather than accounting in-
formally for a malicious entity as most belief logics do, this approach clearly
defines the abilities of a model spy. Paulson’s approach responds with un-
bounded models to the limited size of the protocol models analysed by state
enumeration techniques. The approach is mechanised with the generic the-
orem prover Isabelle, which verifies the proof steps performed by humans,
as opposed to the provable security approach, whose theoretical reasoning
is solely carried out on paper. The modifications and extensions we have
developed on the Inductive Approach are described through the subsequent
chapters along with their outcomes.

Chapter 4 discusses the protocol goals that we can prove formally and
the related proof strategies. We design the reliability theorems, assessing
that the formal protocol represents the real protocol faithfully. Then, we
develop stronger unicity theorems than the existing ones, which state that
certain events can only occur once. Some of the existing theorems are useful
to show that the goals of integrity and authenticity are equivalent. Hence,
the goal of confidentiality is reviewed. Furthermore, we explain how to treat
the goals of authentication and key distribution within the approach. While
beginning to build the machinery to reason about these goals (finalised in
chapter 7), we show that a strong form of authentication is equivalent to
key distribution.
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Finally, the concept of minimal trust and the principle of goal availability
are explained. If guarantees enforcing a protocol goal can be established on
assumptions that the protocol peers can verify, excepted for those in the
minimal trust, then we say that the protocol makes the goal available to its
peers, namely the protocol conforms to the principle of goal availability in
regard to that goal.

Chapter 5 describes how we extend the Inductive Approach with time-
stamps. The formalisation of time can be carried out in a simple fashion by
exploiting the order of the elements of a trace.

Using a discrete view of time, the current time of a trace may be given by
its length. This presupposes that no two events can occur at the same time,
as does the protocol model itself, which extends the traces by a single event
at a time. Following these extensions, the BAN Kerberos protocol, which is
based on timestamps, can be mechanised. Its proven goals can be compared
with those obtained by the BAN logic, which are only confidentiality and
key distribution.

Chapter 6 contains the full mechanisation of Kerberos IV. The protocol
model is quickly obtained from an existing formal specification by ASMs [21],
which was itself obtained from the original informal specification of the
protocol [77]. The most interesting feature of Kerberos IV is its use of the
authkeys (the session keys issued during the first phase of the protocol) to
encrypt the servkeys (the session keys issued during the second phase).

We also check if the protocol conforms to our principle of goal availabil-
ity. In designing a confidentiality guarantee for the protocol responder, we
discover that he must trust certain conditions pertaining to a protocol phase
in which he has not taken part. On the basis of this observation, we point
out an attack whereby the spy exploits certain servkeys within their lifetime,
without the agent for whom they had been issued realising it. We prove that
adding a simple temporal check to the functioning of one of the two trusted
servers can prevent this attack. These considerations are unknown to any
of the existing analyses of the protocol.

Chapter 7 concentrates on the knowledge that the agents’ derive from
handling the protocol messages. This is fundamental to reason formally
about authentication and key distribution. We develop two approaches.
One rests on the inspection of the trace to pinpoint the messages that each
agent creates. Creation of a message implies knowledge of all its components.
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Another approach, released with the 1999 distribution of Isabelle, introduces
the event of message reception and defines agents’ knowledge in terms of
the messages that each agent sends or receives. The definition of agents’
knowledge extends and replaces the existing notion of spy’s knowledge.

Both approaches are demonstrated on proving authentication and key
distribution on BAN Kerberos and Kerberos IV, where they seem to ac-
complish equivalent results. However, only the approach based on message
reception can be used successfully to verify key distribution on a variant
of the Otway-Rees protocol. Trace inspection regains its attraction when
investigating the temporal requisites of the goal of authentication, and is
indispensable to compare the outcomes of timestamps with those of nonces.
Therefore, we deduce that a combination of both approaches might yield the
best results, although we argue that the one based on message reception,
more elegant and readable, should account for most realistic scenarios.

Chapter 8 tailors the Inductive Approach to the analysis of protocols
based on smart cards. Many such protocols explicitly assume that the means
between each agent and his card is secure, whereas others do not rest on
this. We account for both cases by simple variations to the definition of
agents’ knowledge, and introduce suitable events to formalise the interaction
between agents and cards.

We formalise the set of smart cards that the spy has got hold of, also
discovering their pins. Another set of smart cards formalises those that she
has managed to clone, discovering their internal secrets. We allow the spy
to exploit all such cards. For this purpose, the rule of the protocol model
formalising the spy’s illegal operations must be extended. Also, in case
the means between agents and cards is assumed secure, a new rule must
be added each time a smart card sends an output. These new rules allow
the spy to obtain the outputs of the cards that she can illegally use, and
necessarily complicate the proofs.

Chapter 9 demonstrates the approach developed in the previous chapter
on the Shoup-Rubin protocol, which is based on smart cards. This protocol
is a significant case study because its designers have analysed it by the prov-
able security approach, and because it has been subsequently implemented.
The abstract treatment by the protocol designers makes it difficult to derive
a compact view of the protocol. In this case, the implementors’ paper helps
significantly but, in general, long and informal specifications seem one of
the major obstacles that formal analysis must face (as, for example, when
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modelling the SET protocol [16]).

Our proofs highlight that two of the protocol steps lack explicitness:
no peer knows with whom to associate the session key received from his
own card. This weakens the goals of confidentiality, authentication and key
distribution achieved by the protocol. However, unlike the agents, the smart
cards can decipher some of the exchanged ciphers. As a consequence, from
the viewpoint of the smart cards, the mentioned lack of explicitness does
not affect the three protocol goals: the cards can still apply most of the
corresponding guarantees. Therefore, we remark that it is the process of
verifying whether the protocol conforms to the principle of goal availability
that unveils the lack of explicitness.

10.2 Statistics

All runtimes reported below are measured on a 600Mhz Intel Pentium III.

The full proof script for BAN Kerberos executes in 65 seconds when
we use the approach to agents’ knowledge based on trace inspection. The
runtime decreases of 10 seconds when our model allows for message reception
and the corresponding formalisation of agents’ knowledge.

The proof runtime for Kerberos IV is 247 seconds when performing trace
inspection, and 223 seconds when including message reception. Runtimes
remain unvaried if we refine the operation of the second trusted server in
order to prevent the attack on the servkeys.

The runtime of the full proof script for Shoup-Rubin is 160 seconds. It
remains practically unvaried when we upgrade the protocol adding explicit-
ness.

The proof scripts for different protocols can be compared as long as they
contain guarantees that can be considered analogous. The scripts for BAN
Kerberos, Kerberos IV and Shoup-Rubin have this feature. Kerberos IV is
unquestionably a more complex protocol than BAN Kerberos. Therefore,
considering the scripts for these two protocols, it appears that the more com-
plex is the protocol under analysis, the more significant are the advantages,
in terms of runtime, deriving from a simpler modelling of agents’ knowledge.

Shoup-Rubin employs more messages, more objects (the smart cards,
the pairkeys, etc.) and more events than Kerberos IV does. Therefore,
we expected the proof script for the former to be longer than that for the
latter. This turned out to be wrong: the complete script for Kerberos
IV exceeds 2000 lines, is one third longer than that for Shoup-Rubin, and
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requires approximately one minute more to execute. It is the confidentiality
argument that is more complex on Kerberos IV, due to the protocol use of
encryption. Therefore, it seems that the complexity of the verification of a
protocol is mostly due to the complexity of the ciphers encompassed by the
protocol, which translates into complex reasoning about the analz operator,
rather than to other features.

10.3 Future work

Future work mainly focuses on verifying new hierarchies of protocols and
new protocol goals.

Non-repudiation protocols should be considered. They aim at solving
disputes where the peers pretend not to have sent or received certain mes-
sages [105, 106]. We expect that our approach extended with message recep-
tion could easily scale up to proving the goals of non-repudiation of origin
and non-repudiation of receipt.

Delegation is becoming an important issue in modern cyberlaw. Agents
may want to delegate the rights [47] to perform certain tasks to somebody
else, or they may want delegate the responsibility [34] of those tasks. From an
operational standpoint, proving either form of delegation requires showing
that the recipient of the delegation has received certain credentials.

E-commerce protocols [25, 76, 80] aim at new goals, such as anonymity
and accountability [54]. Anonymity is achieved when an agent completes a
protocol session without his identity being disclosed to anyone. In order to
prove this goal, the agent names should be no longer guessable (this requires
a simple modification to the definition of the function synth), then we should
show that the initiator’s identity does not belong to the knowledge that any
agent can derive from the observation of the traffic. The proofs are expected
to be rather complicated, as they involve frequent evaluations under the
analz operator. Accountability may be viewed as a form of non-repudiation
because it involves establishing that, at completion of a protocol sessions,
certain events representing important steps of a financial transaction have
taken place.

Non-denial of service is met when the protocol initiator can be assured
that certain services will be granted [82]. From an operational point of view,
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the goal corresponds to establishing that certain events will take place on
the basis of others. However, the inductive definition of the protocol does
not constrain rules to fire and thus does not force events to occur, so we
expect that verifying this goal will require substantial modifications to the
basics of the approach.
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Appendix A

Verifying Kerberos IV

We present the scripts for the session key compromise theorems proven on
Kerberos IV (§6.3.5).

Script for lemma 6.11. Reli2 is the reliability theorem 6.4.

Goal "[| K : AuthKeys evs Un range shrK; evs : kerberos |] \

\ ==> ALL K’. ~ AKcryptSK K’ K evs";

by (asm_full_simp_tac (simpset() addsimps [AKcryptSK_def]) 1);

by (blast_tac (claset() addDs [Reli2]) 1);

qed"AKcryptSK1";

Script for lemma 6.12. Uniq Tgs is the unicity guarantee about the servkeys
issued by Tgs.

Goal "[| AKcryptSK authK servK evs; \

\ K ~= authK; evs : kerberos |] \

\ ==> ~ AKcryptSK K servK evs";

by (asm_full_simp_tac (simpset() addsimps [AKcryptSK_def]) 1);

by (blast_tac (claset() addDs [Uniq_Tgs]) 1);

qed "AKcryptSK2";

Script for lemma 6.13. Reli2 is the reliability theorem 6.4.

Goal "[| servK ~: AuthKeys evs; servK ~: range shrK; \

\ evs : kerberos |] \

\ ==> ALL K. ~ AKcryptSK servK K evs";

by (asm_full_simp_tac (simpset() addsimps [AKcryptSK_def]) 1);

by (blast_tac (claset() addDs [Reli2]) 1);

qed "AKcryptSK3";
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Script for lemma 6.14. It is obtained from another lemma that holds on
sets of keys (analz insert set key rewrite, below); analz simpset is a
specialised simpset for evaluation of expressions containing analz.

Goal "evs : kerberos ==> \

\ (K ~: range shrK --> (~ AKcryptSK K K’ evs) --> \

\ (Key K’ : analz (insert (Key K) (spies evs))) = \

\ (K’ = K | Key K’ : analz (spies evs)))";

by (asm_full_simp_tac (analz_simpset

addsimps [analz_insert_set_key_rewrite]) 1);

qed"analz_insert_key_rewrite";

Script for lemma analz insert set key rewrite. Most of the applied the-
orems are omitted here.

Goal "evs : kerberos ==> \

\ (ALL K KK. KK <= Compl (range shrK) --> \

\ (ALL K’: KK. ~ AKcryptSK K’ K evs) --> \

\ (Key K : analz (Key‘‘KK Un (spies evs))) = \

\ (K : KK | Key K : analz (spies evs)))";

by (etac kerberos.induct 1);

by (forward_tac [Oops_range_spies1] 9);

by (forward_tac [Oops_range_spies2] 11);

by analz_sees_tac;

by (REPEAT_FIRST (rtac allI));

by (REPEAT_FIRST (rtac (analz_rewrite_lemma RS impI)));

by (ALLGOALS

(asm_simp_tac

(analz_simpset addsimps

[AKcryptSK_Says, shrK_not_AKcryptSK,

fresh_authK_not_AKcryptSK, fresh_servK_not_AKcryptSK,

AKcryptSK_I, Spy_analz_shrK])));

(*Fake*)

by (spy_analz_tac 1);

(*K3*)

by (Blast_tac 1);

(*K4*)

by (blast_tac (claset() addEs spies_partsEs

addSDs [authK_not_AKcryptSK]) 1);

(*K5*)

br impI 1;
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by (case_tac "Key servK : analz (spies evs5)" 1);

by (asm_simp_tac

(simpset() addsimps [analz_insert_eq,

impOfSubs (Un_upper2 RS analz_mono)]) 1);

by (case_tac "AKcryptSK servK K evs5" 1);

by (asm_simp_tac analz_image_freshK_ss 2);

by (blast_tac (claset()

addSEs [servK_not_AKcryptSK RSN(2, rev_notE)]

addEs spies_partsEs delrules [allE, ballE]) 1);

(*Level 16: OopsS*)

by (case_tac "Key servK : analz (spies evsOs)" 2);

by (forward_tac [analz_mono_KK] 2);

by (assume_tac 2);

by (assume_tac 2);

by (Asm_simp_tac 2);

by (Clarify_tac 2);

by (forward_tac [analz_cut] 2 THEN assume_tac 2);

by (blast_tac (claset()

addDs [analz_cut,impOfSubs analz_mono]) 2);

by (dres_inst_tac [("x","K")] spec 2);

by (dres_inst_tac [("x","insert servK KK")] spec 2);

by (forward_tac [Reli2] 2 THEN assume_tac 2);

by (Clarify_tac 2);

by (forward_tac [Says_imp_spies RS parts.Inj RS parts.Body

RS parts.Snd RS parts.Snd RS parts.Snd] 2);

by (dres_inst_tac [("K","K")] servK_not_AKcryptSK 2);

by (assume_tac 2);

by (assume_tac 2);

by (assume_tac 2);

by (Asm_full_simp_tac 2);

by (blast_tac (claset() addDs [impOfSubs analz_mono]) 2);

(*Level 32: OopsA*)

by (dres_inst_tac [("x","K")] spec 1);

by (dres_inst_tac [("x","insert authK KK")] spec 1);

by (Asm_full_simp_tac 1);

by (case_tac "AKcryptSK authK K evsOa" 1);

by (blast_tac (claset() addSDs [AKcryptSK_analz_insert]) 1);

by (blast_tac (claset() addDs [impOfSubs analz_mono]) 1);

qed_spec_mp "analz_insert_set_key_rewrite";
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Script for theorem 6.15.

Goal "[| K : (AuthKeys evs) Un range shrK; \

\ K’ ~: range shrK; evs : kerberos|] \

\ ==> Key K : analz (insert (Key K’) (spies evs)) = \

\ (K = K’ | Key K : analz (spies evs))";

by (forward_tac [AKcryptSK1] 1);

by (assume_tac 1);

by (asm_full_simp_tac (analz_simpset

addsimps [analz_insert_key_rewrite]) 1);

qed "sesK_compromise1";

Script for theorem 6.16.

Goal "[| AKcryptSK authK servK evs; \

\ K ~= authK; evs : kerberos |] \

\ ==> Key servK : analz (insert (Key K) (spies evs)) = \

\ (servK = K | Key servK : analz (spies evs))";

by (forward_tac [AKcryptSK2] 1);

by (assume_tac 1);

by (asm_full_simp_tac (analz_simpset

addsimps [analz_insert_key_rewrite]) 1);

qed "sesK_compromise2";

Script for theorem 6.17.

Goal "[| servK ~: (AuthKeys evs); servK ~: range shrK; \

\ evs : kerberos |] \

\ ==> Key K : analz (insert (Key servK) (spies evs)) = \

\ (K = ServKey | Key K : analz (spies evs))";

by (forward_tac [AKcryptSK3] 1);

by (assume_tac 1);

by (asm_full_simp_tac (analz_simpset

addsimps [analz_insert_key_rewrite]) 1);

qed "sesK_compromise3";
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Proving an Issues Property

We present the scripts for obtaining theorem 7.11, which conveys non-
injective agreement of A with B on the session key (§7.3.1).

Script for theorem 7.10. The script for BK3 help is given below; BK2 auth

is the authenticity theorem 5.3; Auth A to B is the version of the authenti-
cation theorem 5.10 where the confidentiality assumption is not yet relaxed
by theorem 5.9 (see below).

Goal "[| Says A B {|Ticket, Crypt K {|Agent A, Number Ta|}|} \

\ : set evs; \

\ Key K ~: analz (spies evs); \

\ A ~=Spy; evs : bankerberos |] \

\ ==> A Issues B with (Crypt K {|Agent A, Number Ta|}) \

\ on evs";

by (case_tac "B : bad" 1);

by (forward_tac [BK3_help] 1);

by (assume_tac 1);

by (assume_tac 1);

by (assume_tac 1);

bd (Says_imp_spies RS analz.Inj RS analz.Fst) 1;

by (fast_tac (claset() addDs

[MPair_analz] addss (simpset())) 1);

(*Now B is not bad*)

by (simp_tac (simpset() addsimps [Issues_def]) 1);

br exI 1;

br conjI 1;

ba 1;
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by (Simp_tac 1);

be rev_mp 1;

be rev_mp 1;

by (etac bankerberos.induct 1);

by (forward_tac [BK3_in_parts_spies] 5);

by (REPEAT (FIRSTGOAL analz_mono_contra_tac));

by (ALLGOALS (asm_simp_tac (simpset()

addsimps [all_conj_distrib])));

(*BK3*)

by (Clarify_tac 1);

by (asm_full_simp_tac (simpset()

addsimps [takeWhile_tail]) 1);

by (not_bad_tac "A" 1);

by (blast_tac (claset() addDs [BK2_auth,

impOfSubs parts_spies_takeWhile_mono,

impOfSubs parts_spies_evs_revD2]

addSIs [Auth_A_to_B]

addEs spies_partsEs) 1);

qed"A_Issues_BK3";

Script for KB3 help; BK2 auth is the authenticity theorem 5.3; Reli is the
reliability theorem 5.1.

Goal "[|Says A B {|Ticket, Crypt K {|Agent A, Number Ta|}|} \

\ : set evs; \

\ Key K ~: analz (spies evs); \

\ A ~= Spy; evs : bankerberos |] \

\ ==> EX Tk. Ticket = \

\ (Crypt (shrK B) {|Number Tk, Agent A, Key K|})";

by (etac rev_mp 1);

by (etac rev_mp 1);

by (etac bankerberos.induct 1);

by (forward_tac [BK3_in_parts_spies] 5);

by (REPEAT (FIRSTGOAL analz_mono_contra_tac));

by (ALLGOALS (asm_simp_tac (simpset()

addsimps [all_conj_distrib])));

(*KB3*)

by (Clarify_tac 1);

by (not_bad_tac "A" 1);

by (blast_tac (claset() addDs [BK2_auth RS Reli]

addEs spies_partsEs) 1);
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qed"KB3_help";

Script for theorem 7.11.

Goal "[| Crypt (shrK B) {|Number Tk, Agent A, Key K|} \

\ : parts (spies evs); \

\ Crypt K {|Agent A, Number Ta|} \

\ : parts (spies evs); \

\ Key K ~: analz (spies evs); \

\ A ~= Spy; B ~: bad; evs : bankerberos |] \

\ ==> A Issued B with (Crypt K {|Agent A, Number Ta|}) \

\ on evs";

by (blast_tac (claset() addDs

[Auth_A_to_B, A_Issues_BK3]) 1);

Script for Auth A to B; BK3 auth is the authenticity theorem 5.4.

Goal "[| Crypt K {|Agent A, Number Ta|} \

\ : parts (spies evs); \

\ Crypt (shrK B) {|Number Tk, Agent A, Key K|} \

\ : parts (spies evs); \

\ Key K ~: analz (spies evs); \

\ B ~: bad; evs : bankerberos |] \

\ ==> Says A B \

\ {|Crypt (shrK B) {|Number Tk, Agent A, Key K|}, \

\ Crypt K {|Agent A, Number Ta|}|} : set evs";

by (blast_tac (claset() addSDs [BK3_auth]

addSIs [Auth_A_to_B_lemma]) 1);

qed "Auth_A_to_B";

Script for Auth A to B lemma; Reli’ is a variant of theorem 5.1; Unic1
is the unicity theorem 5.5.

Goal "[| B ~: bad; evs : bankerberos |] \

\ ==> Key K ~: analz (spies evs) --> \

\ Says Server A \

\ (Crypt (shrK A) {|Number Tk, Agent B, Key K, X|}) \

\ : set evs --> \

\ Crypt K {|Agent A, Number Ta|} \

\ : parts (spies evs) --> \

\ Says A B {|X, Crypt K {|Agent A, Number Ta|}|} \

\ : set evs";
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by (etac bankerberos.induct 1);

by (forward_tac [Reli’] 5 THEN assume_tac 5);

by (forward_tac [BK3_in_parts_spies] 5);

by (forward_tac [Oops_parts_spies] 7);

by (REPEAT (FIRSTGOAL analz_mono_contra_tac));

by (ALLGOALS (asm_simp_tac (simpset()

addsimps [all_conj_distrib])));

(*Fake*)

by (Blast_tac 1);

(*BK2*)

by (Clarify_tac 1);

by (dtac Crypt_imp_invKey_keysFor 1);

by (Asm_full_simp_tac 1);

(*BK3*)

by (Clarify_tac 1);

by (not_bad_tac "A" 1);

by (blast_tac (claset() addDs [BK2_auth, Unic1]) 1);

qed "Auth_A_to_B_lemma";
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Defining Agents’ Knowledge

We present the inductive definition of agents’ knowledge for a smart card
protocol that assumes secure means between agents and smart cards (§8.3).
The initial knowledge is as definend for Shoup-Rubin (§9.2).

primrec

(*Server knows all long-term secrets*)

initState_Server

"initState Server =

(Key‘‘(range shrK Un range crdK Un range pin Un

range pairK)) Un

(Nonce‘‘(range Pairkey))"

(*Friendly agents know no secrets*)

initState_Friend "initState (Friend i) = {}"

(*Spy knows the long-term secrets deriving from cloned cards*)

initState_Spy

"initState Spy =

(Key‘‘((crdK‘‘cloned) Un (shrK‘‘{A. Card A : cloned}) Un

(pairK‘‘{(A,B). Card B : cloned}))) Un

(Nonce‘‘(Pairkey‘‘{(A,B). Card A : cloned &

Card B : cloned}))"
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primrec

knows_Nil "knows A [] = initState A"

knows_Cons

"knows A (ev # evs) =

(case ev of

Says A’ B X => if (A = A’ | A = Spy)

then insert X (knows A evs)

else knows A evs

| Notes A’ X => if (A = A’ | (A = Spy & A’ : bad))

then insert X (knows A evs)

else knows A evs

| Gets A’ X => if (A = A’ & A ~= Spy)

then insert X (knows A evs)

else knows A evs

| Inputs A’ C X => if A = A’

then insert X (knows A evs)

else knows A evs

| Outputs C A’ X => if A = A’

then insert X (knows A evs)

else knows A evs)"



Appendix D

Verifying Shoup-Rubin

We present the scripts for the arguments of authenticity (§9.3.3) and of con-
fidentiality (§9.3.5) on Shoup-Rubin.

Tactics for applying the relevant reliability theorems; B Out reli is the-
orem 9.6; A Out reli is theorem 9.5; A Out reli’ is theorem 9.7; the corol-
lary of theorem 9.7 that binds the form of the session key, once the form of
the certificate is known, is A Out reli’’.
Theorem Gets imp knows Spy RS parts.Inj RS parts.Snd says that, if a
two-component message is received from the network, the second component
is in the traffic.

val prepare_tac =

(*SR8*) forward_tac [B_Out_reli] 13 THEN

(*SR9*) dtac A_Out_reli 15 THEN

(*SR11*) forward_tac [A_Out_reli’] 20;

val parts_prepare_tac =

prepare_tac THEN

(*SR9*) dtac (Gets_imp_knows_Spy RS parts.Inj RS parts.Snd)

17 THEN

dtac (Gets_imp_knows_Spy RS parts.Inj RS parts.Snd)

18 THEN

(*OopsB*) dtac B_Out_reli 25 THEN

(*OopsA*) dtac A_Out_reli’’ 27 THEN

(*Base*) Force_tac 1;
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val analz_prepare_tac =

prepare_tac THEN

(*SR9*) dtac (Gets_imp_knows_Spy RS analz.Inj RS analz.Snd)

17 THEN

dtac (Gets_imp_knows_Spy RS analz.Inj RS analz.Snd)

18 THEN

REPEAT_FIRST (eresolve_tac

[asm_rl, conjE] ORELSE’ hyp_subst_tac);

Script for authenticity lemma 9.14.

Goal "[| Crypt (shrK A) {|Nonce Pk, Agent B|} \

\ : parts (knows Spy evs); \

\ Card A ~: cloned; evs : shouprubin |] \

\ ==> Says Server A {|Nonce Pk, \

\ Crypt (shrK A) {|Nonce Pk, Agent B|}|}\

\ : set evs";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;

by (ALLGOALS Asm_simp_tac);

(*Fake*)

by (Fake_parts_insert_tac 1);

(*SR8*)

by (fast_tac (claset() addss (simpset())) 1);

(*SR11*)

by (fast_tac (claset() addss (simpset())) 1);

qed"SR2_cert_auth";

Script for authenticity lemma 9.15.

Goal "[| Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|} \

\ : parts (knows Spy evs); \

\ ~illegallyU(Card B); evs : shouprubin |] \

\ ==> Outpts (Card B) B \

\ {|Nonce Nb, Key (sesK(Nb,pairK(A,B))), \

\ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},\

\ Crypt (pairK(A,B)) (Nonce Nb)|} : set evs";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;
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by (ALLGOALS Asm_simp_tac);

(*Fake*)

by (Fake_parts_insert_tac 1);

(*SR7_Fake*)

by (Clarify_tac 1);

(*SR8*)

by (fast_tac (claset() addss (simpset())) 1);

(*SR11*)

by (fast_tac (claset() addss (simpset())) 1);

qed"SR7_cert_auth";

Script for the authenticity lemma that resembles the preceding one but
concerns the certificate for B’s nonce.

Goal "[| Crypt (pairK(A,B)) (Nonce Nb) \

\ : parts (knows Spy evs); \

\ ~illegallyU(Card B); evs : shouprubin |] \

\ ==> EX Na. Outpts (Card B) B \

\ {|Nonce Nb, Key (sesK(Nb,pairK(A,B))), \

\ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|},\

\ Crypt (pairK(A,B)) (Nonce Nb)|} : set evs";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;

by (ALLGOALS Asm_simp_tac);

(*Fake*)

by (Fake_parts_insert_tac 1);

(*SR7*)

by (Blast_tac 1);

(*SR7_Fake*)

by (Blast_tac 1);

(*SR8*)

by (fast_tac (claset() addss (simpset())) 1);

(*SR10*)

by (blast_tac (claset() addDs [SR7_cert_auth,

Inputs_imp_knows_Spy RS parts.Inj]

addEs knows_Spy_partsEs) 1);

(*SR10_Fake*)

by (blast_tac (claset() addDs [SR7_cert_auth,

Inputs_imp_knows_Spy RS parts.Inj]

addEs knows_Spy_partsEs) 1);
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(*SR11*)

by (Clarify_tac 1);

by (Asm_full_simp_tac 1);

by (blast_tac (claset() addDs [SR7_cert_auth,

SR7_cert_in_trafficSR10]) 1);

qed"SR7_cert_auth’";

Script for lemma SR7 cert in trafficSR10; Inp CardA reli is the relia-
bility theorem 9.17.

Goal "[| Outpts (Card A) A \

\ {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} \

\ : set evs; evs : shouprubin |] \

\ ==> EX Na. Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|} \

\ : parts (knows Spy evs)";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;

by (ALLGOALS Asm_simp_tac);

(*Fake*)

by (Fake_parts_insert_tac 1);

(*SR7*)

by (Force_tac 1);

(*SR7_Fake*)

by (Force_tac 1);

(*SR8*)

by (fast_tac (claset() addss (simpset())) 1);

(*SR10*)

by (blast_tac (claset() addDs

[Inputs_imp_knows_Spy, parts.Inj,

Inp_CardA_reli, Gets_imp_knows_Spy]

addEs knows_Spy_partsEs) 1);

(*SR10_Fake*)

by (blast_tac (claset() addDs

[Inputs_imp_knows_Spy, parts.Inj,

Inp_CardA_reli, Gets_imp_knows_Spy]

addEs knows_Spy_partsEs) 1);

(*SR11*)

by (fast_tac (claset() addss (simpset())) 1);

qed"SR7_cert_in_trafficSR10";
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Script for authenticity lemma 9.16.

Goal "[| Crypt (pairK(A,B)) (Nonce Nb) \

\ : parts (knows Spy evs); \

\ ~illegallyU(Card A); ~illegallyU(Card B); \

\ B ~= Spy; evs : shouprubin |] \

\ ==> Outpts (Card A) A {|Key (sesK(Nb,pairK(A,B))), \

\ Crypt (pairK(A,B)) (Nonce Nb)|} : set evs";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;

by (ALLGOALS Asm_simp_tac);

(*Fake*)

by (Fake_parts_insert_tac 1);

(*SR7*)

by (Clarify_tac 1);

(*SR7_Fake*)

by (Clarify_tac 1);

(*SR8*)

by (fast_tac (claset() addss (simpset())) 1);

(*SR10F: level 25*)

by (Clarify_tac 1);

(*SR11*)

by (fast_tac (claset() addss (simpset())) 1);

qed"SR10_cert_auth";

Script for the authenticity theorem 9.17.

Goal "[| Inputs A (Card A) \

\ {|Agent B, Nonce Na, Nonce Nb, Nonce Pk, \

\ Crypt (shrK A) {|Nonce Pk, Agent B|}, \

\ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|}, Cert3|}\

\ : set evs; \

\ Card A ~: cloned; ~illegallyU(Card B); \

\ A ~= Spy; evs : shouprubin |] \

\ ==> Says Server A \

\ {|Nonce Pk, Crypt (shrK A) {|Nonce Pk, Agent B|}|}\

\ : set evs & \

\ Outpts (Card B) B \

\ {|Nonce Nb, Key (sesK (Nb, pairK (A, B))), \

\ Crypt (pairK(A,B)) {|Nonce Na, Nonce Nb|}, \
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\ Crypt (pairK(A,B)) (Nonce Nb)|} \

\ : set evs & \

\ Outpts (Card A) A {|Nonce Na, Cert3|} : set evs";

by (blast_tac (claset() addDs [Inp_CardA_reli,

Gets_imp_knows_Spy RS parts.Inj RS parts.Snd,

SR2_cert_auth,

SR7_cert_auth]) 1);

Script for the authenticity lemma 9.18.

Goal "[| Key (sesK(Nb,pairK(A,B))) : parts (knows Spy evs); \

\ ~illegallyU(Card A); ~illegallyU(Card B); \

\ A ~= Spy; B ~= Spy; evs : shouprubin |] \

\ ==> Notes Spy {|Key (sesK(Nb,pairK(A,B))), \

\ Nonce Nb, Agent A, Agent B|} \

\ : set evs";

be rev_mp 1;

by (etac shouprubin.induct 1);

by parts_prepare_tac;

by (ALLGOALS Asm_simp_tac);

(*fake*)

by (Fake_parts_insert_tac 1);

(*Forge*)

by (fast_tac (claset() addDs [analz.Inj]

addss (simpset())) 1);

(*SR7*)

by (Clarify_tac 1);

(*SR7_Fake*)

by (Clarify_tac 1);

(*SR8*)

by (fast_tac (claset() addDs [B_Out_reli]

addss (simpset())) 1);

(*SR10*)

by (Clarify_tac 1);

(*SR10_Fake*)

by (Clarify_tac 1);

(*SR11*)

by (fast_tac (claset() addss (simpset())) 1);

(*OopsB*)

by (Asm_full_simp_tac 1);
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qed"sesK_counter_auth";

Script for the confidentiality theorem 9.23

Goal "[| Outpts (Card B) B {|Nonce Nb, Key K, Verifier, \

\ Crypt (pairK(A,B)) (Nonce Nb)|}\

\ : set evs; \

\ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} \

\ ~: set evs; \

\ ~illegallyU(Card A); Card B ~: cloned; \

\ A ~= Spy; B ~= Spy; evs : shouprubin |] \

\ ==> Key K ~: analz (knows Spy evs)";

be rev_mp 1;

be rev_mp 1;

by (etac shouprubin.induct 1);

by analz_prepare_tac;

by (ALLGOALS (asm_simp_tac (simpset() addsimps

[analz_insert_eq, analz_insert_freshK] @

pushes @ split_ifs)));

(*Fake*)

by (spy_analz_tac 1);

(*Forge*)

by (blast_tac (claset() addDs

[B_Out_reli, parts.Inj]) 1);

(*SR7*)

by (blast_tac (claset() addSDs [B_Out_reli,

impOfSubs analz_subset_parts]) 1);

(*SR7_Fake*)

by (fast_tac (claset() addDs [Outpts_parts_used] addss

(simpset())) 1);

(*SR8*)

by (fast_tac (claset() addDs [A_Out_reli’’] addss

(simpset() addsimps split_ifs)) 1);

(*SR10*)

by (fast_tac (claset() addDs [B_Out_reli]

addss (simpset())) 1);

(*SR10_Fake*)

by (Clarify_tac 1);

by (dtac B_Out_reli 1 THEN assume_tac 1);

by (Asm_full_simp_tac 1);

(*SR11*)
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by (fast_tac (claset() addss (simpset()

addsimps split_ifs)) 1);

(*OopsB*)

by (blast_tac (claset() addSDs [B_Out_reli’]) 1);

(*OopsA*)

by (blast_tac (claset() addSDs [B_Out_reli’,

A_Out_reli’’]) 1);

qed"B_sesK_conf";

Script for the confidentiality theorem 9.24.

Goal "[| Outpts (Card A) A \

\ {|Key K, Crypt (pairK(A,B)) (Nonce Nb)|} \

\ : set evs; \

\ Notes Spy {|Key K, Nonce Nb, Agent A, Agent B|} \

\ ~: set evs; \

\ ~illegallyU(Card A); ~illegallyU(Card B); \

\ A ~= Spy; B ~= Spy; evs : shouprubin |] \

\ ==> Key K ~: analz (knows Spy evs)";

be rev_mp 1;

be rev_mp 1;

by (etac shouprubin.induct 1);

by analz_prepare_tac;

by (ALLGOALS (asm_simp_tac (simpset()

addsimps [analz_insert_eq, analz_insert_freshK] @

pushes @ split_ifs)));

(*Fake*)

by (spy_analz_tac 1);

(*Forge*)

by (blast_tac (claset() addDs [A_Out_reli’’, parts.Inj]) 1);

(*SR7*)

by (blast_tac (claset() addSDs [A_Out_reli’’]) 1);

(*SR7_Fake*)

by (fast_tac (claset() addDs [Outpts_parts_used]

addss (simpset())) 1);

(*SR8*)

by (fast_tac (claset() addDs [A_Out_reli’’] addss

(simpset() addsimps split_ifs)) 1);

(*SR10*)

br conjI 1;

by (blast_tac (claset() addDs [A_Out_reli’’]) 1);
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by (blast_tac (claset() addDs [Gets_imp_knows_Spy RS

parts.Inj, Inp_CardA_reli,

SR7_cert_auth, B_sesK_conf]

addEs knows_Spy_partsEs) 1);

(*SR10_Fake*)

by (blast_tac (claset() addDs [A_Out_reli’’]) 1);

(*SR11*)

by (fast_tac (claset() addss (simpset()

addsimps split_ifs)) 1);

(*OopsB*)

by (blast_tac (claset() addSDs [B_Out_reli’,

A_Out_reli’’]) 1);

(*OopsA*)

by (blast_tac (claset() addDs [CardA_unic]) 1);

qed"A_sesK_conf";
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