
A Formal Proof of Sylow’s Theorem
An Experiment in Abstract Algebra with Isabelle HOL

Florian Kammüller and Lawrence C. Paulson
Computer Laboratory, University of Cambridge, UK

Abstract. The theorem of Sylow is proved in Isabelle HOL. We follow the proof by
Wielandt that is more general than the original and uses a non-trivial combinatorial
identity. The mathematical proof is explained in some detail leading on to the mech-
anization of group theory and the necessary combinatorics in Isabelle. We present
the mechanization of the proof in detail giving reference to theorems contained in an
appendix. Some weak points of the experiment with respect to a natural treatment
of abstract algebraic reasoning give rise to a discussion of the use of module systems
to represent abstract algebra in theorem provers. Drawing from that, we present
tentative ideas for further research into a section concept for Isabelle.

c© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

sylow.tex; 7/09/2000; 12:10; p.1

Table of Contents

1 Proofs of Abstract Algebra with Theorem Provers 1
2 The First Sylow Theorem 1

2.1 Proof of Sylow’s Theorem 2
3 Formalization of Groups in Isabelle HOL 5

3.1 Isabelle 5
3.2 Groups in Isabelle 5

4 Sylow’s Theorem in Isabelle HOL 9
4.1 Prerequisites 10
4.2 Proof 14

5 Structural Concepts for Abstract Algebraic Reasoning 18
5.1 Module Systems 18
5.2 Sections 20
5.3 Conclusion 20

A Theory Files 22
A.1 Group Theory 22
A.2 Theory File for Sylow’s Theorem 23

B Some Theorems 24
B.1 Group Theory 24
B.2 Combinatorics 25
B.3 Theory Sylow 27

c© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

sylow.tex; 7/09/2000; 12:10; p.2

1

1. Proofs of Abstract Algebra with Theorem Provers

The first theorem of Sylow is most easily described as the backwards
direction of Lagrange’s theorem. Lagrange says that the order of a
subgroup divides the group’s order. Unfortunately, the direct backward
direction:

if a number divides the group’s order then there is a subgroup with
corresponding order

is not generally true. But the theorem of Sylow gives us at least:
if p is a prime and pα divides the order of the group then there is a
subgroup of order pα.

The proof of the theorem of Lagrange has been performed with the
Boyer Moore Prover [Yu90]. E. Gunter formalized group theory in
HOL [Gun89]. In the higher order logic theorem prover IMPS [FGT93]
some portion of abstract algebra including Lagrange is proved. Mizar’s
library of formalized mathematics contains probably more abstract al-
gebra theorems than any other system. But to our knowledge none of
the known systems has proved Sylow’s theorem. We always considered
it as a theorem which is hard to prove already in theory and this is
definitely a fact which makes it an interesting challenge for theorem
provers.

Our personal motivation to prove this theorem is to explore applica-
tions of different knowledge domains in abstract theorems. We use the
example of abstract algebra to find out about reasoning mechanisms in
algebra or in general in abstract reasoning.

The paper first gives a formulation of Sylow’s theorem together with
its proof and then explains the formalization in Isabelle HOL. Here,
some special properties of the representation are highlighted. Section
4 describes the formal proof in its major steps. Basic theorems from
set or number theory used in the proof are enumerated; they are not
described in detail though their proofs are also part of our work.

Finally, we describe in more detail where we think that some more
support of abstract reasoning could enhance treatment of abstract al-
gebra and compare these ideas to existing approaches. The appendix
contains the theory and proof files.

2. The First Sylow Theorem

Sylow’s theorem gives a criteria for the existence of subgroups of prime
power order in finite groups.

THEOREM 1. If G is a group, p a prime and pα divides the order of
G then G contains a subgroup of order pα.

sylow.tex; 7/09/2000; 12:10; p.3

2

In the following we write a | b for a divides b and o(G) for the order of
G.

2.1. Proof of Sylow’s Theorem

The proof displayed here and used as the basis for the formal proofs is
due to Wielandt [Wie59]. It generalizes the original form found by the
Norwegian Mathematician Sylow in 1872. We give the proof following
[Her64] but go much more into detail to prepare the description of the
formalization.

Proof.
The proof is presented in three major parts. In the second part

the existence of a subgroup of G having pα elements is shown by con-
structing some subgroup H and the final part proves by combinatorial
arguments that H actually has pα elements. In the construction of the
subgroup H we define the setM of all subsets of G having pα elements.
We have to consider first a combinatorial argument about M which is
used in the final part of the proof.

2.1.1. Combinatorial Argument
If pα | o(G) we can assume an m > 0 such that o(G) = pαm because G
is a group and hence nonempty. The cardinality of the set M is then(
pαm
pα

)
because this is the number of ways one can pick a set of pα

elements out of G. We define the number r as the maximum natural
number such that pr |m, that is pr+1 6 |m.

In the following we show that pr |m iff pr |
(
pαm
pα

)
. The following

argument yields the former equivalence for an arbitrary natural number
which can then be particularized to r:

(
pαm
pα

)
=

pαm(pαm− 1) . . . (pαm− (pα − 1))
pα(pα − 1) . . . 1

= m
(pαm− 1) . . . (pαm− (pα − 1))

(pα − 1) . . . 1

The power of p dividing pαm− k in the numerator is the same as the
power of p dividing pα− k in the denominator for all k = 1, . . . , pα− 1.
This observation holds in the one direction because if ps | pα − k and
k < pα then s ≤ α and thus for the quotient x, i.e. psx = pα − k, we
can construct pαm− k as ps(x+ (pα−s(m− 1))) whereby ps | pαm− k.

Conversely, a slightly more difficult argument yields that s ≤ α:
if similarly k < pα and ps | pαm − k assuming for contradiction that

sylow.tex; 7/09/2000; 12:10; p.4

3

ps > pα then pα | ps and by transitivity of divisibility pα | pαm − k.
Since pα | pαm it must follow that pα | k in contradiction to k < pα

(and 0 < k). Thus, we can construct pα−k from psx = pαm−k (where
x is again the quotient) as ps(x− (pα−s(m− 1))). The property s ≤ α
is necessary because we are in N and thus s+(α−s) = α only if s ≤ α.

Thereby, the powers of p in denominator and numerator all cancel
out. Hence

p 6 | (p
αm− 1) . . . (pαm− (pα − 1))

(pα − 1) . . . 1

and thus, the power of p dividing
(
pαm
pα

)
is the same as the power of

p dividing m. The right hand side of the above formula is an integer
because it equals

(
pαm− 1
pα − 1

)
.

2.1.2. Construction of the subgroup H
Consider the set M of all subsets with pα elements in G. On this
set, define a relation ∼ as M1 ∼ M2 if there exists a g ∈ G such
that M1 = M2g. It is straightforward to prove that this relation is
an equivalence relation on M. Now, for the maximum number r such
that pr |m we claim that there is an equivalence class M inM/∼ such
that pr+1 6 | card(M). If not, then pr+1 would divide the cardinality of all

classes inM/∼ and thus pr+1 | card(M) =
(
pαm
pα

)
because equivalence

classes partition M. But, this would yield by the combinatorial argu-
ment of Section 2.1.1 that pr+1 |m in contradiction to the assumption
that r is maximal.

Now, let n be the cardinality of this classM . SinceM has n elements,
let us name them M1, . . . ,Mn. We pick M1 out of the equivalence class
M — which is possible since n 6= 0 — and construct the subgroup H
from this pα-set M1 as

H ≡ {g ∈ G |M1g = M1}
This set H is a subgroup:

− e ∈ H because M1e = M1 for all subsets of G and thus also for
M1.

− for a, b ∈ H is M1a = M1 and M1b = M1 by the definition of H.
Thereby, M1(ab) = (M1a)b = M1b = M1 yields ab ∈ H.

These two criterias are sufficient to show that H is a subgroup.

2.1.3. Cardinality of H is pα

First we establish that n·o(H) = o(G), in other words card(M)·o(H) =
pαm. To this end we construct a bijection between M and the set of

sylow.tex; 7/09/2000; 12:10; p.5

4

right cosets G/H of H. By construction of H we get the equivalence:

(Ha = Hb) ≡ (ab−1 ∈ H) ≡ (M1ab
−1 = M1) ≡ (M1a = M1b)

for all a, b ∈ G. That is, whenever a and b are in the same right coset of
H (or their cosets are equal, respectively) they form the same M1a =
M1b, name it N ; and N ∈M because Nb−1 = M1, hence N ∼M1. So
Ha 7→ M1a, for all a ∈ G, defines a mapping from G/H to M . Since
N ∈ M , N is some Mj , j ∈ {1, . . . , n}, and conversely, each Mj is of
the form M1a for some a ∈ G by definition. So the mapping Ha 7→M1a
for all a ∈ G is in fact a bijection.

By this bijection we know that card(M) · card(H) = card(G/H) ·
card(H) which equals o(G) according to Lagrange’s theorem (cf. The-
orem 2).

Now we prove the two directions separately:

1. pα ≤ o(H):

We constructed M such that pr+1 6 |n = card(M). Hence, for the
maximum k such that pk |n must hold k ≤ r, i.e. pk | pr. By con-
struction of r holds pα+r | pαm = n·o(H) and consequently pα+k |n·
o(H). But since k was already the maximum power of p dividing n
we get from this pα | o(H) whereby pα ≤ o(H).

2. o(H) ≤ pα:

For some arbitrary m1 ∈ M1, we have m1h ∈ M1 for all h ∈ H
because of the definition of H as {g ∈ G | M1g = M1}. Since
this group operation is an injection, i.e. h1 6= h2 ⇒ m1h1 6= m1h2

(cancellation law for the binary operation), it follows that M1 must
have at least o(H) different elements whereby o(H) ≤ card(M1).
Since the set M1 is in M it has pα elements and thereby finally
o(H) ≤ pα.

Summarizing, the constructed subgroup H has exactly pα elements.
And the proof is finished.

The original form of the theorem of Sylow is a special case of the
previous one:

COROLLARY 1. If G is a group, p a prime, pm|o(G) and pm+1 6 | o(G)
then G contains a subgroup of order pm.

As we have seen in the previous proof the property of the m here being
the maximal power of p dividing the order of G had been internalized
which made the theorem more general but the proof harder (i.e. in the
combinatorial argument).

sylow.tex; 7/09/2000; 12:10; p.6

5

3. Formalization of Groups in Isabelle HOL

The proof of Sylow’s theorem demands a formalization of groups on a
fine scale. We need to consider the group’s carrier as a set which has
different kinds of subsets, e.g. subgroups, cosets, and arbitrary subsets
of certain cardinalities. These subsets play a rôle in the reasoning about
the group’s factorization in terms of the equivalence relation which is
used in the construction of the Sylow subgroup. Hence, we have to be
able to view the group’s constituents from some completely different
perspectives.

After giving a short introduction to Isabelle we explain the formal-
ization of groups we used to handle these different views on groups in
our experiment.

3.1. Isabelle

The theorem prover Isabelle [Pau94] is a generic interactive theorem
prover. It is generic in the sense that it is a system that can be easily
instantiated to form theorem provers for arbitrary logics [Pau90]. Thus,
it is well suited for the development and test of new logics. These can
be made known to the prover by defining theories that contain sort
and type declarations, constants, and related definitions and rules. A
powerful parser allows to produce intelligible syntactic abbreviations
for user-defined constants.

Apart from being a tool for logical developments, some instantia-
tions of Isabelle have independent value as theorem provers. These are:
Zermelo-Fraenkel set theory (ZF), higher order logic (HOL) and con-
structive type theory (CTT). The best developed and most widely used
ones are ZF and HOL. Substantial case studies have been performed
in both of them [Pau95].

3.2. Groups in Isabelle

For the formalization of Sylow’s theorem we used the theory HOL of
Isabelle. We preferred it to pure set theory represented by ZF because
we wanted to employ polymorphism for the abstraction over the base
set of a group. HOL offers a formulation of typed sets. Sets are here
basically a syntactical abbreviation for predicates. By switching in be-
tween the set representation and the corresponding predicate we can
combine convenience of mathematical notation with the power of higher
order logic reasoning with types.

To encapsulate the definition of a group by its operations and cor-
responding axioms we employ the following definition of groups as a
typed set of quadruples:

sylow.tex; 7/09/2000; 12:10; p.7

6

Group_def "Group ==
{(G,f,inv,e). f ∈ G -> G -> G & inv ∈ G -> G & e ∈ G &

(∀ x ∈ G. ∀ y ∈ G. ∀ z ∈ G. (f (inv x) x = e) &
(f e x = x) & (f (f x y) z = f (x) (f y z))))}"

The function constructor A -> B constructs the set of functions from a
set A to B. The constant Group has type ’a set which is remarkable and
only possible because the type of (G,f,inv,e) is a product. Products
are in HOL internalized types and hence ’a can be instantiated to the
type of (G,f,inv,e).

3.2.1. Basic Properties
The definition of Group admits stating that a term G is a group quite
concisely as G ∈Group. Unfolding the definition of Group, represented
by the above set, yields all the defining properties for the constituents
of G. Naturally, we need to define projection functions for these con-
stituents. Generally, they are available by the projection functions for
the product type of HOL, e.g. the function first would return the set
underlying the group. But, to make notations more self-explanatory
we overload the projections for the quadruple (G,f,inv,e) with names
symbolizing the meaning of the constituents (carrier, bin op, invers,
unity).

We have to develop the axioms out of the definition — an additional
cost for the neat representation — but this is very schematic and could
be optimized by Isabelle’s tactics to a high extent.

The definition of groups only assumes the minimal axioms, e.g. for
the inverse only the left inverse rule a−1a = e. We derive from the group
definition a number of corresponding meta-level rules. For example
invers ax2:

[| G ∈ Group; a ∈ carrier G |]
==> bin_op G (invers G a) a = unity G

is the meta-level correspondence to the left inverse rule. For the closure
properties, e.g. inv ∈ G → G, we derive a more applicable rule form
from the definition, for example invers closed:

[| G ∈ Group; a ∈ carrier G |] ==> invers G a ∈ carrier G

The symmetric properties, like the right inverse rule are then derived
from them in the classical way: first we prove the left cancellation law
for the binary operation xy = xz ⇒ y = z (left cancellation) and
from that the symmetric unity rule ae = a; now, we can prove that
aa = a ⇒ a = e (idempotent e) and by that the symmetric inverse
rule (invers ax1). Finally, we can prove with the latter two the right
cancellation law.

sylow.tex; 7/09/2000; 12:10; p.8

7

3.2.2. Subgroups
Building onto the basic properties of groups we consider the notion of
a subgroup using the syntax H <<= G for H is subgroup of G. In the
definition of the subgroup property we can use an elegant approach
which reads informally: a subset H of G is a subgroup if it is a group
with G’s operations.

subgroup_def "H <<= G ==
H <= carrier(G) & (H,bin_op(G),invers(G),unity(G)) ∈ Group"

It is not completely trivial that this definition is possible, because it
depends on the way that groups are formalized (cf. Section 5.1).

Basic derived results are SG unity — the unit of G is an element of
every subgroup — from which we get that a subgroup is nonempty, or
0 < card(H) (SG card1). Related theorems about subgroups are that
they are closed under product, i.e. a, b ∈ H ⇒ ab ∈ H and under in-
verse, i.e. a ∈ H ⇒ a−1 ∈ H (SG bin op closed and SG invers closed).

An introduction rule for the subgroup property is subgroupI:

[| G ∈ Group; H <= carrier G; H ~= {}; ∀ a ∈ H. invers G a ∈ H;
∀ a ∈ H. ∀ b ∈ H. bin_op G a b ∈ H|] ==> H <<= G"

That is, for a nonempty subset H of a group G it is sufficient to check
that it is closed under inverse and binary operation to conclude that H
is a subgroup. Ideally, we want to have an introduction rule where it is
sufficient to show that a nonempty subset of G is closed under bin op
G to gain the subgroup property. Actually, this is the characterization
of subgroup used in the Sylow proof (cf. Section 2.1.2). But, this result
uses an argument about finite sets and repetitions of an for n → ∞ if
G is finite which is quite complicated to prove formally. On the other
hand, it is straightforward to prove the additional closure under inverse
construction for the Sylow subgroup. Hence, we deviate at this single
point from the mathematical proof of Sylow’s theorem by using the
longer characterization subgroupI (cf. Section 4).

The proof of Sylow’s theorem uses Lagrange’s theorem as well as
an equivalence relation which is ranging over subsets with pα elements.
For both we need the notion of cosets.

3.2.3. Factorization of Groups
If H is a subgroup of a group G then the right coset of a with respect
to H in G — Ha — is the set {ha | h ∈ H}. We consider only right
cosets here and sometimes refer to them as just cosets. The division of a
group into cosets is a partition. The coset construction is needed when
we consider so-called factorizations of a group. Then we look at H, the

sylow.tex; 7/09/2000; 12:10; p.9

8

factor, as the unit and each coset as a member of the factorization with
respect to the induced operation on cosets. An interesting point is to
find out how the induced operation behaves on the factorization. For
example, one can reason about the criteria which make the factorization
G/H together with the induced operation on the cosets again a group.

Though the construction of a group factorization is defined merely
for subgroups it can as well be applied to arbitrary subsets of groups.
Hence, in our definition we leave out the condition that the factor is a
subgroup and define r cosets as

r_coset_def "r_coset G H a == {b . ∃ h ∈ H. bin_op G h a = b}"

The definition is equivalent to {ha |h ∈ H}1.
To be able to talk about the factorization of a group into cosets we

further define the set of right cosets G/H as:

set_r_cos_def
"set_r_cos G H == {C . ∃ a ∈ carrier G. C = r_coset G H a}"

The notation for r coset is not very satisfying. It is necessary to
quote the group G in r coset G H a for which we consider the coset
construction. The mathematical notation is just Ha where the group
G to which we refer should be clear from the context. Here, we need
more notational support to get at least some notation like H #> a. This
issue is addressed when we perform the actual Sylow proof (cf. Section
4). For the purpose of general group results we deal with the verbose
notation.

To prepare for the reasoning with cosets we derive some theorems
about cosets. They are partly concerned with the arithmetic for the
induced operation: coset mul assoc, coset mul unity, coset join1,
coset join2, coset mul invers1, and coset mul invers2. Further
results are: the union of the set of all cosets equals the group itself
(set r cos part G), cosets are subsets of G (r cosetGHa subset G),
cosets have equal cardinality (card cosets equal), unequal cosets are
disjoint (r coset disjunct), and the set of cosets is a subset of the
powerset of G (set r cos subset PowG).

The last few of these general results join together to prove Lagrange’s
theorem as we shall see in the following section.

3.2.4. Lagrange’s Theorem
In contrast to the formalization as seen in [Yu90] the form of Lagrange
that we need here is not just the one stating that the order of the

1 Actually, Isabelle HOL offers a set definition as follows {ha |h.h∈H} which is
an abbreviation for the above definition but which we abandon here to make the
formalization easier to understand.

sylow.tex; 7/09/2000; 12:10; p.10

9

subgroup divides the order of the group but instead gives the pre-
cise representation of the group’s order as the product of order of the
subgroup and the index of this subgroup in G, i.e.

THEOREM 2. If G is a finite group and H is a subgroup of G, then
o(G) = |H| ∗ |G/H|

The term G/H stands for G modulo H and is the factorization of G in
right cosets of H. Its cardinality |G/H| is defined as index of H in G.
We sketch the proof here already in terms of our formalization.

Proof. The proof of this theorem in our Isabelle formalization of
group is quite straightforward. The basic idea is to reduce it to theorems
about cosets using a fact that we can derive in general for finite sets
(card partition):

[| finite C; finite (Union C); ∀ c ∈ C. card c = k & finite c;
∀ c1 ∈ C. ∀ c2 ∈ C. c1 ~= c2 --> c1 ∩ c2 = {} |]

==> k * card(C) = card (Union C)

Application of this to the original conjecture leaves us with the follow-
ing subgoals:

1. finite (set_r_cos G H)
2. finite (Union set_r_cos G H)
3. ∀ c ∈ set_r_cos G H. card c = k & finite c;
4. ∀ c1 ∈ set_r_cos G H.
∀ c2 ∈ set_r_cos G H . c1 ~= c2 --> c1 ∩ c2 = {}

The group G is finite by assumption. The subgoals 3 and 4 are the rules
mentioned in the previous Section: the cardinality of cosets is equal,
and since they are subsets of G they are all finite. Their intersection
is pairwise empty. Another derived result states that the powerset of
a finite set is finite (finite Pow). Together with set r cos part G
and set r cos subset PowG we get also 1 and 2. The finer scale of
formalization here leaves us with a quite general and concise proof.

4. Sylow’s Theorem in Isabelle HOL

As mentioned in Section 3.2.3, the syntax for cosets is not very intelligi-
ble. Also, we would like to have a nicer notation for the group’s binary
operation. So far we must write bin op G a b for ab. Since we need to
quote the group G, the only way around this difficulty at the present
state of Isabelle seems to abuse the theory file technique and declare a
constant G and a type i of elements of G to build a context

sylow.tex; 7/09/2000; 12:10; p.11

10

for the Sylow proof. To get nicer syntax and also to avoid repeating
global premises in each subtheorem of the proof of Sylow’s theorem —
i.e. to save listing:

G ∈ Group, finite G, p ∈ prime, o(G) = (p ^ a)* m

— we define a theory Sylow.thy which contains a type i, a constant G,
and the above premises as rules. We plan to extend Isabelle’s reasoning
facilities to allow to build temporary contexts for such purposes (cf.
Section 5.2). Generally, the proof can be easily transformed into the
explicit version abandoning the syntactical improvements, hence our
approach here does not influence the soundness of the formalization of
Sylow’s theorem.

With this context at hand we can abbreviate the verbose notation
for bin op and r coset in terms of the constant G by the definitions:

r_coset_abbr "H #> x == r_coset G H x"
bin_op_abbr "x # y == bin_op G x y"

Furthermore, we can define unity G as e and invers G a as inv a.
In the Sylow theory we additionally define an identifier for the set M
of pα-subsets of G and for the equivalence relation ∼ over this set:

"calM == {s. s <= carrier(G) & card(s) = (p ^ a)}"
"RelM == {(N1,N2).(N1,N2) ∈ calM × calM &

(∃ g ∈ carrier(G). N1 = (N2 #> g))}"

4.1. Prerequisites

Besides the theorems about groups and cosets, we need to derive prop-
erties about finite sets and cardinalities for this case study, as the
already mentioned card partition or finite Pow. Furthermore, some
additional arithmetical results are needed and theorems and functions
of combinatorics, e.g. binomial coefficients, numbers of subsets, and
divisibility rules, have to be defined or derived. In the present section
we show some of these; when displaying the rules we often leave out
preconditions to enhance readability. When not introduced in the text,
names of theorems are displayed in square brackets at the right margin.
The function nat rec defines primitive recursive functions.

4.1.1. Arithmetic
The arithmetical rules which have to be derived in addition to the
already existing ones of the Isabelle theory Arith are mostly obvious
but some are nevertheless nontrivial. For example, the rule

a - (b - c) = a - b + c [diff assoc]

sylow.tex; 7/09/2000; 12:10; p.12

11

needs the additional assumptions c <= b and b <= a because - is the
difference for natural numbers. Similarly, the left cancellation law for
natural number multiplication

k * a = k * b ==> a = b [mult left cancel]

is not generally valid (k must not equal zero).
Apart from such additional theorems about already existing func-

tions, we define for the the present case study an integer power opera-
tion by

power_def "m ^ n == nat_rec 1 (λ u v. m * v) n"

The use of the primitive recursion given by the functional nat rec
allows us to derive typical properties of this power function.

Finally, we have to define divisibility and derive basic facts about
it. The most advanced rule about divisibility we derive is div combine
— the main argument for the proof part of Section 2.1.3.1 is to show
that pα | o(H):

[|...;~(p ^ (r+1) | n); p ^ (a+r) | n * k |] ==> p ^ a | k

Prime numbers are defined as a set, letting us quantify over all primes.
Observe the syntactical overloading of the operator |, once as divisi-
bility and once as logical or:

prime_def "prime ==
{p. 1 < p & (∀ a b. p | a * b --> (p | a) | (p | b))}"

We do not need many extra theorems for primes.

4.1.2. Finite Sets and Cardinalities
We have to prove that the cardinality of a finite set A is less or equal
the cardinality of a finite set B if there exists an injection from A into
B (card inj). From this, we can immediately show that if there is a
bijection from A to B then their cardinalities are equal (card bij).

We derive the already mentioned finite Pow — the powerset of
a finite set is finite — and the counting theorem card partition
(cf. Section 3.2.4). Furthermore, we need in the Sylow proof that if
a number k divides the cardinalities of all classes of a set S factor-
ized by an equivalence relation then k divides the cardinality of S
(equiv partition).

4.1.3. Binomial Coefficients and k-subsets
The definition of the choose operator is inspired by the HOL tutorial
[Hol] by taking the Pascal triangle for the definition of

(
n
k

)
instead

sylow.tex; 7/09/2000; 12:10; p.13

12

of a ratio of factorials. We use again the nat rec functional to define(
n
k

)
as

choose_def "binomial n == nat_rec (λ k. if k = 0 then 1 else 0)
(λ u r k. if k = 0 then 1 else (r (k -1) + r (k))) n"

By this definition we gain the primitive recursive function binomial n
for each n which behaves for each k as we want it, i.e. (with the infix
syntax definition n choose k for binomial n k) we get

Suc n choose Suc k = [chooseD add]
(n choose Suc k) + (n choose k)

From that we get all other necessary prerequisites quite easily:
n choose 0, zero le choose, less choose, n choose n, choose Suc,
and n choose 1 for the basic ones and a multiplicative decomposition:

k <= n ==> [chooseD mult]
Suc n * (n choose k) = (Suc n choose Suc k) * Suc k

From that we can derive the theorems

k <= n ==> (Suc n * (n choose k)) mod Suc k = 0 [choose mod1]
k <= n ==> [choose defT]
(Suc n choose Suc k) = (Suc n *(n choose k))div Suc k

which are decisive in the first combinatorial part of Sylow’s proof.
We can now prove:

card {s. s <= M & card s = k} = (n choose k) [n subsets]

if card M = n and k <= n. In the induction scheme for finite sets,
applied to M, we can use a x not in M. Using the decomposition:

{s. s<=insert x M & card s = Suc k} = {s. s<=M & card s = Suc k}
∪ {s. ∃ s1 ∈ {s. s<=M & card s = k}. s = insert x s1 }

for x not in M, we can use the induction hypothesis to show that

card {s. s <= M & card s = Suc k} = ((card M) choose (Suc k))

on the one hand. On the other hand, we construct a bijection between

{s. ∃ s1 ∈ {s. s <= M & card s = k}. s = insert x s1}

and

{s. s <= insert x M & card s = k}

provided that x is not in M. We use the induction hypothesis again to
show that

sylow.tex; 7/09/2000; 12:10; p.14

13

card {s. ∃ s1 ∈ {s. s <= M & card s = k}. s = insert x s1} =
((card M) choose k)

The cardinalities we derived for the two components of the decom-
position match the formula chooseD add. Hence, after showing that
the cardinality of the union of two disjoint sets is just the sum of the
cardinalities of these sets, we can apply chooseD add to finish the proof
of the theorem n subsets.

4.1.4. Preparation for Combinatorial Argument
The combinatorial argument of Sylow’s proof is formalized by first
defining a maximum number predicate max-n as

max_nat_def "max-n k. P(k) == @k. P(k)&(∀ m. k < m --> ~P(m))"

Thereby, we can state the combinatorial argument as

(max-n r. (p ^ r | m)) = [const p fac]
(max-n r. (p ^ r | (((p ^ a) * m) choose p ^ a)))

which is a natural way of encoding this proposition. Unfortunately, the
max-n construct uses the Hilbert-operator @ which names an element
that fulfills a given predicate P but forces us to show the existence of
such an element first. To make the proof easier we observe that the
maximum power of p dividing a number n is the integer logarithm of
n to the base p. By defining this integer logarithm function as

log_def "log p n == wfrec (trancl pred_nat)
(λ f j. if ((0 < j) & (j mod p = 0))

then Suc(f (j div p)) else 0) n"

we gain the desired function which improves the performance of the
main proposition const p fac. We first show some properties about
this logarithm function to allow later calculations.

We show that this logarithm represents actually the maximum power
of p dividing a number s by deriving

p ^ log p s | s [max p div]
& (∀ m. log p s < m --> ~(p ^ m | s))

This enables us to replace the max-n term by a log term and we can
derive the unique existence of the logarithm (unique max power div s,
log p unique, max p div eq log).

The theorem we finally use in the combinatorial argument is a
combination of the latter ones, namely:

[|...; ∀ r. ((p ^ r | a) = (p ^ r | b))|] [div eq log p]
==> log p a = log p b

sylow.tex; 7/09/2000; 12:10; p.15

14

The results we need to calculate with the new logarithm operation are

n = (p ^ log p n)*(n div (p ^ log p n)) [log power div equality]

and

log p (a * b) = (log p a) + (log p b) [log mult add]

4.2. Proof

According to the structure of the mathematical proof we present the
formal proof of Sylow’s theorem in three parts.

4.2.1. Combinatorial Argument
We have to show the conjecture const p fac (cf. Section 4.1.4). Using
unique max power div s we can immediately reduce the conjecture to
the logarithm equality:

log p m = log p ((p ^ a)* m choose p ^ a)

By chooseD mult (or choose defT, more precisely) this can be trans-
formed into

log p m = log p ((p^a)* m *((p^a)*m-1 choose (p^a)-1) div (p^a))

Cancellation (div mult1) yields:

log p m = log p (m * ((p ^ a)* m - 1 choose (p ^ a) - 1))

which can be decomposed by log mult add into

log p m = log p m + log p ((p ^ a)* m - 1 choose (p ^ a) - 1)

By arithmetical rules (add 0 right, add left cancel) we reduce to

0 = log p ((p ^ a)* m - 1 choose (p ^ a) - 1)

which can be derived from:

~(p | ((p ^ a)* m - 1 choose (p ^ a) - 1))

So far the calculation above is straightforward. That p does not divide
the remaining ratio or choose formula can also be shown following
the outline of the mathematical proof. To this end, we derive the two
directions. The forward direction is p fac forw:

[|...; k < (p^a); (p^r) | (p^a)* m - k |] ==> (p^r) | (p^a)- k

for which we have to derive r <= a as in the mathematical proof under
the same premises as above. The backward direction p fac backw:

sylow.tex; 7/09/2000; 12:10; p.16

15

[|...; k < (p^a); (p^r) | (p^a)- k |] ==> (p^r) | (p^a)* m - k

needs again r <= a. Now, we derive a theorem characterizing (p |
n choose k) if log p k = log p n under more general preconditions
(p not div choose). Instantiating the latter to pαm− 1 and pα− 1 by
plugging in the previous two lemmas we attain

~(p | ((p ^ a) * m - 1 choose (p ^ a) - 1)) [const p fac right]

which solves the combinatorial argument.

4.2.2. Construction of the subgroup H
Another additional cost for the nicer representation is that we have to
instantiate the rules derived for groups to the constants of the theory
Sylow. The instantiations of the rules are marked by a leading I in their
names, e.g. Ibin op closed is the instantiation of bin op closed to
the proof context and reads

[|x ∈ carrier G; y ∈ carrier G|] ==> x # y ∈ carrier G

Before we start to get into the concrete parts of the proof we have to
derive some facts about calM and RelM. First, RelM is an equivalence
relation over calM (RelM equiv). The proof is a straightforward check
of the definition of equivalence relation.

The assumptions M ∈ M/∼, pr+1 6 | card(M), and M1 ∈ M are al-
ways made in the following derivations. They have to be proved finally,
then they become obsolete at the top level of the proof.

Under the assumption of M and M1 we prove now

{g. g ∈ carrier G & M1 #> g = M1} <<= G

Here we see that our approach to abuse the theory mechanism to get a
nicer syntax pays off. The syntactical form of the constructed subgroup
is very similar to the mathematical notation.

As already mentioned in Section 3.2.2 we use the alternative charac-
terization subgroupI to tackle this task. It leaves us with some subgoals
of which the first one is

{g. g ∈ carrier G & M1 #> g = M1} ~= {}

It can be solved by showing that e is in this set. The two closure condi-
tions, i.e. the potential subgroup is closed under the binary operation
and under inverse construction, are derivable by insertion and definition
expansion.

We avoid defining an abbreviation for the constructed subgroup in
the proof because this construction is only visible inside the proof and
vanishes at the top level.

sylow.tex; 7/09/2000; 12:10; p.17

16

4.2.3. Cardinality of H is pα

The most difficult part of this subproof is to construct the bijection
between M and set r cos G H (or G/H, respectively). Though math-
ematically it is sufficient to derive (Ha = Hb) ≡ (M1a = M1b) and to
define the actual bijection as the mapping Ha 7→ M1a for all a ∈ G,
this is not as easy formally. The problem is, we have, for one direction,
some Mj which has an equivalent form M1a for some a. Unfortunately,
we do not know this a but need to use it to construct the inverse image
of Mj = M1a as Ha. For the backward map we have the same problem.

We solve this problem by employing the Hilbert operator @, though
this makes the proof quite messy. We tackle the bijection to two injec-
tions f∈M → G/H and g vice versa. They are (where H abbreviates
{g. g ∈carrier G & M1 #> g = M1})

λ M. H #> (@g. g ∈ carrier G & M1 #> g = M)
λ C. M1 #> (@g. g ∈ carrier G & H #> g = C)

That is, we just define these maps by the properties we expect from
them — this is like saying that the map is Ha 7→M1a but is less clear;
we do not know this a instead just describe it by its properties.

Though the terms in this proof grow quite large, making the deriva-
tion hard to read, the proof is again straightforward. Additional results
needed in the course of the derivation are

card(M1) = card(M1 #> g) [M1 RelM rcosetGM1g]
(M1, M1 #> g) ∈ RelM [M1 card eq rcosetGM1g]

With the bijection at hand, we solve the index lemma:

card(M) * card{g. g ∈ carrier G & M1 #> g = M1} [index lem]
= card G

by reducing it to Lagrange’s theorem. This reduction is performed by
the derivation card M eq IndexH which entails the constructed bijec-
tion bij M GmodH.

The two inequalities yielding o(H) = pα can now be derived by
plugging in all the prepared theorems according to the textbook proof.

1. p ^ a <= card {g. g ∈ carrier G & M1 #> g = M1}

This task can be reduced by the divisibility lemma div order to

p ^ a | card {g. g ∈ carrier G & M1 #> g = M1}

The main divisibility rule for this subproof (div combine) leaves
us with

sylow.tex; 7/09/2000; 12:10; p.18

17

1. ~(p ^ (max-n r. p ^ r | m)+ 1 | card(M))
2. p ^ (a + max-n r. p ^ r | m) |

card(M) * card {g. g ∈ carrier G & M1 #> g = M1}

The first subgoal is entailed in the assumption about M for this
proof. To the second one we can apply the previously derived index
lemma to transform into

p ^ (a + max-n r. p ^ r | m) | order(G)

After replacing order(G) by (p ^ a)* m this can be reduced by
basic arithmetic and divisibility rules to

p ^ (max-n r. p ^ r | m) | m

which is entailed in max p div (cf Section. 4.1.4).

2. card {g. g ∈ carrier G & M1 #> g = M1} <= p ^ a

We substitute card(M1) for p ^ a. By the preconstructed injection
of M1 into H (M1 inj H), discussed in Section 2.1.3.2 the task is
reduced to subgoals finite M1 and finite H which can be solved
by the already derived lemmas (see above).

The main proof finally puts together the parts H is SG, lemma leq1,
and lemma leq2 (the above inequalities 1 and 2).

Still, we have the two assumptions

M ∈ calM / RelM & ~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M))
M1 ∈ M

We discharge the former one finally in the top level proof Sylow1 by
applying lemmaA1. This lemma proves the existence of such an M by
contraposition. Assuming for contradiction that such a set does not
exist, we would have

∀ M ∈ calM / RelM. p ^ ((max-nr. p ^ r | m) + 1) | card M

But then, since equivalence classes are a partition (equiv partition)

p ^ ((max-nr. p ^ r | m) + 1) | card calM

Since card calM =
(
pαm
pα

)
this contradicts const p fac right.

The assumption M1 ∈ M is canceled by the theorem existM1inM.
The existence of a set M1 in the class M , whose cardinality is not
divided by pr+1, is derived from M ∈M/∼. Since the empty set is not

sylow.tex; 7/09/2000; 12:10; p.19

18

a member of M/∼, but M is a member, it follows that M is not the
empty set; hence we can assume an M1 ∈M .

The formal proof of Sylow’s theorem necessitates some smaller lem-
mas not visible in the textbook proof. They are mostly concerned
with the existence of elements in the sets M, M or M1, inclusions
between those sets and G and the cardinalities of those sets. Their
names indicate this already: zero less oG, zero less m, card calM,
exists x in M1, M1 subset G, finite calM.

5. Structural Concepts for Abstract Algebraic Reasoning

As we have seen in the formalization of groups, there is a need to
support structures to enhance the reasoning in abstract algebra. We
modeled structures by defining a typed set for the structure of groups
and a single theory for the definitions and assumptions of Sylow’s
theorem. The former case required a lot of extra work for the neat
representation (cf. Section 3.2.1) and the method for the latter case is
an abuse of the theory facility because we define a constant G to be
able to define readable syntax. The present section wants to mention
the concept of modules for theorem provers which seems to improve
the representation of structures in algebraic reasoning but has severe
limitations. Hence, we propose another concept for our further research
in Section 5.2. Finally, Section 5.3 gives some conclusions on this case
study.

5.1. Module Systems

An algebraic structure, like a group, describes an abstract object con-
sisting of a set and operations on this set. The abstraction is meant to
admit generalization over different sets, for example rational numbers
or Z5. We want to prove facts about the general structures but they
should be applicable to concrete examples; otherwise the results would
be useless.

Module systems in theorem provers, e.g. IMPS, PVS [OSR93], and
Larch [GH93], are designed for encapsulating types and predicates or
functions over those types. These modules are also called theories and
allow their body to assume properties for its parameters. In descriptions
of such tools we find suggestions how to represent abstract algebraic
structures — groups, rings, and so forth — in terms of these module
concepts as:2

2 We use a pseudo module notation vaguely similar to the existing ones.

sylow.tex; 7/09/2000; 12:10; p.20

19

theory group (G: TYPE, bin_op: G -> G -> G, inv: G -> G, e: G)
begin

unity_ax_1: bin_op a e = a
...

end

The advantage of this treatment of abstract algebra is in the reuse
possibilities and concise structuring of the group theory. This corre-
sponds nicely to some processes of algebraic reasoning. The properties
of groups are only visible in the context of the theory. Thus, reasoning
about elements of groups and its operations can be performed in the
scope of the theory of groups and derived theorems are visible inside
there. They can be invoked by an instantiation of the theory.

But, this representation of groups has some drawbacks. For example,
if we look at subgroups we see that the modeling in terms of modules
is not appropriate. For the notion of subgroups we might want to
characterize3 a subgroup as a subset H of a group G such that H is
a group together with G’s operations. Though there might be possibil-
ities to approximate this in the described representation of groups by
modules, e.g. IMPORTING group(H,bin op,inv,e) in PVS or a theory
interpretation of group to itself with some obscure subset H of (the
type!) G, these possibilities are quite artificial. Moreover, IMPORTING
and interpretations do not represent logical formulas. Instead, these
invocations of the group module represent a kind of check or meta-
level knowledge that the actual parameter H is a subgroup; we get all
implications about the constituents of the subgroup but not a formula
stating the subgroup property. In other words, modules are not first
class citizens of the logic and thereby items defined in terms of modules
cannot be accessed by logical reasoning.

A reasonable conclusion from this observation is to abandon the use
of modules for abstract algebra, at least if we do not want to restrict
the reasoning to merely internal properties of groups. Most advanced
algebraic theorems, as for example Sylow’s theorem, demand more.
Naturally, we could also perform the formalization and proofs of the
current paper in IMPS, PVS or Larch, respectively, but not in terms
of the characterization of groups by modules as seen above.

Modules are a sensible concept for organising logical theories, but
not for a complete and natural representation of abstract algebra. Still,
it would be nice to preserve the obviously neat properties of an en-
capsulated object representing mathematical entities like groups. To
this end, we use the the case study of Sylow’s theorem to formulate

3 as in our formalization of subgroups for Sylow’s theorem

sylow.tex; 7/09/2000; 12:10; p.21

20

a concept of sections which are more appropriate for the needs of
algebraic reasoning.

5.2. Sections

The concept of a section described here is tentative. We state the re-
quirements for sections; the actual construction was still under consid-
eration when the present paper was submitted. The concept resembles
the ones in Coq [Dow90] and AUTOMATH [DeB91, DeB80]. In the
meantime we implemented a corresponding concept of locales [KW98]
in Isabelle.

Sections delimit a scope in which assumptions can be made and
theorems depending on these assumptions are proved. Sections resem-
ble modules but their parameterization is restricted to terms of the
logic. They can be regarded as abbreviations for formulas of the meta-
logic; a section using the assumptions Γ1, . . . ,Γn proving the theorems
t1, . . . , tn may be regarded as the Isabelle meta-level formula
[| Γ1; . . . ; Γn |] ==> t1 & . . . & tn.

This allows us to regard an object defined by a section from the
inside, when it is defined or invoked, or from the outside which is the
meta-level view.

Inside a section, a concrete type, like i in the Sylow case study, might
be necessary to disambiguate the notation. But, if the section is con-
sidered from the outside, this type must vanish; possibly by employing
polymorphism.

The present case study gives an example for the use of sections. The
theory we defined for Sylow’s theorem can be represented by a section.
The constant G and the assumptions of the theorem are the contents.
The outside view is the theorem in the usual form: all assumptions as
premises of the meta-level. The definition of groups itself is a further
example where sections can be applied.

To realize the concept of sections the possibility of syntax definition
in Isabelle has to be extended to allow us the same readable formaliza-
tion as in the present case study. Invocation of a section is complicated
because we have to consider multiple invocations and nested sections.

5.3. Conclusion

Sylow’s theorem is a fundamental result of finite group theory. It usually
stands at the end of a lecture course on group theory because it unifies
most of the basic results about finite groups. A lot of textbooks on
abstract algebra skip the theorem, or at least its proof, because it
is difficult. The proof by H. Wielandt that is the raw model for our
formalization is quite concise (less than one page). Herstein [Her64]

sylow.tex; 7/09/2000; 12:10; p.22

21

being a bit more detailed uses almost two pages. In our introduction
we need three pages.

The formalization of Sylow’s theorem is quite a big experiment.
Altogether we proved 278 theorems, of which only 52 are in the theory
Sylow. The theory Group contains 121 theorems of which only 34 are
concerned with group properties; the other 87 are dealing with the self
defined operators: natural number logarithm, power, choose operator,
the function set constructor ->, and bijections (which use ->). Though
these are mostly arithmetical results, one could not expect them to be
in the theorem library because the operators are rather exceptional and
did not exist in Isabelle before. Another 104 theorems are extensions to
the existing Isabelle theories of the HOL logic, sets, arithmetic, finite
sets, equivalence relations, products and natural numbers.

The reasoning processes are quite subtle, mainly in the combinato-
rial argument. A lot of the reasoning deals with divisibility and finite set
properties. As other formalizations show [PG96], reasoning with finite
sets is tricky — though most arguments seem intuitively obvious. It
necessitates a quite well structured analysis to avoid losing track of the
proof. Often during the development we had severe problems because
of small side conditions. Some simple looking subtheorems turned out
to be quite hard to prove. One could say that this is typical in proof
development but we think that it is obvious from the present paper
that the proof is just very subtle though elegant.

Elegant constructions and proofs can be especially hard to mecha-
nize. That is, they connect different domains of reasoning by unusual
associations. This is intuitively appealing, but tedious for mechanical
proofs. We are lucky if there is another unelegant but straightforward
proof if we want to mechanize it.

What do we learn from the experiment? First of all we think that
hard proofs are good benchmarks for systems because they are well
suited to reveal incompleteness of formal approaches. Tools or frame-
works constructed for formal proofs might turn out to be not suited for
intuitive associations connecting domains of mathematical reasoning.
Especially, methods which prescribe the way of approaching a prob-
lem are naturally inflexible and can only be changed with unnatural
complications to solve nonstandard tasks. An example for this are the
module systems.

Another point which becomes obvious by performing big or difficult
case studies is how far theory libraries are sufficiently equipped with
theorems for such tasks. Surely, it is an impossible task to provide all
possible lemmas which might arise in some obscure proof, but at least a
certain level of knowledge about predefined theories must be provided.
The Isabelle theory library is most sufficient, though some probably

sylow.tex; 7/09/2000; 12:10; p.23

22

not too frequently demanded theorems about equivalence relations and
finite sets caused some additional difficulties.

Last but not least, we have to admit our admiration for mathe-
maticians. While reconstructing a hard mathematical proof from the
pure logic, one comes to points where it seems that there must be
mistakes in the proof — but then it turns out that it is sound and just
a bit trickier than expected. Having machine support to reassure about
difficult theorems makes it almost impossible to believe that this can
be performed soundly by just relying on a human brain which is often
biased by the desire to solve the problem.

Appendix

A. Theory Files

This appendix contains the code of the two Isabelle theory files for
groups and the one for the proof of Sylow’s theorem providing a context
for the proof. The prefix ! is the universal quantifier, : represents ∈
for HOL sets, and the question mark ‘?’ is the existential quantifier
of HOL. The symbol % stands for λ; Un stands for set union ∪.

A.1. Group Theory

Group = Univ + Finite + Equiv +
consts

prime :: "nat set"
divides :: "[nat, nat] => bool" ("_ | _" [50,51]50)
power :: "[nat,nat] => nat" ("_ ^ _" [60,61]60)
log :: "[nat,nat] => nat"
binomial:: "[nat,nat] => nat" ("_ choose _" [50,51]50)

defs
prime_def "prime ==

{p. 1 < p & (! a b. p | a * b --> (p | a)|(p | b))}"
divides_def "a | b == ? (k :: nat). b = k * a"
power_def "m ^ n == nat_rec 1 (%u v. m * v) n"
choose_def "binomial n ==

nat_rec (%k. if k = 0 then 1 else 0)
(% u r k. if k = 0 then 1 else (r (k -1) + r (k))) n"

log_def "log p n == wfrec (trancl pred_nat)
(% f j. if ((0 < j) & (j mod p = 0)) then

Suc(f (j div p)) else 0) n"
consts

funcset ::
"[’a set,’b set]=>(’a => ’b) set" ("_ -> _" [91,90]90)

sylow.tex; 7/09/2000; 12:10; p.24

23

subgroup ::
"[’a set, (’a set *([’a, ’a] =>’a)*(’a =>’a)* ’a)] => bool"

("_ <<= _" [51,50]50)
defs

funcset_def "A -> B == {f. ! x:A. f(x) : B}"
consts

Group :: "’a set"
constdefs

carrier :: "(’a set*([’a,’a] =>’a)*(’a =>’a)*’a)=>’a set"
"carrier(G) == fst(G)"

bin_op ::
"(’a set *([’a,’a] =>’a)*(’a =>’a)* ’a) =>([’a, ’a] =>’a)"

"bin_op(G) == fst(snd(G))"
invers :: "(’a set *([’a,’a] =>’a)*(’a =>’a)*’a) =>(’a =>’a)"

"invers(G) == fst(snd(snd(G)))"
unity :: "(’a set *([’a, ’a] =>’a)*(’a => ’a)* ’a) =>’a"
"unity(G) == snd(snd(snd(G)))"
order :: "(’a set *([’a, ’a] =>’a)*(’a =>’a)* ’a) => nat"
"order(G) == card(fst(G))"

consts
r_coset ::
"[(’a set*([’a,’a]=>’a)*(’a =>’a)*’a),’a set,’a]=>’a set"
set_r_cos ::
"[(’a set*([’a, ’a] =>’a)*(’a =>’a)*’a),’a set]=>’a set set"
max_nat :: "(nat => bool) => nat" (binder "max-n" 10)

defs
r_coset_def "r_coset G H a == {b.? h : H. bin_op G h a = b}"
set_r_cos_def "set_r_cos G H ==

{C . ? a: carrier G. C = r_coset G H a}"
rules

subgroup_def "H <<= G == H <= carrier(G) &
(H,bin_op(G),invers(G),unity(G)) : Group"

Group_def "Group ==
{(G,f,inv,e). f : G -> G -> G & inv : G -> G & e : G &

(! x: G. ! y: G. !z: G. (f (inv x) x = e) &
(f e x = x) & (f (f x y) z = f (x) (f y z)))}"

max_nat_def "max-n k. P(k) ==
@k :: nat. P(k) & (! m. k < m --> ~P(m))"

end

A.2. Theory File for Sylow’s Theorem

Sylow = Group +
types i
arities i::term
consts

sylow.tex; 7/09/2000; 12:10; p.25

24

G :: "i set * ([i, i] => i) * (i => i) * i"
p, a, m :: "nat"
r_cos :: "[i set, i] => i set" ("_ #> _" [60,61]60)
"#" :: "[i, i] => i" (infixl 60)

defs
r_coset_abbr "H #> x == r_coset G H x"
bin_op_abbr "x # y == bin_op G x y"

constdefs
e :: "i" "e == unity G"
inv :: "i => i" "inv == invers G"
calM :: "i set set"

"calM == {s. s <= carrier(G) & card(s) = (p ^ a)}"
RelM :: "(i set * i set)set"

"RelM ==
{(N1,N2).(N1,N2):calM Times calM &(? g:carrier(G).N1=(N2#>g))}"
rules
p1 "p : prime"
p2 "G : Group"
p3 "order(G) = (p ^ a) * m"
p4 "finite (carrier G)"
end

B. Some Theorems

This appendix contains some selected theorems of group theory, some
that deal with the combinatorial argument, and all from the theory for
Sylow’s theorem. It does not contain any proofs.

B.1. Group Theory

coset_mul_assoc "[| G : Group; M <= carrier G; g : carrier G;
h : carrier G |] ==> r_coset G (r_coset G M g) h
= r_coset G M (bin_op G g h)";

coset_mul_unity "[| G: Group; x : carrier G; H <<= G; x : H |]
==> r_coset G H x = H";

coset_mul_invers1
"[| G: Group; x : carrier G; y : carrier G;
M <= carrier G;
r_coset G M (bin_op G x (invers G y)) = M |]
==> r_coset G M x = r_coset G M y";

coset_mul_invers2

sylow.tex; 7/09/2000; 12:10; p.26

25

"[| G: Group; x : carrier G; y : carrier G;
M <= carrier G; r_coset G M x = r_coset G M y|]
==> r_coset G M (bin_op G x (invers G y)) = M ";

coset_join1 "[| G: Group; x : carrier G; H <<= G;
r_coset G H x = H |] ==> x : H";

coset_join2 "[| G: Group; x : carrier G; H <<= G;
x : H |] ==> r_coset G H x = H";

set_r_cos_part_G
"[| G: Group; H <<= G|]
==> Union (set_r_cos G H) = carrier G";

rcosetGHa_subset_G
"[| G: Group; H <= carrier G; a : carrier G |]
==> r_coset G H a <= carrier G";

card_cosets_equal
"[|G : Group; H <= carrier G;
finite(carrier G)|] ==>
! c: set_r_cos G H. card c = card H & finite c";

r_coset_disjunct
"[| G: Group; H <<= G |] ==>
! c1: set_r_cos G H. ! c2: set_r_cos G H.
c1 ~= c2 --> c1 Int c2 = {}";

set_r_cos_subset_PowG
"[| G: Group; H <<= G |]
==> set_r_cos G H <= Pow(carrier G)";

Lagrange "[| G: Group; finite(carrier G); H <<= G |]
==> card(set_r_cos G H) * card(H) = order(G)";

B.2. Combinatorics

n_choose_0 "(n choose 0) = 1";

zero_le_choose "k <= n ==> 0 < (n choose k)";

less_choose "n < k ==> (n choose k) = 0";

n_choose_n "(n choose n) = 1";

choose_Suc "(Suc n choose n) = Suc n";

sylow.tex; 7/09/2000; 12:10; p.27

26

n_choose_1 "n choose 1 = n";

max_p_div "[| 1 < p; 0 < s |] ==> p ^ log p s | s &
(! m. log p s < m --> ~(p ^ m | s))";

unique_max_power_div_s
"[| 1 < p; 0 < s |] ==>
(max-n r. p ^ r | s) = log p s";

log_p_unique "[| 1 < p; 0 < s |] ==> ?! x. p ^ x | s &
(! m. x < m --> ~(p ^ m | s))";

max_p_div_eq_log
"[| 1 < p; 0 < s;
p ^ x dvd s & (! m. x < m --> ~(p ^ m dvd s))|]
==> log p s = x";

div_eq_log_p "[|1 < p; 0 < a ; 0 < b;
! (r :: nat). ((p ^ r | a) = (p ^ r | b))|]
==> log p a = log p b";

log_power_div_equality
"[|1 < p; 0 < n |] ==>
n = (p ^ log p n)*(n div (p ^ log p n))";

equiv_partition
"[| finite S; equiv S rel; ! x : S / rel.
k dvd card(x)& finite x |] ==> k dvd card(S)";

constr_bij "[| finite M; x ~: M |] ==>
card {s. ? s1 :
{s. s <= M & card(s) = k}. s = insert x s1}
= card {s. s <= M & card(s) = k}";

n_subsets "[| finite M; card(M) = n; k <= n |] ==>
card {s. s <= M & card(s) = k} = (n choose k)";

Rettung "!! p r m k. [| 0 < m; 0 < k;
k < (p^a); (p^r) | (p^a)* m - k |]
==> r <= a";

p_fac_forw "!! p r m k. [| 0 < m; 0 < k; p : prime;
k < (p^a); (p^r) | (p^a)* m - k |]
==> (p^r) | (p^a)- k";

sylow.tex; 7/09/2000; 12:10; p.28

27

r_le_a_forw "!! p r k. [| 0 < k; k < (p^a);
0 < p; (p^r) | (p^a) - k |] ==> r <= a";

p_fac_backw "!! p r m k. [| 0 < m; 0 < k; p : prime;
k < (p^a); (p^r) | (p^a)- k |]
==> (p^r) | (p^a)* m - k";

logp_eq_logp "[| p : prime; 0 < m |] ==>
! k n. (k < (p ^ a) & n < (p ^ a) * m &
0 < k & 0 < n & n - k = (p ^ a) * m - (p ^ a) &
(p ^ a) <= (p ^ a) * m & k <= n)
--> log p k = log p n";

p_not_div_choose
"[| p : prime; ! k n. (k < p1 & n < p2 & 0 < k &
0 < n & n - k = p2 - p1 & p1 <= p2 & k <= n)
--> log p k = log p n ;p1 <= p2|] ==>
k <= n & k < p1 & n < p2 & n - k = p2 - p1
--> ~(p | (n choose k))";

const_p_fac_right
"[| p : prime; 0 < m |] ==>
~(p | ((p ^ a) * m - 1 choose (p ^ a) - 1))";

const_p_fac "[| p : prime; 0 < m |] ==>
(max-n r :: nat. (p ^ r | (m :: nat))) =
(max-n r.
(p ^ r | (((p ^ a) * m) choose p ^ a)))";

B.3. Theory Sylow

RelM_equiv "equiv calM RelM";

M_subset_calM "M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M))
==> M <= calM";

card_M1 "[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==> card(M1) = p ^ a";

exists_x_in_M1 "[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==> ? x. x : M1";

M1_subset_G "[| M : calM / RelM &

sylow.tex; 7/09/2000; 12:10; p.29

28

~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==> M1 <= carrier G";

M1_inj_H "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==>
? f: {g. g : carrier G & M1 #> g = M1} -> M1.
inj_onto f {g. g : carrier G & M1 #> g = M1}";

RangeNotEmpty "[| {} = RelM ^^ {x}; x : calM |] ==> False";

EmptyNotInEquivSet
"{} ~: calM / RelM";

existsM1inM "M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M))
==> ? M1. M1 : M";

zero_less_o_G "0 < order(G)";

zero_less_m "0 < m";

card_calM "card(calM) = ((p ^ a) * m choose p ^ a)";

max_p_div_calM "~(p ^ ((max-n r. p ^ r | m)+ 1) | card(calM))";

finite_calM "finite calM";

lemma_A1 "? M. M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M))";

bin_op_closed_lemma
"[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M; x : {g. g : carrier G & M1 #> g = M1};
xa : {g. g : carrier G & M1 #> g = M1}|]
==> x # xa : {g. g : carrier G & M1 #> g = M1}";

H_is_SG "[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M |] ==>
{g. g : carrier G & M1 #> g = M1} <<= G";

M_elem_map "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M; M2: M|] ==> ? g: carrier G. M1 #> g = M2";

sylow.tex; 7/09/2000; 12:10; p.30

29

H_elem_map "[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M)); M1:M;
H : set_r_cos G {g. g : carrier G & M1 #> g = M1}
|] ==> ? g: carrier G.
{g. g : carrier G & M1 #> g = M1} #> g = H";

rcosetGM1g_subset_G
"[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M; g : carrier G; x : M1 #> g |]
==> x : carrier G";

finite_M1 "[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M|] ==> finite M1";

finite_rcosetGM1g
"[|M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M; g : carrier G|] ==> finite (M1 #> g)";

M1_cardeq_rcosetGM1g
"[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M; g : carrier G|]
==> card(M1) = card(M1 #> g)";

M1_RelM_rcosetGM1g
"[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1: M; g : carrier G|] ==> (M1, M1 #> g) : RelM";

bij_M_GmodH "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==>
(? f: M ->
set_r_cos G {g. g : carrier G & M1 #> g = M1}.
inj_onto f M) &
(? g: (set_r_cos G {g. g: carrier G & M1#>g=M1})
-> M. inj_onto g
(set_r_cos G {g. g: carrier G & M1 #> g = M1}))";

calM_subset_PowG
"calM <= Pow(carrier G)";

sylow.tex; 7/09/2000; 12:10; p.31

30

finite_M "M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M))
==> finite M";

cardMeqIndexH "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M |] ==>
card(M) = card(set_r_cos G
{g. g : carrier G & M1 #> g = M1})";

index_lem "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==>
(card(M)*card({g. g : carrier G & M1 #> g = M1}))
= order(G)";

lemma_leq1 "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M |] ==>
p ^ a <=
card({g. g : carrier G & M1 #> g = M1})";

lemma_leq2 "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M |] ==>
card({g. g : carrier G & M1 #> g = M1})
<= p ^ a";

main_proof "[| M : calM / RelM &
~(p ^ ((max-n r. p ^ r | m)+ 1) | card(M));
M1 : M|] ==>
{g. g : carrier G & M1 #> g = M1} <<= G &
card({g. g : carrier G & M1 #> g = M1}) = p ^ a";

Sylow1 "? H. H <<= G & card(H) = p ^ a";

References

DeB91.. N. G. de Bruijn. Telescoping Mappings in Typed Lambda Calculus.
Information and Computation, 91:189–204, 91.

DeB80.. N.G. de Bruijn. A Survey of the Project AUTOMATH. In J.P. Seldin
and J.R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Academic Press Limited, pages 579–606. 1980.

Dow90.. G. Dowek. Naming and Scoping in a Mathematical Vernacular. Technical
Report 1283, INRIA, Rocquencourt, 1990.

sylow.tex; 7/09/2000; 12:10; p.32

31

FGT93.. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: an Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213–
248, 1993.

GH93. . John V. Guttag and James J. Horning, editors. Larch: Languages and
Tools for Formal Specification. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones,
Andrés Modet, and Jeannette M. Wing.

Gun89.. E. L. Gunter. Doing Algebra in Simple Type Theory. Technical Report
MS-CIS-89-38, Dep. of Computer and Information Science, University of
Pennsylvania, 1989.

Her64.. I. N. Herstein. Topics in Algebra. Xerox, 1964.
Hol. . The HOL System, Tutorial. Available on the Web as

http://lal.cs.byu.edu/lal/holdoc/tutorial.html.
KW98.. F. Kammüller and M. Wenzel. Locales – a Sectioning Concept for Isabelle.

Technical Report 449, University of Cambridge, Computer Laboratory,
1998.

OSR93.. S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Language
(Beta Release). Technical report, SRI International, 1993.

Pau90.. L. C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–386. Academic Press, 1990.

Pau94.. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer, 1994.

Pau95.. L. C. Paulson. First Isabelle User’s Workshop. Technical Report 379,
Computer Laboratory, University of Cambridge, September 1995.

PG96. . L. C. Paulson and K. Grabczewski. Mechanizing Set Theory. Journal of
Automated Reasoning, 17:291–323, 1996.

Wie59.. H. Wielandt. Ein Beweis für die Existenz der Sylowgruppen. Archiv der
Mathematik, 10:401–402, 1959.

Yu90. . Y. Yu. Computer Proofs in Group Theory. Journal of Automated
Reasoning, 6:251–286, 1990.

sylow.tex; 7/09/2000; 12:10; p.33

