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Abstract

Accurate and high density estimation of optical flow vectors in an image sequence is
accomplished by a method that estimates the velocity distribution function for small
overlapping regions of the image. Because the distribution is multimodal, the method can
accurately estimate the change in velocity near motion contrast borders. Large
spatiotemporal support without sacrificing spatial resolution is a feature of the method, so
it is not necessary to smooth the resulting flow vectors in a subsequent operation, and
there is a certain degree of resistance to aperture and aliasing effects. Spatial support also
provides for the accurate estimation of long-range displacements, and subpixel accuracy is
achieved by a simple weighted mean near the mode of the velocity distribution function,

The method is demonstrated using image sequences obtained from the analysis of ceramic
and metal materials under stress. The performance of the system under degenerate
conditions is also analysed to provide insight into the behaviour of optical flow methods in
general.




1. Introduction

Optical flow is a representation of the instantaneous motion of intensity points in a
sequence of images. Since 1980, considerable attention has been devoted to accurately
estimating the optical flow given a sequence of images. In the recent comprehensive
survey by Beauchemin and Barron [2], at least 136 of the references concerned the
computation of optical flow, and yet this list was not exhaustive.

There are two main methods for computing optical flow: gradient-based [3] and
correlation-based [S]. Apart from these, there are also some methods involving the
statistical estimation of motion parameters [3] and the use of phase information [4].
Gradient-based methods make the initial assumption that the intensities of local time-
varying image regions are approximately constant for at least a short duration. Using the
notation of Beauchemin and Barroh, if I(x, ¢) is the image intensity function, then

I(x,8) = I(x+8x, {+8f) (1)

where 8x is the displacement of the local image region at (x, #) after time 8¢ Gradient-
based methods for estimating optical flow usually follow Horn and Schunk [4] by
expanding the left hand side in a Taylor series,
I(x,) = I(x,¢) + VI 8x + 8tl, + O?

where VI = (I,1,) and I are the first order partial derivatives of I(x,f), and the higher
order terms are considered negligible. Neglecting higher-order terms yields

VI-v+I; =0
where v = (u,v) is the velocity of the local image region. Although the two components of
the velocity are constrained by one equation, this can be used to estimate v, the motion
component in the direction of the local gradient of the image intensity function. Because
the normal velocity is in the direction of the spatial gradient VI, we may write
LI
vIp

Thus, measuring spatiotemporal derivatives allows normal image velocity to be estimated.

Gradient-based methods are accurate, in general, only when the intensity
conservation assumption (Eq. 1) is holds, and when frame-to-frame displacements due to
motion are a fraction of a pixel so that the Taylor series approximation is meaningful.
Furthermore, second-order differential methods make the assumption that first-order
deformations of intensity (due to rotation or dilation) are not present. There are also
problems with accuracy in determining second order derivatives due to the sensitivity of
numerical integration. In practice, gradient-based methods r'equire iteration to reduce the
error and need to be augmented by a subsequent process of smoothing the resulting flow
vectors over a larger image region. The need to take into account flow information over a
large image region for smoothing, together with the need to cope with large
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displacements, has led to gradient-based approaches being supplemented by hierarchical,
coarse-to-fine resolution searches, in which a first approximation to image motion is
estimated using a coarse grid, and then using this information to define finer grids to limit
the area in which displacements are found [2].

Correlation-based methods try to establish correspondences between invariant
features between frames. Typical features might be blobs, corners, and edges.
Alternatively, patches of the image itself may be used directly as templates to be matched
in subsequent images. The main difficulties with correspondence-based methods are the
uncertainty in finding invariant features due to distortion of the image, and the uncertainty
in finding corresponding features. Again the spurious results obtained due to this
uncertainty need to be removed or smoothed [6]. Correlation-based methods have
difficulty with subpixel displacements as their error depends on the proximity of image
displacement to an integer number of pixels [1].

While the correlation surface computed by correlation-based methods is intrinsically
multi-modal, and thus capable of representing multiple motions, the gradient-based and
statistical estimation methods assume that locally there is only one coherent motion, and
thus attempt to find the best values for certain parameters that describe the motion. Such
single-motion methods are unreliable near motion contrast borders because the best value
amounts to the mean of the various velocities present. As the studies referred to have
shown, this is almost never the correct response.

Correlation-based methods have been useful in sequences where the assumptions
required for gradient-based methods do not apply, for example in cloud [7] and
combustion [6] images. The method proposed in the present paper was developed in
response to a need to compute flow vectors for surface strain mapping of materials, where
both gradient-based and correlation-based method give poor results because sub-pixel
accuracy is required and large displacements and local distortions are encountered.

2. Method

The proposed method uses the fundamental assumption of Equation 1, but proceeds by
estimating the probability that /(x,7) and I(x + 8x, ¢+ 8¢) are observations of the same

event which can be assigned the interpretation that image region x is displaced to x+6x

from frame ¢ to #+6z. We shall assume that each x refers to a single pixel. Given pixel
values p1 = I(x,t) and p; = I(x+38x, ¢+ 6¢), let P(p; — p») denote the probability that
the observation of p; and p; is due to the velocity v = §x/8¢ A working definition for P

is:
Ry
Po1 - o) = enpl- L2 @

The probability is unity when p| and p, have identical values; the probability decreases as
the difference between the values of p; and p; increases. The rate of decrease depends on




parameter a, a reasonable value for which is an estimate of the variance o2 of the grey
levels in the image.

It is now necessary to provide support for P to model the velocity structure of the
image sequence in a given region I(x,?). This is done by defining a neighbourhood of
pixels in the (spatial) vicinity of x. This neighbourhood (which can also be called a patch
or receptive field) can be defined as a set of displacements from a central reference. For
example, if the neighbourhood is a square of side 2s centred on x (but offset by one pixel),
we may have the neighbourhood

R={dn=(n,m)| —s<n<s, -s<m<s}
so that x+6n (n € R) refers to a pixel in the neighbourhood of x. In practice, Sn will have
integer components and represent a pixel offset, and without loss of generality we shall
identify offsets using the & notation. Alternatively, a disc-shaped neighbourhood of radius
r may be used, where again integer components are assumed:

R = {8n=(n1,n2) | n%+ n% < r? }

We now define the velocity distribution function of P as

F(8x) = L > P(I(x +8a,1) — I(x+8b, t+5¢)). 3)

lRl daeR,6beR,
such that 6b—3a==58x

The value of F(8x) is determined by all pairwise pixels at x+3a (a neighbour of x at time ?)
and x+8b (a neighbour of x at time #+3f), such that 8b and 8a are separated by
displacement 8x. The value of F(3x) is therefore the support for the hypothesis that the
image velocity is caused by displacement 8x. This vote is accumulated by summing P(
p1 —> p) for every pair of pixels in the neighbourhood of x that are displaced by 8x, for

all dx. The estimated displacement is therefore the index of the mode of F, or
argmax F(06x), although in the implemented version a subpixel resolution is obtained by
X

finding a weighted mean in the region of argmax F(8x). It is necessary to compute F' at
X

every location x for which a motion estimate is required.

F can be computed as suggested by the following examples (omitting normalisation).
Suppose I [x,y, t] is the pixel value the neighbourhood is 32x32 pixels square, and 8¢ =
1 frame. The velocity distribution function for I [x, v, t] can be accumulated in a 32x32
histogram F by an algorithm expressed in the following pseudocode (in which negative
subscripts are permitted for F):




for (il = -16 while il < 16 step 1)
for (j1 = -16 while j1 < 16 step 1)
for (i2 = -16 while 12 < 16 step 1)
for (j2 = -16 while j2 < 16 step 1)

d = I[x+il,y+jl,t] - I[x+i2,y+j2,t+1];
dx = i2 - 1i1;

dy = j2 - ji

F[dx,dy] = F[dx,dy] + exp(d * d / -a);

Of course, a more general implementation will store the n neighborhood offsets in a pair
of 1 x narrays Nx and Ny. This is useful when neighbourhoods are arbitrary collections of
pixel offsets such as those contained within a disc of a given radius.
for (i = 0 while i < n; step 1)
pl = I[x+Nx[i], y+Ny[il, t1;
for (j = 0 while j < n; step 1)
d =pl - I[x+Nx[j], y+Ny[j], t+1];
dx = Nx[J] - Nx[il;
dy = Nyl[j]l - Nyl[i]l;
Fldx,dy] = Fldx,dy] + exp(d * d / -a);

Il

Another optimisation is to predefine a 256x 256 array g containing the exponentiall
function as a function of the two pixel values as
. (i-))?
gli.jl= eXp(— —%—

so that the incrementing line in the pseudocode then can be written

Fldx,dy]l = Fldx,dy] + gl[I[x+il,y+jl,t], I[x+i2,y+j2,t+1]].

Before presenting the results of using this method, it is necessary to make a
refinement of the velocity distribution function. The voting system of Equation 3 is
biassed because different displacements are not equally represented within the

neighbourhood. For example, in a 32x 32 square neighbourhood, 1,024 votes will
contribute to 6x = (0,0), but only 783 votes will contribute to 8x = (5,3). In general, a
displacement of dx will receive

V(%)= | {ox|b—a=08x, b e R, acR) | @

votes independent of the pixel values (V" may be calculated as a histogram in a way similar
to the above code). The pixel values will determine the amount of vote according to Eq 2.
Thus, a uniform random vote has the effect of biassing the response towards small values

of |8x|, even if the voted amount is a small one because the difference between pixel
values is large. Consequently, the presence of noise in the image may conspire with a
biassed voting scheme to conceal the correct response. The effect of bias is illustrated in
Figure 1 by the histogram of V for a disc neighbourhood of radius 16. The axes of this
plot are labelled such that (dx, dy) corresponds to 8x. The zero value is in the middle of

each axis (i.e. 5x=0 is in the centre of the F plot). The graduations are in units of 10 pixels




displacement. The central bright region has a maximum of 795 votes for 8x = (0,0). The
overall distribution of votes is cone-shaped.

Figure 1

The effects of bias may be corrected by estimating the response due to bias alone,
and subtracting this from Eq. 3. The response due to bias may be modelled by multiplying
V by the probability that given pixel values are drawn from the image. Equation 2 assumes
that pixel values are drawn uniformly from the range of values (typically 0 to 255).
However, in practice, pixel values are drawn from the image, and the discrete probability
distribution function (pdf) of pixel values can be estimated by the histogram of the image.
With f;(7) the frequency of pixel value i in the image at time (frame) ¢, estimate the

discrete pdf 4, (i) of a pixel value i as #,(i) =f; (i) / Zj f+(j), where index j ranges over
all the pixels in the image. Again letting p = I(x,¢) and p; = I(x + 8x, ¢+ 8¢), Equation 3
may be redefined as

F(8x) = Y, P o p2) |~ h@)hus (2)P(p1 = p2)V(8x). (5)

acR beR,
such that b—a=38x

The effect of this is to greatly enhance the signal-to-noise ratio of the response, which will
be seen below. For efficiency, the right-hand term of Eq. 5 (the bias correction term) is
-precomputed from the histogram of each image in the sequence, and is used for each
computation of F. In the results that follow, the bias correction term was computed for
each vector, by using the elements of R to estimate the pdf and the parameter o, (Eq 2).
This requires a substantial increase in computation time compared to estimating one pdf
and value of o for all flow vectors; any benefit in terms of increased accuracy has so far

been indiscernable,




3. Results

Image sequences were obtained from closeup views of various heterogeneous and
composite materials under mechanical stress. The detection of image flow from these
sequences is of interest to materials scientists because of a requirement to map surface
strain. Monochrome images were acquired, digitised to 7 bits, and histogram equalised.

Pixel displacements varied from less than one pixel per frame (pf') to 19 pfl Eq 5

was computed for each pixel using a pair of images. Figure 2a shows one of the 512x512
pixel images in a sequence of a rubber-type material being stretched. Figure 2b shows a

set of velocity vectors obtained by computing F at each point of a 64x64 grid centred on

the 512x 512 images. (i.e. one vector computed every 8 pixels of the image). The
neighbourhood was a disc of radius 16. Flow magnitude has been scaled by a constant

(0.5) for legibility.

(a) (b)
Figure 2

In Fig. 2(b) the flow is clearly defined except for a few isolated locations, and a few
aliassing errors near the light/dark boundary in the upper right quadrant of the image.
These will be discussed later. Note that no result is available for some points in a region in
the upper right corner of the image. The method does not return a result if there is no
maximum value in the F plot. This is a crude way to provide a confidence in the result, but
does not work in all cases. A better way would be to compare the normalised maximum
value of the F' plot with the probability p of drawing a pixel pair from the image. If the
maximum value is less than some function of p, then no result would be returned. This is a
simple yet justifiable way of providing an estimate of confidence in the result. Confidence
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in the result may also be obtained by observing the dispersion of the plot; this is discussed
later.

Figure 3 shows the values of F over the range of displacements for one pixel near the
centre of the image in Fig. 2(a). The axes of each F plot are labelled such that dx, dy
corresponds to 8x. The zero value is in the middle of each axis (i.e. 8x=0 is in the centre of
the F' plot). The graduations are in units of 10 pixels displacement. In Figure 3(a) the
maximum value of F is obtained at 8x=(1.06, —11.05) by a weighted average about the
mode. This is taken to mean that the optical flow where the F plot was sampled has a
displacement of (1.06, —11.05) pixels per frame (pf~!). To illustrate the favourable effect
of bias correction on Figure 3(a), Figure 3(b) shows the value of F as computed by Eq. 3,
where bias is not corrected. The obtained dx=(1.11, —11.12) in Figure 3(b) corresponds to
a (0.05, 0.06) pixel error between the displacement measurements of the two histograms.

Figure 3

The flow fields in Figure 4 show examples of rotation (approx 0.06m radf™!) and shear.
Each was generated by applying the algorithm to every eighth pixel position on a pair of
256x 256 pixel images of a surface similar to Figure 2. The rotation field in 2(a) was
obtained by rotating the material in the frontoparallel plane; Figure 2(b) shows a motion
boundary cause by moving two overlapping plates of the material in different directions in
the frontoparallel plane. Note the inaccuracies in the rotation field owing to corner effects:
during rotation, pixels pass in and out of the image at the corners, and so the conservation
condition (Eq. 1) is violated.
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Figure 4

In the shear field, the flow is clearly defined near the boundary except for a group of six
patches. A better illustration of what happens at motion boundaries is as follows. The pair
of images in Figure 5 show F plots at positions 1 pixel either side of the boundary. Both
images look similar, as they are integrating the support in locations separated by only 2
pixels. In Figure 5(a), the maximum value is at (—17.03, —7.05). This is the flow value for
a pixel on the lower side of the boundary, which has a true velocity of (—17.0, —7.0). In
Figure 5(b) the maximum value is at (13.99, —4.86). This is the flow value for a pixel on
the upper side of the boundary, which has a true velocity of (13.95, —4.85).

dx dx
(@) (b)
F plots for pixels at two sides of a motion boundary. Arrows point to the maximum
value of each F plot.
Figure 5

This shows that the multimodal response of the function is important in discriminating the
boundary even at close proximity.




Figure 6(a) shows an image from a sequence in which a ceramic (particulate
composite) material has developed a hairline fracture under stress. The flow diagram in
Fig. 6(b), derived from a consecutive pair of timelapsed images, shows that only the
material on one side of the fracture has moved: this can give an indication useful in
determining the cause of the fracture.
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(a) (b)
Figure 6

4. Discussion

There are three main data conditions that affect the accuracy of the method. These are
ambiguity, aliassing, and the so-called aperture effect. The aperture effect is widely
discussed in the optical flow literature, although the other two conditions have been less
widely acknowledged. The vulnerability of a method to these conditions should not be
seen as a shortcoming of the method, but as an inherent condition of the data. Algorithms
can take into account more assumptions to resist these conditions, but it is misleading to
see these conditions as ‘problems’ that need to be ‘solved’, because there can be no
solution in the usual sense of the word. After all, the human visual system is also
vulnerable to the same conditions. In this section I discuss the sensitivity of the method to
these conditions, illustrating with pathological conditions.

4.1 Ambiguity

Ambiguity is depicted in the image sequence of Figure 7(a,b). This sequence may
represent a motion of a region of lighter pixels moving right, or a region of darker pixels
moving left, or both. Figure 7(c) shows an F plot for a pixel on the light/dark boundary.
The ambiguity is revealed by the bimodal form of F. The precise shape of the twin peaks
is a result of the bias-corrected voting taking place over the patch size, a disc of radius 16.
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(a)

(©

The flow vectors shown in (d) have been scaled by 0.2 for legibility.

Figure 7

The flow vectors in Fig. 7(d) are probably not meaningful, as suggested by the large

variance in the F plot of Fig 7(c).

4.2 Aliassing

Aliassing is illustrated by the image sequence in Figure 8. The vertical bars are w pixels
wide, separated by a distance 2w, and move to the right by w pf~!. Here w=6. F igure 8(c)
is an F plot of a point in the centre of the image. Alias peaks in the F plot are separated by

+&w dx. Again the amplitude of the F plot peaks is determined by voting within the 16-

pixel diameter disc.
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(2) (b)

dx
(c) (d)
The flow vectors in (d) have been magnitude scaled by 0.6 for legibility.

Figure 8

Figure 8(d) shows the maximum values of F sampled every 8 pixels in both directions.
Interestingly, the field shows a drift to the left, in the opposite direction of bar drift. This
also can be discerned by the slightly higher amplitude of the dx=—6 peak in Figure 8(c). In
this situation, the interpretation is that the inter-bar regions are moving to the left at a
velocity of 6 pf~!. The reason is that the surround has the same colour as the inter-bar
regions, and so additional support is lent by the surround because figure and ground are
not otherwise labelled. This explanation is confirmed by the sequence in Figure 9, in
which the inter-bar regions are coloured to distinguish them from the surround, which
removes the spurious support.

12




(a) (b)

© (d)
The flow vectors in (d) are unscaled.

Figure 9

So here the ‘correct’ behaviour is obtained by modifying the pathology of the data.

4.3 Aperture Effect

The well known aperture effect is illustrated by the image sequence in Figure 10(a,b). This
is ambiguous because the direction of motion of the light/dark boundary is undefined. The
same image sequence could be caused by the light (or dark) region moving vertically
down, or down and to the right, or to the right.

13




@® | b)

(d)

The flow vectors in (¢) are unscaled.-

Figure 10

The resulting flow diagram in Fig. 10(c) shows the method’s attempt to deal with
this. The flow vectors near the middle of the boundary are perpendicular to the boundary
(this interpretation has most local support), while the flow vectors at the edge of the
boundary point vertically down because of the edge effect of the surround. This results is
not usable as it stands. However, Fig. 10(d) shows that the extremely large variance of the
F plots for any of the nonzero vectors immediately betrays the dubiousness of the result.
Similar situations are seen in Figure 11, which shows the F plots for selected pixels near

------------
............

.......

Ce e s

.......
............
............
............
............

the light/dark boundary in the upper right quadrant of Figure 2(a).
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(2) (b) (©)
Figure 11

Fig. 11(a) is the F plot for a location 3 pixels away from the border into the moving object.
Although some background indicative of aperture effects is apparent, the small variance

peak (at the correct value of 8x) is more than twice the height of the highest background,
suggesting a reliable flow measurement. By contrast, F plots for locations on the boundary
(Fig. 11(b)) and 3 pixels into the dark background region (Fig. 11(c)) show a large
variance about the maximum, suggesting that these F plots should not be taken as
evidence for a flow vector. In all the situations I have investigated (which include
timelapse imagery taked from video cameras, scanning electron microscopes and
magnetic resonance imaging devices) it appears that an unreliable flow vector is always
betrayed by an F plot showing a maximal peak of relatively large variance.

4.4 Implementation Issues

Several practical factors influence the efficiency and accuracy of the method. First, to
obtain a dense flow field, an F plot is required at each pixel location where a flow vector
is required. This means that a patch will overlap with several others. Every pairwise
comparison that is inside the overlap of two or more patches need be computed only once,
and the result used in each of the overlapping F plots. For the implementation used to
obtain the results reported in this paper, this more efficient scheme was not used. Instead,
an F plot was computed anew for each patch. However, in a parallel architecture such as
custom integration or the human visual system, great computational savings can be made
by sharing the result of the pairwise comparison. Figure 12 shows a simple asychronous
model in which F plots have a columnar organisation, with pairwise comparisons being
channeled to a number of F plots associated with overlapping patches (receptive fields). A
time delay element is used to provide the temporal separation of one of the pair of inputs.

15




There are three levels of cells: the light sensitive input cells at the top of the

illustration, the computation cells that perform time delay (marked 8t) and comparison
(marked c) functions, and the summing cells organised into columns. Each column of
summing cells implements the displacement distribution function for one receptive
field. Within a receptive field, the response from pairs of cells projects via the
computation cells to the summing cell representing the spatial displacement between
the pair of input cells. Because receptive fields overlap, the response from a given pair
of input cells may project to a summing cell in more than one column. It is assumed
that summing cells leak with a time constant that can be related to the témporal
discrimination of the system.

Figure 12

Second, the sensitivity of the method in picking up evidence for various velocities is
determined by shape and size of the patch. In the implementation, a disc of radius 16
(pixels) was used for the patch. This has the benefit that vote bias is radially symmetric,
but resources (i.e. amount of computing time in a sequential implementation; number of
components in a parallel implementation) are used to ensure that the patch is equally
sensitive to motion in any direction. However, in situations where there is prior
information about the preferred range of motions, different patch shapes may be used to
improve displacement range, accuracy, or efficiency. An example is given by an
ellipsoidal receptive field, which is sensitive to long range displacements in the direction
of the long axis, and shorter range displacements in the direction of the short axis. Thus,
the conventional idea of velocity receptive fields in the human visual system is a special
case of this method, although physiological models use the concept of a ‘preferred’
direction and magnitude.

16




Third, there is the question of support in the temporal dimension. All the examples
shown in this paper use the minimum of two frames of temporal support. Providing
increased temporal support is very easy to implement, and involves accumulating the F
plot values using the pairwise comparisons derived from as many pairs of images in the
sequence as are required for temporal support. This suggests that temporal support may
perform noise averaging as well as accentuating the signal, at the risk of ‘smearing’ the F
plot if the interframe time is too large.

5. Conclusions

The approach proposed here considers optical flow at only a single local scale of
resolution, but instead uses a probabilistically inspired model, with large spatiotemporal
support for the decision. It uses the conservation assumption of Eq. 1 to motivate the
model of Eq. 2 and 5 instead of motivating the use of gradients, The spatial area of
support is related to the maximum displacement observable by the method. Temporal
support can be extended to an arbitrary number of frames, yet good results are obtained
using only two frames.

The proposed method shares some similarities with correlation-based approaches.
Like correlation approaches, a multi-modal response surface is computed, but unlike
previous correlation approaches, it accumulates the probability of pairwise observations
instead of matching templates or features. However, because pairwise observations are
performed rather than the comparison of image patches, performance is better than
correlation-based approaches when first-order deformations (e.g. rotation and dilation)
within the image are encountered. This property not only makes the method feasible for
the test application of surface strain mapping of heterogeneous materials, but also leads to
a more reliable method for estimating optical flow. The use of a multi-modal response
surface with a noise model leads naturally to the derivation of a confidence factor, which
is useful in disambiguating the response.
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