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Abstract

The inductive approach to verifying security protocols, previously applied
to shared-key encryption [8], is here applied to the public key version of the
Needham-Schroeder protocol. As before, mechanized proofs are performed
using Isabelle/HOL. Both the original, flawed version and Lowe’s improved
version are studied; the properties proved highlight the distinctions between
the two versions. The results are compared with previous analyses of the
same protocol. The analysis reported below required only 30 hours of the
author’s time. The proof scripts execute in under three minutes.
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1 Introduction

Many researchers are investigating formal methods of modelling and veri-
fying security protocols. The Needham-Schroeder public-key protocol has
become a standard test case because it is simple and well-known. It is one
of the many protocols analyzed by Burrows et al. [2]. Lowe has demon-
strated the potential of his model-checking approach by discovering a subtle
flaw [4]. Schneider [10] has published hand proofs concerning two versions
of the protocol, while Meadows [6] has done extensive studies using the NRL
Protocol Analyzer.

I have recently reported [8] a method of modelling protocols as traces and
of establishing correctness properties using the proof assistant Isabelle [7].
(Please read that paper before attempting this one.) Hitherto, I have as-
sumed shared-key encryption. In applying the method to public-key proto-
cols, Needham-Schroeder is the obvious choice.

This paper describes the protocol (§2) and a formal model of it (§3).
It discusses the mechanical proofs, first from A’s point of view (§4) and
then from B’s (§5). It presents some Isabelle notation, mainly for purposes
of illustration (§6). Lowe’s strengthened version requires little additional
discussion (§7) because most of the proofs are unaffected. Finally there is a
discussion of related work and conclusions (§§8–9).

2 The Protocol and Lowe’s Attack

If public keys are universally known then the Needham-Schroeder protocol
consists of three steps:1

1. A→ B : {|Na,A|}Kb
2. B → A : {|Na,Nb|}Ka
3. A→ B : {|Nb|}Kb

Message 2 assures A of B’s presence, since only B could have decrypted
{|Na,A|}Kb to extract the freshly-invented nonce Na. Similarly, message 3
assures B of A’s presence. Burrows et al. [2] claimed a further property,
namely that Na and Nb become known only to A and B. (Such shared
secrets might be used as passwords or to compute a session key.) Lowe
refuted this claim, noting that if A ran the protocol with an enemy C, then
C could start a new run with any agent B, masquerading as A [4].

One might argue that this is no attack at all. An agent who is careless
enough to talk to the enemy cannot expect any guarantees. The mechanized
analysis presented below reveals that the protocol’s guarantees for A are

1Dispensing with that assumption requires four additional steps to distribute public
keys. Burrows et al. [2] identified a flaw in this part of the protocol: there was no guarantee
that the public keys were fresh.
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adequate. However, those for B are not: they rely upon A’s being careful,
which is a stronger assumption than mere honesty. Moreover, the attack
can also occur if A talks to an honest agent whose private key has been
compromised. Lowe suggests a simple fix that provides good guarantees for
both A and B.

3 Modelling the Protocol

The shared-key model reported earlier [8] assumes that every agent shares
a long-term key with a server. Some of these keys have been compromised :
lost to the spy. In public-key model, an agent A has a public key pubKA,
known to all agents, and a private key priKA, possibly compromised. No
private key coincides with any public key.

Let us start with the original (uncorrected) Needham-Schroeder protocol.
It is modelled by an inductive definition, as usual. There are five rules: one
for the empty trace, one for enemy action (which is identical to the rule
adopted for shared-key protocols) and three for the protocol steps. More
precisely, the protocol steps are as follows:

1. If evs is a trace, Na is a fresh nonce and B is an agent distinct from A,
then we may add the event

SaysAB (Crypt(pubKB){|Na,A|}).

2. If evs is a trace containing an event of the form

SaysA′B (Crypt(pubKB){|Na,A|}),

and Nb is a fresh nonce and B 6= A, then we may add the event

SaysBA (Crypt(pubKA){|Na,Nb|}).

Writing the sender as A′ means that B does not know who sent the
message.

3. If evs is a trace containing the two events

SaysAB (Crypt(pubKB){|Na,A|})
SaysB′A (Crypt(pubKA){|Na,Nb|})

and B 6= A, then we may add the event

SaysAB (Crypt(pubKB){|Nb|}).

A decrypts the message and checks that Na agrees with the nonce she
previously sent to B. She replies to B’s challenge by sending back Nb.
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The event SaysABX represents an attempt by A to send X to B. The
act of receiving a message is not modelled explicitly, but an agent can only
perform step i + 1 if it has received something suitable as step i. Steps 2
and 3 are specified above according to this convention.

Two further rules are required in order to allow for the empty trace
and enemy action. As in my previous work, the enemy may say anything
he feasibly could say, and agents may engage in any number of possibly
interleaved runs. There is no ‘oops’ message [8] because the protocol does
not distribute session keys. However, one can ask—as has Meadows [6]—
what might happen if one of the nonces is compromised.

Figure 1 presents the Isabelle theory file. The gist of the protocol should
be evident even to readers unfamiliar with Isabelle. However, the paper
takes some liberty with Isabelle’s syntax for the sake of readability. Some
mathematical symbols appear instead of their ASCII equivalents, and vari-
ables are occasionally renamed. Some comments are omitted.

4 Proving Guarantees for A

The guarantees for A are that her nonce remains secret—from the spy—and
that B is present. The latter follows from the former, for if the spy does
not know Na then he could not have sent message 2. The proofs require,
as lemmas, unicity properties for Na. Informally, they say that Na is only
used once.

• No value is ever used both as Na and as Nb, even in separate runs.

• The value of nonce Na in any message of the form
Crypt(pubKB){|Na,A|} uniquely determines the agents A and B,
over all traffic.

Both lemmas assume Na to be secret and form part of an inductive proof
that Na really is secret. They hold because honest agents are specified to
choose fresh nonces, with a negligible probability of collision.2 The model
assumes that nonces are virtually impossible for an enemy to predict.

The guarantee for A after step 2 is that the message indeed originated
with B, provided it contains the expected nonce. The guarantee is consis-
tent with Lowe’s attack because, as always, it considers runs between two
uncompromised principals. If A runs the protocol with the spy then her
guarantee is void. Lowe himself found no problem with the protocol from
A’s viewpoint [4, §3.2]; his attack concerns the guarantee for B.

2For example, the agent might hash its private key alongside a counter.
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NS_Public_Bad = Public +

consts lost :: agent set

ns_public :: event list set

inductive ns_public

intrs

Nil "[] ∈ ns_public"

(*The spy MAY say anything he CAN say.*)

Fake "[| evs ∈ ns_public; B 6=Spy;

X ∈ synth (analz (sees lost Spy evs)) |]

=⇒ Says Spy B X # evs ∈ ns_public"

(*Alice initiates a protocol run.*)

NS1 "[| evs ∈ ns_public; A 6=B; Nonce NA 6∈ used evs |]

=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})

# evs ∈ ns_public"

(*Bob responds to Alice’s message.*)

NS2 "[| evs ∈ ns_public; A 6=B; Nonce NB 6∈ used evs;

Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A|})

∈ set_of_list evs |]

=⇒ Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

# evs ∈ ns_public"

(*Alice proves her existence by returning NB to Bob.*)

NS3 "[| evs ∈ ns_public; A 6=B;

Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})

∈ set_of_list evs;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

∈ set_of_list evs |]

=⇒ Says A B (Crypt (pubK B) (Nonce NB))

# evs ∈ ns_public"

Figure 1: Specifying a Protocol
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5 Proving Guarantees for B

The situation as seen by B is almost symmetrical to that seen by A. Proving
by induction that Nb remains secret would authenticate A. Most of the Isa-
belle proof scripts for A’s theorems also work for B with trivial alterations.
It is easy to prove that, if Nb is secret, then its value in any message of the
form Crypt(pubKA){|Na,Nb|} uniquely determines A and Na.

Unfortunately, Nb does not remain secret. The attempt to prove its
secrecy fails, leaving a subgoal that contains (as a past event) A’s sending
message 1 to a compromised agent. The subgoal describes a consistent set
of circumstances: Lowe’s attack. Details appear in §6 below.

Weaker properties can be proved. If A never sends Nb to anybody in
step 3 of the protocol, then Nb remains secret. In consequence, if B receives
Nb in step 3 then A has sent it, and is therefore present. However, A may
have sent it to anybody.

Here is a sketch of the proof. Follow the usual argument (based on A’s
proofs), but assume that A says no messages of the form Crypt(pubKC)Nb
for any C. With this additional assumption, Nb does remain secret; it
then follows that if B sends Crypt(pubKA){|Na,Nb|} as step 2 and receives
Crypt(pubKB)Nb, then this reply came from A. Since this conclusion con-
tradicts the assumption, B cannot receive Crypt(pubKB)Nb. Taking the
contrapositive3 of this result negates the assumption, leading to the conclu-
sion that A has indeed sent the message Crypt(pubKC)Nb for some C.

Thus, there is a general strategy for proving that decrypting a message
of the form Crypt(pubKA)X indicates A’s presence: prove that if A never
performs the step in which that message is decrypted, then some item in X
remains secret. Later, infer that A has performed that step by taking a
contrapositive.

This roundabout procedure is necessary because the mere act of decryp-
tion gives weaker guarantees than exhibiting a signed message. Consider
the following protocol:

1. A→ B : Na,A
2. B → A : {|Na|}Kb−1 , Nb

3. A→ B : {|Nb|}Ka−1

The nonces are broadcast to the world, but the signatures obviously assure
A and B of the other’s presence.

6 A Glimpse at the Machine Proofs

To give an impression of the Isabelle formalization, Figure 2 presents the
theorems providing guarantees for A. They are numbered as follows.

3The contrapositive of ¬P −→ ¬Q is Q −→ P .
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1 [| Nonce NA 6∈ analz (sees lost Spy evs);

Crypt (pubK B) {|Nonce NA, Agent A|}

∈ parts (sees lost Spy evs);

evs∈ ns_public |]

=⇒ Crypt (pubK C) {|NA’, Nonce NA|}

6∈ parts (sees lost Spy evs)

2 [| Nonce NA 6∈ analz (sees lost Spy evs); evs∈ ns_public |]

=⇒ ∃ A’ B’. ∀ A B.

Crypt (pubK B) {|Nonce NA, Agent A|}

∈ parts (sees lost Spy evs)

−→ A=A’ & B=B’

3 [| Crypt(pubK B) {|Nonce NA, Agent A|}

∈ parts(sees lost Spy evs);

Crypt(pubK B’) {|Nonce NA, Agent A’|}

∈ parts(sees lost Spy evs);

Nonce NA 6∈ analz (sees lost Spy evs);

evs∈ ns_public |]

=⇒ A=A’ & B=B’

4 [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})

∈ set_of_list evs;

A 6∈ lost; B 6∈ lost; evs∈ ns_public |]

=⇒ Nonce NA 6∈ analz (sees lost Spy evs)

5 [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})

∈ set_of_list evs;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

∈ set_of_list evs;

A 6∈ lost; B 6∈ lost; evs∈ ns_public |]

=⇒ Says B A (Crypt(pubK A) {|Nonce NA, Nonce NB|})

∈ set_of_list evs

Figure 2: The Guarantees for A in Isabelle/HOL Notation
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1. This unicity lemma states that Na (if secret) is not also used as Nb.
It is proved by induction.

2. This unicity lemma states that, if Na is secret, then its appearance
in any instance of message 1 determines the other components. It too
follows by induction, with a standard proof script.

3. This corollary of the previous lemma has a trivial proof.

These unicity lemmas refer to the presence of encrypted messages any-
where in past traffic. The remaining theorems refer to events of the
form SaysABX involving such encrypted messages.

4. This crucial theorem guarantees the secrecy of Na. The conditions
A 6∈ lost and B 6∈ lost express that both A and B are uncompromised.
The proof is by induction; it relies on the previous three lemmas, which
assume the secrecy of Na as an induction hypothesis.

5. This theorem is A’s final guarantee. If A has used Na to start a run
with B and receives the message Crypt(pubKA){|Na,Nb|}, then B has
sent that message. It is subject to both agents’ being uncompromised.
The proof is by induction and relies on the secrecy and unicity of Na.

The proof script for all five theorems comprises 35 commands (tactic in-
vocations) and executes in 52 seconds. That is seven commands and 10.4
seconds per theorem.4

What about the guarantees for B? Attempting to prove the secrecy
of Nb leads to a subgoal that appears to have no proof.

[| A 6∈ lost; B 6∈ lost; C∈ lost; A 6= C;

evs∈ ns_public;
Says A C (Crypt (pubK C) {|Nonce NA, Agent A|})

∈ set_of_list evs;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

∈ set_of_list evs;

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

∈ set_of_list evs;

Nonce NB 6∈ analz (sees lost Spy evs) |]

==> False

This situation might arise when the last event is an instance of step 3.
The assumptions state that A and B are uncompromised and that evs is a
trace. Agent A has used Na to start a run with a compromised agent, C;
somebody has sent the message Crypt(pubKA){|Na,Nb|}. We must show that
these circumstances are contradictory, since the conclusion is just False. The
conclusion is the simplified form of the claim that Nb remains secret even
after A has sent the step 3 message Crypt(pubKC){|Nb|}, but this message
reveals Nb to the spy.

4Runtimes were measured on a Sun SuperSPARC model 61.
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Such proof states can be hard to interpret. Does the induction formula
require strengthening? Must additional lemmas be proved? But, in this
case, we easily recognize Lowe’s attack. The assumptions describe events
that could actually occur: Nb need not remain secret.

7 Analyzing the Strengthened Protocol

Lowe [4] suggests improving the Needham-Schroeder protocol by adding
explicitness. In step 2, agent B includes his identity:

1. A→ B : {|Na,A|}Kb
2. B → A : {|Na,Nb,B|}Ka
3. A→ B : {|Nb|}Kb

The previous proof scripts, by and large, still work for this version. Thanks
to Isabelle’s high level of automation, minor changes such as that above
seldom interfere with existing proofs. The guarantees for A are proved
precisely as before, and with almost no human effort.

In proving guarantees for B, we naturally seek to strengthen them. The
unicity property for Nb states that, if Nb is secret, then its presence in step 2
uniquely determines all other message components (recall §5). Step 2 now
has the form

Crypt(pubKA){|Na,Nb,B|}.

It determines not only A and Na, but also B. This additional fact lets us
prove the secrecy of Nb. Recall the subgoal presented in §6. With the new
version of the protocol, somebody has sent the message

Crypt(pubKA){|Na,Nb,C|}.

Also, agent B has sent the message

Crypt(pubKA){|Na,Nb,B|}.

The unicity theorem for Nb implies B = C, a contradiction because C is
compromised and B is not.

8 Comparison with Related Work

There have been at least four previous analyses of the Needham-Schroeder
public-key protocol.

Burrows et al. [2] analyze the protocol using the BAN logic. They con-
sider the full version with seven message steps, and identify a flaw in the
distribution of public keys. As always with the BAN logic, the proofs are
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short and easy to follow. But, it is not entirely clear what is proved: se-
crecy lies outside the logic’s scope, and yet the proofs contain (incorrect!)
assertions that the two nonces remain secret.

Lowe’s work is impressive. Not only did he find a quite subtle flaw, but
he demonstrated how the model checker FDR could find it [4]. I have found
his paper useful in developing the Isabelle model. Lowe has since applied
FDR to other protocols [5]. Model checking is fast and automatic, but can
only deal with finitely many states. It can find attacks but cannot prove
their absence.

Meadows’s paper [6] makes direct comparisons with Lowe’s. She sets
up protocols corresponding precisely to Lowe’s and discusses differences in
speed between the NRL Protocol Analyzer and FDR (the latter is faster).
She investigates many other variations on the protocol, including versions
that handle the distribution of public keys. She considers the possibility
of nonces being compromised. Not all of these attempts are successful:
sometimes the state space becomes too large.

The Protocol Analyzer performs an unusual combination of search and
proof. Ostensibly based on brute-force state enumeration, it can also prove
by induction that given sets of states are unreachable. It thereby copes with
infinite sets of states; a full analysis carries the same assurance as a formal
proof. The precise relationship between Meadows’s and my uses of induction
needs to be examined.

Schneider [10], like Lowe, bases his work on the process calculus CSP [3].
But instead of using a model checker, he applies the laws of CSP in proofs.
He has published detailed hand analyses of both the original protocol and
Lowe’s version. He considers a number of authentication properties in in-
creasingly general settings, ultimately allowing concurrent runs.

A notable feature of Schneider’s paper is his treatment of equational laws
on messages. He shows how, if certain equations are allowed to hold (such
as encryption distributing over concatenation), then attacks are possible.
This is lacking in much other work, certainly my own, where all message
constructors are assumed to be injective.

Equations must be precisely matched to the intended application. En-
cryption with K−1 is the inverse of encryption with K provided we use
RSA [9], but this equation should not be assumed in general. Schneider as-
sumes concatenation to be associative. It is, but in a most limited way, since
each message component in a real protocol has a fixed size. The treatment
of equations must be studied further: many protocols rely on equational
properties of cryptosystems.

Type confusion is another matter. Meadows finds that allowing nonces
to be confused with agent names allows additional attacks, a sober reminder
of the need for explicitness [1]. But explicitness is cheap: for the Needham-
Schroeder protocol, a mere two bits in each encrypted message prevents type
confusion. Many type confusion attacks depend upon artificial assumptions;
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it is not clear why they should continue to be studied. Who has a formal
model of the careless implementor?

9 Conclusions

The two CSP-based methods, like mine, ultimately involve reasoning about
traces. While they use CSP as the notation, I use logic and set theory.
Which approach is better depends upon whether CSP turns out to be a
beneficial tool or merely a burden. More investigation is needed to settle
this question.

One advantage of CSP is that specifications can be analyzed automati-
cally using a model checker, FDR. But the power of model checking can be
seductive. Establishing the general case requires a formal proof. Lowe ar-
gues [4, §6] that the general case for Needham-Schroeder can be reduced to
the finite case checked by FDR, but informal arguments are not convincing
in such a slippery field as security. Mechanized provers do not have to be
slow: for each version of the protocol, the full Isabelle proof script runs in
under three minutes. The runtime exceeds FDR’s but is comparable to that
of the NRL Protocol Analyzer [6].

An interactive theorem prover gives its user much feedback. The cases of
an inductive proof amount to a formal walk-through, covering each protocol
step in turn. Even flawed protocols can be analyzed, and weak guarantees
proved. When a protocol is modified, the proof scripts for the old version
form the starting point for its analysis. The proofs described above took four
normal working days to develop, including time spent developing general
methods for reasoning about public-key protocols, but excluding polishing.

This experiment confirms the conclusions of my earlier work. Using
the inductive approach, we can analyze protocols in days. The guarantees
must be interpreted with caution—they describe specifications rather than
implementations—but they have no restrictions for the sake of finiteness.
Thanks to its simple foundations, the approach can probably be modified
to cope with many other protocol types.
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