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Abstract. Fairly deep results of Zermelo-Fraenkel (ZF) set theory have been mechanized using
the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice
(AC). A key result about cardinal multiplication is �
� = �, where � is any infinite cardinal.
Proving this result required developing theories of orders, order-isomorphisms, order types,
ordinal arithmetic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter I. Further-
more, we have proved the equivalence of 7 formulations of the Well-ordering Theorem and 20
formulations of AC; this covers the first two chapters of Rubin and Rubin, Equivalents of the
Axiom of Choice, and involves highly technical material. The definitions used in the proofs are
largely faithful in style to the original mathematics.
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Mechanizing Set Theory 1

1. Introduction

A growing corpus of mathematics has been checked by machine. Researchers
have constructed computer proofs of results in logic [26], number theory [25],
group theory [28], �-calculus [10], etc. An especially wide variety of results
have been mechanized using the Mizar Proof Checker, including the theorem
�
 � = � discussed below [2]. However, the problem of mechanizing math-
ematics is far from solved.

The Boyer/Moore Theorem Prover [3, 4] has yielded the most impressive
results [25, 26]. It has been successful because of its exceptionally strong sup-
port for recursive definitions and inductive reasoning. But its lack of quan-
tifiers forces mathematical statements to undergo serious contortions when
they are formalized. Most automated reasoning systems are first-order at best,
while mathematics makes heavy use of higher-order notations. We have con-
ducted our work in Isabelle [20], which provides for higher-order syntax. Oth-
er recent systems that have been used for mechanizing mathematics include
IMPS [6], HOL [8] and Coq [5].

We describe below machine proofs concerning cardinal arithmetic and the
Axiom of Choice (AC). Paulson has mechanized most of the first chapter of
Kunen [12] and a paper by Abrial and Laffitte [1]. Gra̧bczewski has mech-
anized the first two chapters of Rubin and Rubin’s famous monograph [24],
proving equivalent eight forms of the Well-ordering Theorem and twenty forms
of AC. We have conducted these proofs using an implementation of Zermelo-
Frænkel (ZF) set theory in Isabelle. Compared with other Isabelle/ZF proofs
[15, 18, 21] and other automated set theory proofs [23], these are deep, abstract
and highly technical results.

We have tried to reproduce the mathematics faithfully. This does not mean
slavishly adhering to every detail of the text, but attempting to preserve its
spirit. Mathematicians write in a mixture of natural language and symbols;
they devise all manner of conventions to express their ideas succinctly. Their
proofs make great intuitive leaps, whose detailed justification requires much
additional work. We have been careful to note passages that seem unusually
hard to mechanize, and discuss some of them below.

In conducting these proofs, particularly from Rubin and Rubin, we have
tried to follow the footsteps of Jutting [11]. During the 1970s, Jutting mech-
anized a mathematics textbook using the AUTOMATH system [14]. He paid
close attention to the text — which described the construction of the real and
complex numbers starting from the Peano axioms — and listed any deviations
from it. Compared with Jutting, we have worked in a more abstract field, and
with source material containing larger gaps. But we have had the advantage of
much more powerful hardware and software. We have relied upon Isabelle’s
reasoning tools (see x2 below) to fill some of the gaps for us.
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2 Lawrence C. Paulson and Krzysztof Grabczewski

We have done this work in the spirit of the QED Project [22], which aims
“to build a computer system that effectively represents all important mathe-
matical knowledge and techniques.” Our results provide evidence, both pos-
itive and negative, regarding the feasibility of QED. On the positive side, we
are able to mechanize difficult mathematics. On the negative side, the cost of
doing so is hard to predict: a short passage can cause immense difficulties.

Overview. Section 2 is a brief introduction to Isabelle/ZF. The remaining
sections report first Paulson’s work and then Gra̧bczewski’s. Sections 3–5 dis-
cuss the foundations of cardinal arithmetic in increasing detail, culminating in
the machine proof of a key result about cardinal multiplication, � 
 � = �

where � is infinite. Section 6 introduces the Axiom of Choice and describes
the mechanization of Abrial and Laffitte. Sections 7 and 8 are devoted to the
mechanization of parts of Rubin and Rubin. Section 9 presents some conclu-
sions.

2. Isabelle and ZF Set Theory

Isabelle [20] is a generic proof assistant. It supports proofs in higher-order log-
ic, various modal logics, linear logic, etc. Our work is based upon Isabelle’s
implementation of Zermelo-Frænkel (ZF) set theory, itself based upon an imple-
mentation of first-order logic. Isabelle/ZF arose from early work by Paulson [17]
and Noël [15]; it is described in detail elsewhere [18, 21].

There are two key ideas behind Isabelle:

� Expressions are typed �-terms. Thus the syntax is higher-order, giving
a uniform treatment of quantifiers, descriptions and other binding opera-
tors. In Isabelle/ZF, all sets have the same type. But other important objects,
such as classes, class relations and class functions, can be expressed using
higher types.

� Theorems are schematic inference rules. Isabelle’s basic inference mech-
anism is to join two schematic rules, in a sort of Horn clause resolution.
A typical step in a backward proof consists of joining one rule (typically
a lemma) to another rule (representing the proof state). Thus, theorems
are proved by referring to previous theorems. Proof states may contain
unknowns: placeholders for terms that have been left unspecified. Uni-
fication can incrementally instantiate unknowns, which may be shared
among several subgoals.

Built around these key ideas are various facilities intended to ease the user’s
task. Notations can be defined using a general mixfix format, with precedences;
variable-binding operators are easily specified. Isabelle manages a database of
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Mechanizing Set Theory 3

theories and theorems; when asked to load a theory, it automatically loads any
other theories that it depends upon.

Although Isabelle supports proof checking, users will be more productive
if they are provided with automatic tools.

� The classical reasoner solves subgoals using methods borrowed from tab-
leau provers. It employs user-supplied rules, typically about logical con-
nectives or set operators, to break down assertions.

� The simplifier employs user-supplied conditional equalities to rewrite a
subgoal. It can make use of contextual information and handles commuta-
tive operators using a simple method borrowed from Boyer and Moore [3,
page 104].

We have found these tools indispensable. But there is much room for improve-
ment; mechanizing a page of text can take a week or more. We discuss some
reasons for this below.

A lengthier introduction to Isabelle and Isabelle/ZF appears elsewhere [18].
The Isabelle documentation has been published as a book [20]. Figure 1 sum-
marizes the Isabelle/ZF notation for set theory.

Note. Application of the function f to the argument x is formally writ-
ten f `x. In informal mathematics we use the more familiar f(x) for clarity.
But a set-theoretic function is just another set, and Isabelle allows the nota-
tion f(x) only if f is a meta-level function. This usually corresponds to sub-
scripting in informal mathematics, for example fx. For the Isabelle/ZF devel-
opment of functions, see Paulson [18, x7.5].

3. The Cardinal Proofs: Motivation and Discussion

The original reason for mechanizing the theory of cardinals was to general-
ize Paulson’s treatment of recursive data structures in ZF. The original treat-
ment [21] permitted only finite branching, as in n-ary trees. Countable branch-
ing required defining an uncountable ordinal. We are thus led to consider branch-
ing of any cardinality.

3.1. INFINITE BRANCHING TREES

Let � stand for an infinite cardinal and �+ for its successor cardinal. Branching
by an arbitrarily large index set I requires proving the theorem

jIj � � 8i2I �i < �+

(
S
i2I �i) < �+

(1)
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syntax description
fa1, : : :, ang finite set

<a, b> ordered pair
fx:A : P [x]g Separation

fy : x:A, Q[x; y]g Replacement
fb[x] : x:Ag functional Replacement

INT x:A : B[x]
T
x2A

:B[x], general intersection
UN x:A : B[x]

S
x2A

:B[x], general union
A Int B A \ B, intersection
A Un B A [ B, union
A -> B A! B, function space
A * B A�B, Cartesian product

PROD x:A : B[x] �x2A : B[x], general product
SUM x:A : B[x] �x2A : B[x], general sum

THE x : P [x] �x : P [x], definite description
lam x:A : b[x] �x2A : b[x], abstraction

f ‘ x f `x or f(x), function application
a : A a 2 A, membership

A <= B A � B, subset relation
ALL x:A : P [x] 8x2A : P [x], bounded quantifier
EX x:A : P [x] 9x2A : P [x], bounded quantifier

Figure 1. ASCII notation for ZF

You need not understand the details of how this is used in order to follow the
paper.1

Not many set theory texts cover such material well. Elementary texts [9,
27] never get far enough, while advanced texts such as Kunen [12] race through
it. But Kunen’s rapid treatment is nonetheless clear, and mentions all the essen-
tial elements. The desired result (1) follows fairly easily from Kunen’s Lem-
ma 10.21 [12, page 30]:

8�<� jX�j � �

j
S
�<�X�j � �

This, in turn, relies on the Axiom of Choice and its consequence the Well-
ordering Theorem, which are discussed at length below. It also relies on a fun-
damental result about multiplication of infinite cardinals:

�
 � = �:

This is Theorem 10.12 of Kunen. (In this paper, we refer only to his Chapter I.)
The proof presents a challenging example of formalization, as we shall see.
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Mechanizing Set Theory 5

We could proveA�A � A, for all infinite setsA, by appealing to AC in the
form of Zorn’s Lemma; see Halmos [9, pages 97–8]. Then �
 � = � would
follow immediately. But we need to prove �
 � = � without AC in order to
use it in later proofs about equivalences of AC. In fact, the law A�A � A is
known to be equivalent to the Axiom of Choice.

Paulson hoped to prove � 
 � = � directly, but could not find a suitable
proof. He therefore decided to mechanize the whole of Kunen’s Chapter I, up
to that theorem. We suggest this as a principle: theorems do not exist in isola-
tion, but are part of a framework of supporting theorems. It is easier in the long
run to build the entire framework, not just the parts thought to be relevant. The
latter approach requires frequent, ad-hoc extensions to the framework.

3.2. OVERVIEW OF KUNEN, CHAPTER I

Kunen’s first chapter is entitled, “Foundations of Set Theory.” Kunen remarks
on page 1 that the chapter is merely a review for a reader who has already stud-
ied basic set theory. This explains why the chapter is so succinct, as compared
say with Halmos [9].

The first four sections are largely expository. Section 5 introduces a few
axioms while x6 describes the operations of Cartesian product, relations, func-
tions, domain and range. Already, x6 goes beyond the large Isabelle/ZF the-
ory described in earlier papers [18, 21]. That theory emphasized computa-
tional notions, such as recursive data structures, at the expense of tradition-
al set theory. Now it was time to develop some of the missing material. Paul-
son introduced some definitions about relations, orderings, well-orderings and
order-isomorphisms, and proved the first two lemmas by well-founded induc-
tion. The main theorem required a surprising amount of further work; see x4.3
below.

Kunen’s x7 covers ordinals. Much of this material had already been for-
malized in Isabelle/ZF [21, x3.2], but using a different definition of ordinal.
A set A is transitive if A � P(A): every element of A is a subset of A.
Kunen defines an ordinal to be a transitive set that is well-ordered by 2, while
Isabelle/ZF defines an ordinal to be a transitive set of transitive sets. The two
definitions are equivalent provided we assume, as we do, the Axiom of Foun-
dation.

Our work required formalizing some material from x7 concerning order
types and ordinal addition. We have also formalized ordinal multiplication.
But we have ignored what Kunen callsA<! because Isabelle/ZF provides list(A),
the set of finite lists over A [21, x4.3] for the same purpose.

Kunen’s x8 and x13 address the legitimacy of introducing new notations in
axiomatic set theory. His discussion is more precise and comprehensive than
Paulson’s defence of the notation of Isabelle/ZF [18, page 361].
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6 Lawrence C. Paulson and Krzysztof Grabczewski

Kunen’s x9 concerns classes and recursion. The main theorems of this sec-
tion, justifying transfinite induction and recursion over the class of ordinals,
were already in the Isabelle/ZF library [21, x3.2,x3.4]. Kunen discusses here
(and with some irony in x12) the difficulties of formalizing properties of class-
es. Variables in ZF range over only sets; classes are essentially predicates, so
a theorem about classes must be formalized as a theorem scheme.

Many statements about classes are easily expressed in Isabelle/ZF. An ordi-
nary class is a unary predicate, in Isabelle/ZF an object of type i) o, where i
is the type of sets and o is the type of truth values. A class relation is a binary
predicate and has the Isabelle type i) (i) o). A class function is tradition-
ally represented by its graph, a single-valued class predicate [12, page 25];
it is more easily formalized in Isabelle as a meta-level function, an object of
type i ) i. See Paulson [18, x6] for an example involving the Replacement
Axiom.

Because Isabelle/ZF is built upon first-order logic, quantification over vari-
ables of types i ) o, i ) i, etc., is forbidden. (And it should be; allowing
such quantification in uses of the Replacement Axiom would be illegitimate.)
However, schematic definitions and theorems may contain free variables of
such types. Isabelle/ZF’s transfinite recursion operator [21, x3.4] satisfies an
equation similar to Kunen’s Theorem 9.3, expressed in terms of class func-
tions.

Isabelle/ZF does not overload set operators such as\,[, domain and list to
apply to classes. Overloading is possible in Isabelle, but is probably not worth
the trouble in this case. And the class-oriented definitions might be cumber-
some. Serious reasoning about classes might be easier in some other axiomatic
framework, where classes formally exist.

Kunen’s x10 concerns cardinals. Some of these results presented great dif-
ficulties and form one of the main subjects of this paper. But the Schröder-
Bernstein Theorem was already formalized in Isabelle/ZF [21, x2.6], and the
first few lemmas were straightforward.

An embarrassment was proving that the natural numbers are cardinals. This
boils down to showing that if there is a bijection between anm-element set and
an n-element set thenm = n. Proving this obvious fact is most tiresome. Rea-
soning about bijections is complicated; a helpful simplification (due to M. P.
Fourman) is to reason about injections instead. Prove that if there is an injec-
tion from an m-element set to an n-element set then m � n. Applying this
implication twice yields the desired result.

Many intuitively obvious facts are hard to justify formally. This came up
repeatedly in our proofs, and slowed our progress considerably. It is a funda-
mental obstacle that will probably not yield to improved reasoning tools.

Kunen proves (Theorem 10.16) that for every ordinal � there is a larger car-
dinal, �. Under AC this is an easy consequence of Cantor’s Theorem; without
AC more work is required. Paulson slightly modified Kunen’s construction,
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Mechanizing Set Theory 7

letting � be the union of the order types of all well-orderings of subsets of �,
and found a pleasingly short machine proof.

Our main concern, as mentioned above, is Kunen’s proof of � 
 � = �.
We shall examine the machine proof in great detail. The other theorems of
Kunen’s x10 concern such matters as cardinal exponentiation and cofinality.
We have not mechanized these, but the only obstacle to doing so is time.

The rest of Kunen’s Chapter I is mainly discussion.

4. Foundations of Cardinal Arithmetic

Let us examine the cardinal proofs in detail. We begin by reviewing the neces-
sary definitions and theorems. Then we look at the corresponding Isabelle/ZF
theories leading up to the main result, � 
 � = �. Throughout we shall con-
centrate on unusual aspects of the formalization, since much of it is routine.

4.1. WELL-ORDERINGS

A relation < is well-founded over a set A provided every non-empty subset
ofA has a<-minimal element. (This implies that< admits no infinite decreas-
ing chains � � � < xn < � � � < x2 < x1 within A.) If furthermore hA;<i is a
linear ordering then we say that < well-orders A.

A function f is an order-isomorphism (or just an isomorphism) between
two ordered sets hA;<i and hA0; <0i if f is a bijection between A and A0 that
preserves the orderings in both directions: x < y if and only if f(x) <0 f(y)
for all x, y 2 A.

Write hA;<i �= hA0; <0i if there exists an order-isomorphism between
hA;<i and hA0; <0i.

If hA;<i is an ordered set and x 2 A then pred(A; x;<)
def
= fy 2 A j

y < xg is called the (proper) initial segment determined by x. We also speak
of A itself as an initial segment of hA;<i.

Kunen develops the theory of relations in his x6 and proves three funda-
mental properties of well-orderings:

� There can be no isomorphism between a well-ordered set and a proper
initial segment of itself. A useful corollary is that if two initial segments
are isomorphic to each other, then they are equal.

� There can be at most one isomorphism between two well-ordered sets.
This result sounds important, but we have never used it.2

� Any two well-orderings are either isomorphic to each other, or else one
of them is isomorphic to a proper initial segment of the other.

Kunen’s proof of the last property consists of a single sentence:
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8 Lawrence C. Paulson and Krzysztof Grabczewski

Let f =

fhv; wi j v 2 A ^w 2 B ^ hpred(A; v;<A)i �= hpred(B;w;<B)ig;

note that f is an isomorphism from some initial segment of A onto some
initial segment of B, and that these initial segments cannot both be proper.

This gives the central idea concisely; Suppes [27, pages 233–4] gives a much
longer proof that is arguably less clear. However, the assertions Kunen makes
are not trivial and Paulson needed two days and a half to mechanize the proof.

4.2. ORDER TYPES

The ordinals may be viewed as representatives of the well-ordered sets. Every
ordinal is well-ordered by the membership relation2. What is more important,
every well-ordered set is isomorphic to a unique ordinal, called its order type
and written type(A;<). Kunen [12, page 17] proves this by a direct construc-
tion. But to mechanize the result in Isabelle/ZF, it is easier to use well-founded
recursion [21, x3.4]. If hA;<i is a well-ordering, define a function f on A by
the recursion

f(x) = ff(y) j y < xg

for all x 2 A. Then

type(A;<)
def
= ff(x) j x 2 Ag:

It is straightforward to show that f is an isomorphism between hA;<i and
type(A;<), which is indeed an ordinal.

Our work has required proving many properties of order types, such as
methods for calculating them in particular cases. Our source material contains
few such proofs; we have spent much time re-discovering them.

4.3. COMBINING WELL-ORDERINGS

Let A+B
def
= (f0g �A)[ (f1g �B) stand for the disjoint sum of A and B,

which is formalized in Isabelle/ZF [21, x4.1]. Let hA;<Ai and hB;<Bi be
well-ordered sets. The order types of certain well-orderings ofA+B and A�
B are of key importance.

The sum A+B is well-ordered by a relation < that combines <A and <B ,
putting the elements of A before those of B. It satisfies the following rules:

a0 <A a

Inl(a0) < Inl(a)

b0 <B b

Inr(b0) < Inr(b)

a 2 A b 2 B

Inl(a) < Inr(b)

The productA�B is well-ordered by a relation< that combines<A and<B ,
lexicographically:

a0 <A a b0; b 2 B

ha0; b0i < ha; bi

a 2 A b0 <B b

ha; b0i < ha; bi
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Cardinal = OrderType + Fixedpt + Nat + Sum +
consts
Least :: (i=>o) => i (binder "LEAST " 10)
eqpoll, lepoll,

lesspoll :: [i,i] => o (infixl 50)
cardinal :: i=>i ("|_|")
Finite, Card :: i=>o

defs
Least_def "Least(P) == THE i. Ord(i) & P(i) &

(ALL j. j<i --> ˜P(j))"
eqpoll_def "A eqpoll B == EX f. f: bij(A,B)"
lepoll_def "A lepoll B == EX f. f: inj(A,B)"
lesspoll_def "A lesspoll B == A lepoll B & ˜(A eqpoll B)"
Finite_def "Finite(A) == EX n:nat. A eqpoll n"
cardinal_def "|A| == LEAST i. i eqpoll A"
Card_def "Card(i) == (i = |i|)"

end

Figure 2. Isabelle/ZF Theory Defining the Cardinal Numbers

The well-orderings of A + B and A � B are traditionally used to define
the ordinal sum and product. We do not require ordinal arithmetic until we
come to the proofs from Rubin and Rubin. But we require the well-orderings
themselves in order to prove �
� = �. That proof requires yet another well-
ordering construction: inverse image.

If hB;<Bi is an ordered set and f is a function from A to B then define
<A by

x <A y () f(x) <B f(y):

Clearly<A is well-founded if<B is. If f is injective and<B is a well-ordering
then<A is also a well-ordering. If f is bijective then obviously f is an isomor-
phism between the orders hA;<Ai and hB;<Bi; it follows that their order
types are equal.

Sum, product and inverse image are useful building blocks for well-orderings;
this follows Paulson’s earlier work [16] within Constructive Type Theory.

4.4. CARDINAL NUMBERS

Figure 2 presents the Isabelle/ZF definitions of cardinal numbers, following
Kunen’s x10. The Isabelle theory file extends some Isabelle theories (Order-
Type and others) with constants, which stand for operators or predicates. The
constants are defined essentially as follows:

� The least ordinal � such that P (�) is defined by a unique description [18,
pages 366–7] and may be written LEAST � : P (�).

AC.tex; 2/10/1996; 14:56; no v.; p.9



10 Lawrence C. Paulson and Krzysztof Grabczewski

� Two setsA andB are equipollent if there exists a bijection between them.
Write A � B or, in Isabelle, A eqpoll B.

� B dominates A if there exists an injection from A into B. Write A - B

or A lepoll B.

� B strictly dominatesA ifA - B andA 6� B. WriteA � B orA lesspoll B.

� A set is finite if it is equipollent to a natural number.

� The cardinality of A, written jAj, is the least ordinal equipollent to A.
Without AC, no such ordinal has to exist; we might then regard jAj as
undefined. But everything is defined in Isabelle/ZF. The operator THE
returns 0 unless the description identifies an object uniquely. Thus, an
“undefined” cardinality equals 0; this conveniently ensures that jAj is always
an ordinal.

� A set i is a cardinal if i = jij; write Card(i).

Reasoning from these definitions is entirely straightforward except for the
“obvious” facts about finite cardinals mentioned above.

4.5. CARDINAL ARITHMETIC

Let �, �, � range over finite or infinite cardinals. Cardinal sum and product
are defined in terms of disjoint sum and Cartesian product:

�� �
def
= j�+ �j

�
 �
def
= j�� �j

These satisfy the familiar commutative, associative and distributive laws. The
proofs are uninteresting but non-trivial, especially as we work without AC. We
do so in order to use the results in proving various forms of AC to be equivalent
(see below); but frequently this forces us to construct well-orderings explicit-
ly.

5. Proving �
 � = �

We begin with an extended discussion of Kunen’s proof and then examine its
formalization.

5.1. KUNEN’S PROOF

Kunen calls this result Theorem 10.12. His proof is admirably concise.
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〈0,κ〉

〈α,α〉

〈α,β〉

〈κ,κ〉

〈κ,0〉〈α,0〉

〈0,α〉

〈0,0〉
Figure 3. Predecessors of h�; �i, with � � �

Theorem. If � is an infinite cardinal then �
 � = �.

Proof. By transfinite induction on �. Assume this holds for smaller cardi-
nals. Then for � < �, j� � �j = j�j 
 j�j < � (applying Lemma 10.10
when � is finite).3 Define a well-ordering / on ��� by h�; �i / h; �i iff

max(�; �) < max(; �) _ [ max(�; �) = max(; �) ^
h�; �i precedes h; �i lexicographically]:

Each h�; �i 2 �� � has no more than

jsucc(max(�; �)) � succ(max(�; �))j < �

predecessors in /, so type(� � �; /) � �, whence j� � �j � �. Since
clearly j�� �j � �, j�� �j = �.

The key to the proof is the ordering /, whose structure may be likened to
that of a square onion. Let � and � be ordinals such that � � � < �. The
predecessors of h�; �i include all pairs of the form h�; �0i for �0 < �, and all
pairs of the form h�0; �i for �0 < �; these pairs constitute the �th layer of the
onion. The other predecessors of h�; �i are pairs of the form h; �i such that
; � < �; these pairs constitute the inner layers of the onion. (See Figure 3.)
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12 Lawrence C. Paulson and Krzysztof Grabczewski

The set of all /-predecessors of h�; �i is a subset of succ(�) � succ(�),
which gives an upper bound on its cardinality. Kunen expresses this upper
bound in terms of max(�; �) to avoid having to assume � � �.

To simplify the formal proofs, Paulson used the more generous upper bound

jsucc(succ(max(�; �))) � succ(succ(max(�; �)))j:

This is still a cardinal below �. As Kunen notes, there are two cases. If � or �
is infinite then succ(succ(max(�; �))) < � because max(�; �) < � and
because infinite cardinals are closed under successor; therefore, the inductive
hypothesis realizes our claim. If� and � are both finite, then so is succ(succ(max(�; �))),
while � is infinite by assumption.

To complete the proof, we must examine the second half of Kunen’s sen-
tence: “so type(� � �; /) � �, whence j� � �j � �.” Recall from x4.2 that
there is an isomorphism

f : �� �! type(�� �; /)

such that
f(�; �) = ff(; �) j h; �i / h�; �ig:

Thus, f(�; �) is an ordinal with the same cardinality as the set of predecessors
of h�; �i. This implies f(�; �) < � for all �, � < �, and therefore type(��
�; /) � �. Because f is a bijection between � � � and type(� � �; /), we
obtain j�� �j � �. The opposite inequality is trivial.

5.2. MECHANIZING THE PROOF

Proving � 
 � = � requires formalizing the relation /. Kunen’s definition
looks complicated, but we can get the same effect using our well-ordering
constructors (recall x4.3). Note that / is an inverse image of the lexicographic
well-ordering of �����, under the function g : ���! ����� defined
by

g(�; �) = hmax(�; �); �; �i;

this function is trivially injective.
Figure 4 presents part of the Isabelle theory file for cardinal arithmetic. It

defines / as the constant csquare rel. Here is a summary of the operators
appearing in its definition:

� rvimage(A; f;<) is the inverse image ordering on A derived from <

by f .

� lam <x,y>:K*K. <x Un y, x, y> is the function called g above.
The pattern-matching in the abstraction expands internally to the constant
split, which takes apart ordered pairs [18, page 367]. Finally Un denotes
union; note that max(�; �) = � [ � for ordinals � and �.
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Mechanizing Set Theory 13

CardinalArith = Cardinal + OrderArith + Arith + Finite +
consts
InfCard :: i=>o
"|*|" :: [i,i]=>i (infixl 70)
"|+|" :: [i,i]=>i (infixl 65)
csquare_rel :: i=>i

defs
InfCard_def "InfCard(i) == Card(i) & nat le i"
cadd_def "i |+| j == |i+j|"
cmult_def "i |*| j == |i*j|"

csquare_rel_def
"csquare_rel(K) ==
rvimage(K*K,

lam <x,y>:K*K. <x Un y, x, y>,
rmult(K, Memrel(K),

K*K, rmult(K,Memrel(K),K,Memrel(K))))"
end

Figure 4. Isabelle/ZF Theory File for Cardinal Arithmetic

� rmult(A;<A; B;<B) constructs the lexicographic ordering on A � B

from the orderings <A and <B .

� Memrel(�) is the membership relation on �. This is the primitive well-
ordering for ordinals.

Proving that csquare rel is a well-ordering is easy, thanks to lemmas about
rvimage and rmult. A single command proves that our map is injective.

Figure 5 presents the nine theorems that make up the Isabelle/ZF proof of
� 
 � = �. The theorems are stated literally in Isabelle notation. The sym-
bol ==> expresses implication from premises to conclusion. Multiple premis-
es are bracketed using [| and |]. For example, theorem 2 is the inference

Ord(�)

well ord(�� �; csquare rel(�))

and theorem 3 is

x < � y < � z < � hhx; yi; hz; zii 2 csquare rel(�)

x � z ^ y � z

There is not enough space to present the proofs, which comprise over sixty
Isabelle tactic commands; see Paulson [18, x8] for demonstrations of Isabelle/ZF
tactics. The nine proofs require a total of 43 seconds to run.4

The first few theorems concern elementary properties of csquare rel(�).
We find that it is a well-ordering of � (theorems 1, 2) and that the initial seg-
ment below �, for � < �, is a subset of succ(�)�succ(�) (theorems 3, 4). The
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14 Lawrence C. Paulson and Krzysztof Grabczewski

1 Ord(K) ==>
(lam <x,y>:K*K. <x Un y, x, y>) : inj(K*K, K*K*K)

2 Ord(K) ==> well_ord(K*K, csquare_rel(K))

3 [| x<K; y<K; z<K; <<x,y>, <z,z>> : csquare_rel(K) |] ==>
x le z & y le z

4 z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)

5 [| x<z; y<z; z<K |] ==> <<x,y>, <z,z>> : csquare_rel(K)

6 [| InfCard(K); x<K; y<K; z=succ(x Un y) |] ==>
ordermap(K*K, csquare_rel(K)) ‘ <x,y> <
ordermap(K*K, csquare_rel(K)) ‘ <z,z>

7 [| InfCard(K); x<K; y<K; z=succ(x Un y) |] ==>
|ordermap(K*K, csquare_rel(K)) ‘ <x,y>| le
|succ(z)| |*| |succ(z)|

8 [| InfCard(K); ALL y:K. InfCard(y) --> y |*| y = y |] ==>
ordertype(K*K, csquare_rel(K)) le K

9 InfCard(K) ==> K |*| K = K

Figure 5. Theorems for the Proof of �
 � = �

next three theorems (5, 6, 7) form part of the proof that � is the order type of
csquare rel(�). The isomorphism called f in x5.1 is written in Isabelle/ZF
as

ordermap(K*K, csquare_rel(K)).

If �, � < � then, setting � = succ(succ(max(�; �))), we obtain f(�; �) -
f(�; �) and thus, via theorem 4, we have jf(�; �)j � j�j 
 j�j.

Theorem 7 corresponds to the first part of Kunen’s sentence, “Each h�; �i 2
� � � has no more than jsucc(max(�; �)) � succ(max(�; �))j predeces-
sors in /,” and it took about a day to prove. Theorem 8 covers the next part
of the sentence, “so type(�� �; /) � �,” and took another day to prove.
This theorem assumes the transfinite induction hypothesis in order to verify
jsucc(�)j 
 jsucc(�)j � � in the case when � is infinite, checking the finite
case separately. At 17 tactic steps, the proof is the most complicated of the nine
theorems. The main result, theorem 9, merely sets up the transfinite induction
and appeals to the previous theorems.

Kunen uses without proof the analogous result for addition of infinite car-
dinals, �� � = �. We could prove it using an argument like the one above,
but with an ordering of � + � instead of � � �. Fortunately there is a much
simpler proof, combining the trivial � � �� � with the chain of inequalities
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Mechanizing Set Theory 15

�� � = 2 
 � � �
 � = �. Formalized mathematics requires discovering
such simple proofs whenever possible.

The effort required to prove �
 � = � includes not only the several days
spent formalizing the few sentences of Kunen’s proof, but also the weeks spent
developing a library of results about orders, well-orderings, isomorphisms,
order types, cardinal numbers and basic cardinal arithmetic. After proving the
theorem, more work was required to complete the theoretical foundation for
infinite branching trees (recall our original motivation, x3.1). Fortunately, we
have been able to re-use the libraries for proofs about AC. This we turn to next.

6. The Axiom of Choice and the Well-Ordering Theorem

Our construction of infinite branching trees uses the Axiom of Choice. Let us
review the main features of this axiom and consider how to formalize it in
Isabelle.

If C is a set of non-empty sets then AC asserts that there is a function f

such that f(c) 2 c for all c 2 C . We can formalize this straightforwardly as

0 62 C

9f2C!
S
(C) 8c2C f `c 2 c

Replacing the function space C !
S
(C) by a general product is less familiar

but more concise and direct:

0 62 C

9f : f 2
Q
c2C c

We call f 2 (
Q
c2C c) a choice function on the set C .

Expressing the set C in different forms, such as P(A) � f0g or fB(x) j
x 2 Ag, yields various equivalent assertions of AC. Isabelle/ZF follows Hal-
mos [9] in expressing AC as the product of a family of non-empty sets is non-
empty. It derives many equivalent formulations of AC. All this is done in a
separate Isabelle theory of AC, which can be imported when necessary; most
of Isabelle/ZF is developed without AC.

AC is significant only when applied to an infinite set. If c 6= 0 then, triv-
ially, there exists x 2 c. Let C be a finite set. Then the other axioms of set
theory let us construct a choice function by induction on the size of C . One
can express weaker choice principles by restricting C .

By eliminatingC altogether we could obtain a stronger axiom, Global Choice:

c 6= 0

choice(c) 2 c

The choice operator is, in effect, a choice function on the universe itself. It is
easy to use but formally stronger than we need.5
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16 Lawrence C. Paulson and Krzysztof Grabczewski

The Well-Ordering Theorem states that every set can be well-ordered. It
implies that jAj is always meaningful. Every set is equipollent to some ordi-
nal, namely the order type of some well-ordering. The least such ordinal is its
cardinality.

It is not hard to see that the Well-Ordering Theorem is equivalent to AC. If
we apply the theorem to the set

S
(C) then we can define a choice function f

such that, for c 2 C , f(c) yields the least element of c under the well-ordering.
Conversely, if we apply AC to the set P(A) � f0g then we can repeatedly
choose new elements of A to construct a well-ordering. The details are messy.

Kunen assumes AC in the form of the Well-Ordering Theorem, perhaps
to avoid those messy details, but Isabelle/ZF tackles this proof. Fortunately,
Abrial and Laffitte describe the proof with the aim of mechanization [1]. Start-
ing from AC they prove Hausdorff’s Maximal Principle, Zorn’s Lemma and
the Well-Ordering Theorem. Paulson mechanized their proofs easily. There
are under 180 tactic commands, which take about 140 seconds to execute.

Abrial and Laffitte describe their research as a study about proofs. They
work in a typed version of Zermelo set theory. The proofs hold in standard
ZF set theory too, though as the authors remark, there are simpler proofs for
ZF. This does not disturb us because their exposition saves us a great deal of
effort.

Their proofs are more detailed than necessary even for mechanization. They
devote a full page to Lemma 0, a result about unions; Isabelle’s classical rea-
soner can prove this unaided in 1.4 seconds:

goal ZF.thy "!!A B C. (ALL x:C. x<=A | B<=x) ==>
Union(C)<=A | B<=Union(C)";

by (fast_tac ZF_cs 1);

Their proofs are based upon the original work of Zermelo. Instead of using
the ordinals, they make an inductive definition similar to the construction of
the ordinals but taking the successor operation as a parameter. Provided the
successor operation satisfies certain conditions, the inductive set turns out to
be totally ordered by inclusion (�), in fact well-ordered. Then, supplying suit-
able successor operations allows proving the desired results, such as the well-
ordering theorem.

Mechanizing these proofs did present a few challenges. Their proof of the
Well-Ordering Theorem appears to contain an error; we used an alternative
justification of their Property 6.4. The inductive definition involves fixedpoints
and some non-trivial proofs, but Isabelle’s inductive definition package [19]
automates this process. Abrial and Laffitte envisaged the definition and related
proofs to depend implicitly on its successor parameter. In Isabelle this param-
eter must be explicit in all definitions and proofs, and its assumed properties
must be stated wherever they are needed. This did not cause major complica-
tions, but it might have done so.
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Mechanizing Set Theory 17

Abrial and Laffitte adopt the Axiom of Global Choice and use the choice
operator in definitions. Since we do not have this operator, many of our the-
orems take the existence of a choice function as an additional assumption.
When AC is finally invoked, the rule of existential elimination discharges this
assumption.

Their formal language resembles higher-order logic. Their paper is thus
relevant to many proof assistants, such as HOL [8], IMPS [6] and Isabelle/HOL [20].
We have used it to define Isabelle/ZF’s library of the main forms of AC. But
this hardly exhausts the subject. Rather, it is merely the introduction to our
next case study.

7. Rubin and Rubin’s AC Proofs

Herman and Jean Rubin’s book Equivalents of the Axiom of Choice [24] is a
compendium of hundreds of statements equivalent to the Axiom of Choice.
Many of these statements were used originally as formulations of AC; others,
of independent interest, were found to be equivalent to AC. Each chapter of the
book focusses on a particular framework for formulating AC. Chapter 1 dis-
cusses equivalent forms of the Well-Ordering Theorem. Chapter 2 discusses
the Axiom of Choice itself. Other chapters cover the Trichotomy Law, cardi-
nality formulations, etc.

Gra̧bczewski has mechanized the first two chapters, both definitions and
proofs. He has additionally proved the equivalence of all the formulations giv-
en; the book omits the “easy” proofs and a few of the harder ones. Below we
outline the definitions and some of the more interesting proofs.

This is a substantial piece of work. There are 55 definitions, mostly names
of the formulations of AC. There are nearly 1900 tactic commands. The full
development takes over 44 minutes to run.6

7.1. THE WELL-ORDERING THEOREM

The eight equivalent forms of the Well-Ordering Theorem are the following:

WO1 Every set can be well-ordered.

WO2 Every set is equipollent to an ordinal number.

WO3 Every set is equipollent to a subset of an ordinal number.

WO4(m) For every set x there exists an ordinal � and a function f defined
on � such that f(�) - m for every � < � and

S
�<� f(�) = x.

WO5 There exists a natural number m � 1 such that WO4(m).
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18 Lawrence C. Paulson and Krzysztof Grabczewski

WO1_def "WO1 == ALL A. EX R. well_ord(A,R)"

WO2_def "WO2 == ALL A. EX a. Ord(a) & A eqpoll a"

WO3_def "WO3 == ALL A. EX a. Ord(a) & (EX b. b<=a & A eqpoll b)"

WO4_def "WO4(m) == ALL A. EX a f. Ord(a) & domain(f)=a &
(UN b<a. f‘b) = A & (ALL b<a. f‘b lepoll m)"

WO5_def "WO5 == EX m:nat. 1 le m & WO4(m)"

WO6_def "WO6 == ALL A. EX m:nat. 1 le m & (EX a f. Ord(a) &
domain(f)=a & (UN b<a. f‘b) = A &
(ALL b<a. f‘b lepoll m))"

WO7_def "WO7 == ALL A. Finite(A) <-> (ALL R. well_ord(A,R) -->
well_ord(A,converse(R)))"

WO8_def "WO8 == ALL A. (EX f. f : (PROD X:A. X)) -->
(EX R. well_ord(A,R))"

Figure 6. Isabelle/ZF Definitions of Well-Ordering Principles

WO6 For every set x there exists a natural number m � 1, an ordinal �, and
a function f defined on � such that f(�) - m for every � < � andS
�<� f(�) = x.

WO7 For every set x, x is finite iff for each well-ordering R of x, R�1 also
well-orders x.

WO8 Every set possessing a choice function can be well-ordered.

Most of Chapter 1 is devoted to proving WO6 =)WO1, which is by far
the hardest of the results. Gra̧bczewski has proved the equivalence of all the
formulations given above by means of the following implications:

WO1 =)WO2 =)WO3 =)WO1

WO4(m) =)WO4(n) if m � n

WO4(n) =)WO5 =)WO6 =)WO1 =)WO4(1)
WO7 () WO1

WO8 () WO1

Figure 6 shows how these axioms are formalized in Isabelle.

7.2. THE AXIOM OF CHOICE

The formulations of the Axiom of Choice are as follows:
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AC1 If A is a set of non-empty sets, then there is a function f such that for
every B 2 A, f(B) 2 B.

AC2 If A is a set of non-empty, pairwise disjoint sets, then there is a set C
whose intersection with any member B of A has exactly one element.

AC3 For every function f there is a function g such that for every x, if x 2
dom(f) and f(x) 6= 0, then g(x) 2 f(x).

AC4 For every relation R there is a function f � R such that dom(f) =
dom(R).

AC5 For every function f there is a function g such that dom(g) = range(f)
and f(g(x)) = x for every x 2 dom(g).

AC6 The Cartesian product of a set of non-empty sets is non-empty.

AC7 The Cartesian product of a set of non-empty sets of the same cardinality
is non-empty.

AC8 If A is a set of pairs of equipollent sets, then there is a function which
associates with each pair a bijection mapping one onto the other.

AC9 IfA is a set of sets of the same cardinality, then there is a function which
associates with each pair a bijection mapping one onto the other.

AC10(n) If A is a set of sets of infinite sets, then there is a function f such
that for each x 2 A, the set f(x) is a decomposition of x into disjoint
sets of size between 2 and n.

AC11 There exists a natural number n � 2 such that AC10(n).

AC12 If A is a set of sets of infinite sets, then there is a natural number n � 2
and a function f such that for each x 2 A, the set f(x) is a decomposition
of x into disjoint sets of size between 2 and n.

AC13(m) If A is a set of non-empty sets, then there is a function f such that
for each x 2 A, the set f(x) is a non-empty subset of x with f(x) - m.

AC14 There is a natural number m � 1 such that AC13(m).

AC15 If A is a set of non-empty sets, then there is a natural number m � 1
and a function f such that for each x 2 A, the set f(x) is a non-empty
subset of x with f(x) - m.

AC16(n; k) If A is an infinite set, then there is a set tn of n-element subsets
of A such that each k-element subset of A is a subset of exactly one ele-
ment of tn.
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20 Lawrence C. Paulson and Krzysztof Grabczewski

AC17 If A is a set, B = P(A) � f0g and g is a function from B ! A to B,
then there is a function f 2 B ! A such that f(g(f)) 2 g(f).

AC18 For every non-empty set A, every family of non-empty sets fBa j a 2
Ag and every family of sets fXa;b j a 2 A; b 2 Bag, there holds7

\
a2A

[
b2Ba

Xa;b =
[

f2
Q

a2A
Ba

\
a2A

Xa;f(a):

AC19 For any non-empty set A, each of whose elements is non-empty,
\
a2A

[
b2a

b =
[

f2C(A)

\
a2A

f(a);

where C(A) is the set of all choice functions on A.

Gra̧bczewski has mechanized the following proofs in Isabelle:

AC1 () AC2 AC4 () AC5

AC1 () AC6 AC6 () AC7

AC1 =) AC4 =) AC3 =) AC1

AC1 =) AC8 =) AC9 =) AC1

WO1 =) AC1 =)WO2

WO1 =) AC10(n) =) AC11 =) AC12 =) AC15 =)WO6

AC10(n) =) AC13(n� 1) AC13(n) =) AC14 =) AC15

AC11 =) AC14

AC13(m) =) AC13(n) if m � n

AC1 () AC13(1) AC1 () AC17

WO2 =) AC16(n; k) =)WO4(n� k)
AC1 =) AC18 =) AC19 =) AC1

Chains such as AC1 =) AC4 =) AC3 =) AC1 require fewer proofs
than proving equivalence for every pair of definitions. We have occasionally
deviated from Rubin and Rubin in order to form such chains. We have proved
AC1 =) AC4 to avoid having to prove AC1 =) AC3 and AC3 =) AC4.
Similarly we have proved AC8 =) AC9 instead of AC8 =) AC1 and
AC1 =) AC9. Our new proofs are based on ideas from the text.

Creating one giant chain would minimize the number of proofs, but not
necessarily the amount of effort required. In any event, we wished to avoid
major deviations from Rubin and Rubin.

7.3. DIFFICULTIES WITH THE DEFINITIONS

Although the idea of this study was to reproduce the original proofs faithful-
ly, we sometimes changed basic definitions in order to simplify the Isabelle
proofs.
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A fundamental concept is that of a well-ordering. The Rubins state that a
set A is well-ordered by a relation R if A is partially ordered by R, and every
non-empty subset ofA has anR-first element; they define a partial ordering to
be transitive, antisymmetric and reflexive. Isabelle/ZF defines a well-ordering
to be a total ordering that is well-founded, and hence irreflexive. Fortunate-
ly there was no need to define well-ordering once again. Reflexivity does not
play a major role in the Rubins’ proofs, which remain valid under the Isabelle
definitions. Thus, we may take advantage of the many theorems about well-
ordered sets previously proved in Isabelle/ZF.

Another difference is the definition of ordinal numbers. Rubin and Rubin
use essentially the same definition as Kunen does; recall x3.2. We tackle this
problem by proving that their definition follows from the Isabelle/ZF one.

The Rubins use A � B without defining it. Fortunately, its definition is
standard; see x4.4 for its Isabelle formalization.

Some proofs rely on the notion of an initial ordinal. However, an initial
ordinal is precisely a cardinal number, as previously formalized in Isabelle.
After proving the appropriate equivalence we decided to use cardinals.

7.4. GENERAL COMMENTS ON THE PROOFS

We are aiming to reproduce the spirit, not the letter, of the original material.
For instance, we have changed “P (m) =) P (m � 1) for all m � 1” to
“P (succ(m)) =) P (m) for all m.” Such changes streamline the formaliza-
tion without affecting the ideas.

Most of the implications concerning the Well-Ordering Theorem are easy
to prove using Isabelle. Rubin and Rubin describe some of them as “clear.”
They do not prove the implication WO1 =)WO2, but cite an external source
instead. This implication is trivial with the help of Isabelle’s theory of order
types (recall x4.2).

It is easy to see that WO7 is equivalent to the statement
If x is infinite, then there exists a relation R such that R well-orders x but
R�1 does not.

The Rubins observe (page 5) that this is equivalent to the Well-Ordering The-
orem because every transfinite ordinal is well-ordered by < (the membership
relation) and not by > (its converse). To turn this observation into a proof, we
need to extend it to every well-ordered set. It is enough to prove that if a set x is
well-ordered by a relation R and its converse, then its order type (determined
by R) is well-ordered by >; this is a contradiction if x is infinite. Again we
exploit Isabelle order types and ordinal isomorphisms.

Rubin and Rubin’s proof of AC7 =) AC6 (page 12) fails in the case of the
empty family of sets. The proof of AC19 =) AC1 (page 18) fails for a similar
reason. When building a mechanized proof we are obliged to treat degenerate
cases, however trivial they are.
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The proof of AC9 =) AC1 (page 14) has a small omission. We start with

a set s of non-empty sets, and define y def
= ([s)! . It can be proved that for

each x 2 s, x� y � y. Then Rubin and Rubin claim “it is easy to see that for
each x 2 s, x� y � (x� y) [ f0g.” But if s = ffbgg then x and y are unit
sets (fbg and fbg! , respectively) and the claim fails. In order to mechanize
this proof we have used x� y � ! instead of x� y. This seems simpler than
handling the degenerate case separately.

On page 14, Rubin and Rubin set out to prove thatAC10 toAC15 are equiv-
alent to the Axiom of Choice. They describe a number of implications as “clear.”8

Then they list some implications that they are going to prove. It appears that
they intend to establish two chains

WO1 =) AC10(n) =) AC11 =) AC12 =) AC15 =)WO6

AC13(n) =) AC14 =) AC15:

Because of other results, it only remains to show that AC1 implies AC13(n).
We could prove

AC1 =) AC13(1) AC13(m) =) AC13(n) if m � n

or, more directly, AC10(n) =) AC13(n� 1). In this welter of results, Rubin
and Rubin have stated and we have mechanized more proofs than are strictly
required.

Another noteworthy proof (page 15) concerns the implication WO2 =)
AC16. Rubin and Rubin devote just over half a page to it, but mechanizing
it took a long time. Near the beginning of the proof they note that if s is an
infinite set equipollent to a cardinal number !� then for all k > 1 the set of
all k-element subsets of s is also equipollent to !�. Demonstrating this is non-
trivial, requiring among other things the theorem �
 � = � discussed above
in this paper.

The next and key step is a recursive construction of a set t =
S
<!�

T
satisfying AC16. Now T is an increasing family of sets of n-element subsets
of s. At every stage we add at most one subset. The authors claim that at any
stage  < !� we can choose n�k distinct elements of the set s�(

S
T [k)

where k is a k-element subset of s. They may regard this claim as obvious
but we found it decidedly not so.

The difficulty of this proof lies in the complexity of the recursive definition
ofT , which furthermore contains a typographical error.9 Formalizing the def-
inition was simple, but proving that it satisfied the desired property required
handling theorems with many syntactically complex premises. We changed
the definition several times so as to simplify these proofs.
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7.5. CONSOLIDATING SOME PROOFS

Three of the Rubins’ proofs, namely AC1 =) WO2, AC17 =) AC1 and
AC15 =)WO6, are based on the same idea. They construct a recursive map-
ping of ordinal numbers to a set. Then they show that the converse of the map-
ping is injective, obtaining a bijection with some desired ordinal. The map-
pings differ in their details. But we managed to generalize them so as to deal
with only one definition, and prove some properties for one mapping instead
of three.

� In the proof of AC1 =)WO2, we start with a choice function f on a set
of non-empty subsets of a set x. We define f(0) = u for some u 62 x (we
chose u = x, exploiting the Axiom of Foundation). Finally we define a
mapping G such that G(�) = f(x � G\�) for all ordinals �. (Recall
that \ is the image operator).

� In the proof of AC15 =) WO6, we start with a function g such that for
every non-empty subset y of a set x, the set g(y) is a non-empty subset
of y. We define g(0) = u for some u 6� x (we chose u = fxg). Then
we construct a mapping G such that G(�) = g(x �

S
�<�G(�)) for all

ordinals �.

� The proof of AC17 =) AC1 differs from the first one in that f is not nec-
essarily a choice function, but for every non-empty subset y of x it satis-
fies f(y) 2 x. Moreover, a mapping H constructed here differs from G

in that it maps to u every � such that f(x � H\�) 62 x � H\� (which
never holds if f is a choice function).

For each of these definitions, Rubin and Rubin prove that the inverse of the
constructed mapping G (or H) is injective on some set, and that there is an
ordinal � such that G(�) = u, which somehow implies the desired result.

For the sake of clarity and economy, we decided to generalize the three
definitions into one and to prove the required properties only once. Let x be a
set and f a function such that for every non-empty subset y of x, the set f(y)
is a subset of x. Define a mapping H as follows: for every ordinal �,

H(�) =

�
f(z) if f(z) 2 z, where z = x�

S
�<�H(�)

fxg otherwise

The Isabelle definition is as follows:
HH(f,x,a) == transrec(a, %b r. let z = x - (UN c:b. r‘c)

in if(f‘z:Pow(z)-f0g, f‘z, fxg))

This definition requires some adjustments to the original proofs. ForAC1 =)
WO2 and AC17 =) AC1, the function f must be replaced by a function
f 0 such that f 0(y) = ff(y)g for all y in the domain of f . It is clear that in
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AC1 =)WO2 and AC15 =)WO6, if z = x�
S
�<�H(�) then f(z) 2 z

holds whenever z 6= 0. This demonstrates agreement with the original defini-
tions.

7.6. THE AXIOM OF DEPENDENT CHOICE

At the end of Chapter 2, Rubin and Rubin present two formulations of another
axiom, Dependent Choice:

DC(�) If R is a relation between subsets and elements of a set X such that
y � �! 9u2X y Ru for all y � X then there is a function f 2 �! X

such that f\� R f(�) for every � < �.

DC If R is a non-empty relation such that range(R) � dom(R) then there is
a function f with domain ! such that f(n)Rf(n+ 1) for every n < !.

They then comment “It is easy to see that DC () DC(!).” But the only
proof we could find is complicated; mechanizing it required over 200 com-
mands. That is four times the number required for the two theorems proved
explicitly.

Consider the proof of DC ! DC(!). Let R � P(X) � X satisfy the
hypothesis of DC(!). Construct a set X 0 and a relation R0 by10

X 0=
S
n2!ff 2 n! X j 8k2n f\k R f(k)g

f R g () dom(g) = dom(f) + 1 and g � dom(f) = f : (f; g 2 X 0)

It is easy to see that these satisfy the hypotheses of DC, which thus yields a
function f 0 2 ! ! X 0 such that f 0(n) R0 f 0(n+ 1) for n 2 !. The desired
function f 2 ! ! X is now defined by

f(n) = f 0(n+ 1)(n):

A similar construction yields the converse.
The Rubins then prove, Theorem 2.20, that the Axiom of Choice (in fact,

WO1) implies DC(�) for every ordinal �. While mechanizing this theorem
we noticed that it is incorrect: the quantification should be restricted to cardi-
nals. If � is not a cardinal then DC(�) fails.

Here is a short proof of :DC(! + 1). Let X = ! and define R by

y Ru () y � X; y � ! + 1 and u is the least element of X � y:

Assume DC(! + 1). Then there is a function f 2 ! + 1 ! ! such that
f\nRf(n) for every n 2 !; this implies f(n) = n. Thence f\! = !, so
there is no u such that f\!Ru as there is no u 2 !� ! = ;. So DC(!+ 1)
yields a contradiction.
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8. Proving WO6 =)WO1

The proof (page 2) ofWO6 =)WO1 seems to be the most complicated in the
first two chapters of Rubin and Rubin. It depends upon many other properties
concerning ordinal sum, equipollence, dominance, etc. To formalize some of
the functions requires the description operators LEAST and THE. But the main
cause of difficulty in this proof is its sheer size and complexity.

8.1. THE IDEA OF THE PROOF

The main idea of the proof is to show first, that every set y satisfying y�y � y

can be well-ordered, and then that every set x can be well-ordered as a subset
of such a y. The latter part of the proof is much easier then the former. For
every set x there exists a y such that x[ (y� y) � y. The set y is constructed
as
S
1

n=0 zn, where z0 = x and zn+1 = zn [ (zn � zn).
The main part of the proof is the claim (2), which suffices to show that

every set y such that y � y � y can be well-ordered:

If y � y � y and m > 1, then m 2 Ny implies m� 1 2 Ny (2)

where

Ny =
n
m j 9f;� dom(f) = �;

S
�<� f(�) = y;8�<� f(�) - m

o
:

To prove this, the Rubins assume that y and m satisfy the hypothesis, and
that � and f satisfy the conditions of the definition of Ny for some natural
number m. Then for every �, , � < � they define

u��
def
= (f(�)� f()) \ f(�):

It is easy to see that dom(u��), range(u��) and u�� each have no more
thanm elements. The proof divides into two cases. For each case we construct
a function g satisfying the definition of Ny for m � 1. The required ordinal
number is �+ �, where in this section + denotes ordinal sum.

� Case 1: 8�<� : f(�) 6= 0! 9;�<� : dom(u��) 6= 0^dom(u��) � m

Define, for � < �,

v� =

�
dom(u����� ) if f(�) 6= 0
0 if f(�) = 0

where �� and �� are the lexicographically smallest pair of ordinals 
and � such that dom(u��) 6= 0 and dom(u��) � m.
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Define the function g for � < �+ �:

g(�) =

�
v� if � < �

f()� v if � = �+ 

Every non-empty f(�) is split into two non-empty subsets, thereby decreas-
ing the number of elements.

� Case 2: 9�<� : f(�) 6= 0^8;�<� : dom(u��) 6= 0! dom(u��) � m

Let � < � be given. Since f(�) 6= 0, choose an element s of f(�).
Define v for  < � by

v =

�
fu�� (s)g if f() 6= 0
0 if f() = 0

where � is the smallest ordinal � such that dom(u��) 6= 0. The assump-
tions of Case 2 justify the existence of � and also imply that u�� is a
function, justifying the notation u�� (s). Only this case requires y�y �
y.

Now define the function g() for  < � + � analogously to g(�) in the
previous case.

For both cases, we must show that �+� and g satisfy the definition of Ny

for the natural number m � 1. Thus we must show
S
�<�+� g(�) = y and

g(�) - m� 1 for � < �+ �. This will complete the proof of (2).
Axiom WO6 asserts that for every set y there is a natural number in Ny.

Once the claim (2) is established, it remains to apply “mathematical induc-
tion” (in fact, reverse mathematical induction) to show that 1 2 Ny; then the
function f with domain � satisfying f(�) - 1 for all � < � determines a
well-ordering of y. Thus, if y � y � y then y can be well-ordered.

8.2. PRELIMINARIES TO THE MECHANIZATION

Before mechanizing this proof, we had to prove many results in general set
theory. This took a considerable time.

8.2.1. Ordinal Arithmetic
Both cases of the proof use ordinal sum to express �+�. At the time we con-
ducted this proof, ordinal arithmetic was not defined in Isabelle. We adopted
the following definition for ordinal sum:

i ++ j == ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))

Here i+j stands for disjoint sum, radd constructs a well-ordering on the dis-
joint sum (recall the discussion in x4.3) and Memrel(i) is the membership
relation over set i as a set of pairs. Ordinal product is defined analogously.

The proof also makes use of ordinal difference, defined by
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i -- j == ordertype(i-j, Memrel(i))

Defining the function g on�+� requires proving several properties of ordinal
sum and difference. For example, if  < � + � then either  < � or  =
�+ ( � �) and  � � < �. We also need the identity

Ord(a) ==> (UN b<a++a. C(b)) = (UN b<a. C(b) Un C(a++b))

These definitions of ordinal sum and product are traditional (see also Kunen
[12, page 20]), but deriving the required properties from them proved to be
extremely laborious. Recursive definitions [27, page 201] would have been
much more direct.

8.2.2. New Notation
To express the definitions conveniently required adding a let-construct to Isa-
belle/ZF. Fortunately, this construct was already available in Isabelle/HOL
and could be taken verbatim. A let-declaration has the syntax

let id = term;...; id = term in term

In set theory the ordering relation on ordinals coincides with the member-
ship relation on sets: � < � means precisely � 2 �. But the former notation
is more suggestive and most authors use it whenever possible. Isabelle has it
too, with the following definition:

i<j == i:j & Ord(j)

In formal proof, converting between � < � and� 2 � is tiresome. We defined
the quantifiers 8�<� :P [�], 9�<� :P [�] and

S
�<� :P [�] for reasoning directly

in terms of <. When � is indeed an ordinal, there is no difference between
these and the normal bounded quantifiers.

Defining this notation took some effort; for instance, we had to ensure that
the simplifier could use universally quantified assumptions as rewrite rules.
It seems wrong that such trivial syntactic matters should require such effort.
One might expect the proof assistant to recognize ordinals and automatically
use< instead of2when appropriate. However, we do not know of any system
that can do this.

8.3. MECHANIZING THE PROOF

Figure 7 presents the Isabelle definitions of the quantities used in the proof.
We used names like NN, uu and gg1 for N , u, g to avoid possible clashes
with variables.

The definition of vv1 is a formal rendering of Rubin and Rubin: “let �� be
the <-smallest such  which satisfies the conditions. Then given �� , let �� be
the <-smallest such � which satisfies the conditions” [24, page 3]. Unfolding
the let-declarations yields nesting of the LEASToperator. To reason about this,
the following theorem turned out to be useful:
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NN(y) == m:nat. EX a. EX f. Ord(a) & domain(f)=a &
(UN b<a. f‘b) = y & (ALL b<a. f‘b lepoll m)

uu(f, beta, gamma, delta) == (f‘beta * f‘gamma) Int f‘delta

(Case 1 definitions)

vv1(f,m,b) ==
let g = LEAST g. (EX d. Ord(d) & (domain(uu(f,b,g,d)) ˜= 0 &

domain(uu(f,b,g,d)) lepoll m));
d = LEAST d. domain(uu(f,b,g,d)) ˜= 0 &

domain(uu(f,b,g,d)) lepoll m
in if(f‘b ˜= 0, domain(uu(f,b,g,d)), 0)

ww1(f,m,b) == f‘b - vv1(f,m,b)

gg1(f,a,m) == lam b:a++a. if(b<a, vv1(f,m,b), ww1(f,m,b--a))

(Case 2 definitions)

vv2(f,b,g,s) ==
if(f‘g ˜= 0, uu(f, b, g, LEAST d. uu(f,b,g,d) ˜= 0)‘s, 0)

ww2(f,b,g,s) == f‘g - vv2(f,b,g,s)

gg2(f,a,b,s) == lam g:a++a. if(g<a, vv2(f,b,g,s),
ww2(f,b,g--a,s))

Figure 7. Isabelle/ZF Definitions for WO6 =)WO1

[| P(a, b); Ord(a); Ord(b);
Least_a = (LEAST a. EX x. Ord(x) & P(a, x))

|] ==> P(Least_a, LEAST b. P(Least_a, b))

Case 2 says that “there exists an ordinal � such that . . . .” The proof of this
case starts with choosing the least ordinal satisfying this condition. It is not
necessary for � to be the least; any such � can be used. This issue does not
affect the informal proof. But using the LEAST operator in the formal proof
would lead to needless complications.

Figure 8 presents a selection of the many lemmas that make up this proof.
Most of it (theorems 1–5) involves establishing the claim (2). First, consider
Case 1. Theorem 1 asserts that the union of the range of gg1 is what it should
be (namely the union of the range of f). Theorem 2 asserts that each element
of the range of gg1 has no more than m elements. For Case 2, theorems 4 and 5
assert analogous properties of gg2. Theorem 6 is the claim itself; theorem 7
asserts that we can construct y from x and theorem 8 is the final result.

Most of the definitions are made in the context of the claim (2), or its sub-
cases. Unfortunately, in Isabelle all definitions are global. Any necessary con-
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1 [| Ord(a); m:nat |] ==>
(UN b<a++a. gg1(f,a,m)‘b) = (UN b<a.f‘b)

2 [| Ord(a); m:nat;
ALL b<a. f‘b ˜=0 -->
(EX g<a. EX d<a. domain(uu(f,b,g,d)) ˜= 0 &

domain(uu(f,b,g,d)) lepoll m);
ALL b<a. f‘b lepoll succ(m); b<a++a

|] ==> gg1(f,a,m)‘b lepoll m

3 [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))˜=0 -->
domain(uu(f, b, g, d)) eqpoll succ(m);
ALL b<a. f‘b lepoll succ(m); y*y <= y;
(UN b<a. f‘b)=y; b<a; g<a; d<a; f‘b˜=0; f‘g˜=0;
m:nat; s:f‘b

|] ==> uu(f, b, g, LEAST d. uu(f,b,g,d)˜=0) : f‘b -> f‘g

4 [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ˜= 0 -->
domain(uu(f,b,g,d)) eqpoll succ(m);
ALL b<a. f‘b lepoll succ(m); y*y<=y;
(UN b<a.f‘b)=y; Ord(a); m:nat; s:f‘b; b<a

|] ==> (UN g<a++a. gg2(f,a,b,s) ‘ g) = y

5 [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ˜= 0 -->
domain(uu(f,b,g,d)) eqpoll succ(m);
ALL b<a. f‘b lepoll succ(m); y*y <= y;
(UN b<a. f‘b)=y; b<a; s:f‘b; m:nat; m˜= 0; g<a++a

|] ==> gg2(f,a,b,s) ‘ g lepoll m

6 [| succ(m) : NN(y); y*y <= y; m:nat; m˜=0 |] ==> m : NN(y)

7 EX y. x Un y*y <= y

8 WO6 ==> WO1

Figure 8. Some Theorems in the Proof of WO6 =)WO1

text must be supplied explicitly. Parameters local to Case 2 of the claim include f ,
�,� and s; where Rubin and Rubin write g()we must writegg2(f,a,b,s)‘g.

In the machine proofs themselves the problem is worse. Not only the param-
eters, but their properties, must be copied explicitly to every lemma used in
establishing Case 2. We can see this in Figure 8, theorems 3–5.

Rubin and Rubin’s proof is an excellent example of the difficulties of machine
proof. On page 4 stand two adjacent passages, one easily mechanized, the oth-
er not. They say “Now, if in addition to f(�) 6= 0 also f() 6= 0, then there
exists a � such that u�� 6= 0. (This follows from [the definition of u] and the
fact that y�y � y.)” This statement is easily expressed in Isabelle and proved
with a single call to the classical reasoner:
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goalw thy [uu_def] "!!f. [| b<a; g<a; f‘b˜=0; f‘g˜=0;
y*y <= y; (UN b<a. f‘b)=y

|] ==> EX d<a. uu(f,b,g,d) ˜= 0";
by (fast_tac (AC_cs addSIs [not_emptyI]

addSDs [SigmaI RSN (2, subsetD)]
addSEs [not_emptyE]) 1);

They also say “if , � < � and dom(u��) 6= 0 then dom(u��) has m ele-
ments. It follows : : : that u�� has at most m elements (u�� � f(�) � m).
Therefore u�� � m and u�� is a function.” It is obvious that if R is a finite
relation and dom(R) � R thenR is a function. But our formalization contains
a long proof with numerous lemmas. The conclusion is theorem 3 of Figure 8.

Recall from x3.2 our difficulties in proving that natural numbers are cardi-
nals. Finiteness appears to be a major source of gaps in informal proofs. When
faced with an obvious statement that has no obvious proof, we are forced to
prove many lemmas that look equally obvious. This is terribly frustrating. How-
ever, it appears to be a fundamental feature of formal proof, and anyway “obvi-
ous” statements are not always true!

One is reminded of the famous mutilated chessboard problem: if we remove
two diagonally opposite corners from a chessboard, can we cover the remain-
ing 62 squares with 31 dominos? The usual proof that the answer is “no” seems
impossible to formalize without disproportionate efforts. Gardner [7] describes
a number of similar puzzles.

Mechanizing the reverse induction mentioned above, and the construction
from x of some y such that x[ (y� y) � y, is routine. All the difficulties lie
in proving the claim (2). The two cases are complicated. Both authors spent
considerable time experimenting with various forms of definition to make the
proofs more readable.

The main file containing the proof ofWO6 =)WO1 holds over 130 tactic
commands; it executes in about three minutes.

9. Conclusions

We have mechanized parts of two advanced textbooks: most of Chapter I of
Kunen [12] and the first two chapters of Rubin and Rubin [24]. Some of this
material is fairly recent; the Rubins cite papers from the 1960s. In doing our
proofs, we noted a number of difficulties.

Ideally, the mathematics should not have to conform to the machine: the
machine should conform to the mathematics. Following a single text helps
indicate whether this is indeed the case. It is not the most direct way of pro-
ceeding, however; a brief aside in the text may expand into a large formal
derivation. Formalizing only the main results requires less effort while still
yielding some benefits, such as finding errors and ambiguities, and exposing
hidden assumptions.
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On the whole, we have succeeded in reproducing the material faithfully.
Isabelle’s higher-order syntax makes it easy to express set-theoretic formulæ.
But Rubin and Rubin frequently use English phrases that translate to complex
formulæ. It is essential to ensure that the formulæ are not only correct, but as
simple as possible.

Standard mathematical concepts have conflicting definitions. Sometimes
these definitions are strictly equivalent, as in initial ordinals versus cardinals.
Sometimes they are equivalent under certain assumptions: our definition of
ordinal relies on the Axiom of Foundation. Sometimes they differ only in inessen-
tial details, as in whether a well-ordering is required to be reflexive. No details
are inessential in formal proof, and we can forsee that incompatible definitions
will become a serious problem as larger and larger bodies of mathematics are
formalized.

Comparing the sizes of the formal and informal texts, Jutting [11, page 46]
found that the ratio was constant. This may hold on average for a large piece of
text, such as a chapter, but it does not hold on a line by line basis. Sometimes
the text makes an intuitive observation that requires a huge effort to formalize.
And sometimes it presents a detailed calculation that our tools can perform
automatically. If we are going to perform such proofs on a large scale, we shall
have to discover ways of predicting their size and cost.

Although set theory is formally untyped, mathematicians use different let-
ters to range over natural numbers, cardinals, ordinals, relations and functions.
There are obvious inclusions among these types: infinite cardinals are cardi-
nals are ordinals, and all objects are sets. Isabelle’s type system is of no help
here. Other provers, such as IMPS [6] with its subtypes, might handle this
aspect better. The proof of WO6 =) WO1 revealed another limitation of
Isabelle: its inability to allow definitions and proofs to occur within the con-
text of a lengthy inductive argument.

Gra̧bczewski is engaged in proving the consistency of the Axiom of Choice,
following the approach described by Kunen in Chapters 4–6. This requires
coding the syntax of formulæ inductively within set theory, and internalizing
the ZF axioms. Arriving at the most convenient definitions took a great deal
of time. We know of no obstacle to proving deeper and deeper results in set
theory, provided one is willing to devote the necessary effort.
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Notes

1 To understand those details, refer to Paulson [21, x3.5]. For i 2 I let �i be the least � such
that i 2 V [A]�. From (1) we can prove

jIj � � I � V [A]�+

I ! V [A]�+ � V [A]�+

This result allows V [A]�+ to serve as the bounding set for a least fixedpoint definition [19].
2 Kunen gives straightforward inductive proofs of these first two properties. But Halmos [9,

page 72] gives an argument that proves both with a single induction.
3 Lemma 10.10 says that multiplication of finite cardinals agrees with integer multiplication.
4 All Isabelle timings are on a Sun SPARCstation ELC.
5 The statement of Global Choice can be obtained by Skolemizing the trivial theorem 8c:c 6=

0 ! (9x : x 2 c). This is a standard example showing that Skolemization can be unsound in
higher-order logic [13].

6 Such figures can be regarded only as a rough guide. Many of the theorems properly belong
in the main libraries. Small changes to searching commands can have a drastic effect on the
run time. For comparison, the main ZF library (which includes the Kunen, Abrial and Laffitte
proofs) contains 150 definitions and nearly 3300 tactic commands.

7 Rubin and Rubin [24, page 9] state this incorrectly. They quantify over B but leave X free
in the definiens.

8 At least one of these, WO1 =) AC10(n), is non-trivial. We have to partition the infinite
set x into a set of disjoint 2-element sets, for all x 2 A. Our proof uses the equation � =
��� to establish a bijection h between the disjoint sum jxj+ jxj and x. The partition contains
fh(Inl(�)); h(Inr(�))g for all � < jxj.

9 At the beginning of the fifth line from the bottom on page 15, y 2 N occurs instead of y 2
T .
10 Here g � dom(f) means g restricted to the domain of f .
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