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Summary

The computer-controlled operating environments at such facilities as auto-
mated factories, nuclear power plants, telecommunications centres, and space
stations are continually becoming more complex. As this complexity grows,
it will be increasingly difficult to control such environments with centralised
management and scheduling policies that are both robust in the face of un-
expected events and flexible at dealing with operational and environmental
changes that might occur over time. One solution to this problem which has
growing appeal is to distribute control of such operations to a number of intel-
ligent, task-achieving computational agents.

Real-world domains are likely to be populated by multiple agents. In such
domains agents will typically perform a number of complex tasks requiring
some degree of attention to be paid to environmental change, temporal con-
straints, computational resource bounds, and the impact the agents’ shorter
term actions might have on their longer term goals. Operating in the real
world means having to deal with unexpected events at several levels of gran-
ularity — both in time and space. While agents must remain reactive in order
to survive, some amount of strategic and predictive decision making will be re-
quired if agents are to coordinate their actions with other agents and handle
complex tasks in an effective manner.

This dissertation presents a new integrated agent architecture, designed
to provide rational, autonomous, mobile agents with the diverse range of be-
haviours normally required to carry out complex, resource-constrained tasks
in dynamic, real-time, multi-agent domains. Upon surveying a collection of
existing architectures and after due consideration of the requirements for pro-
ducing effective, robust, and flexible behaviours in a particular class of such
domains, the resulting software control architecture — the TouringMachine
agent architecture — has been designed through integrating a number of de-
liberative and non-deliberative control functions. Arranged in a layered fash-
ion, the combination of these functions endows agents with a rich collection of
reactive, goal-oriented, reflective, and predictive capabilities.

In recognition of the complex relationship which exists between an agent’s
internal configuration, its task environment, and its ensuing behavioural rep-
ertoire, the agent architecture has been implemented in conjunction with a
feature-rich, instrumented simulation testbed. The testbed, which permits
the creation of a diverse set of single- and multi-agent navigation task scenar-
ios, has been used to evaluate the utility of the architecture and to identify
some of its main strengths and weaknesses.
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1

Introduction

Avernus moved out into the middle of the furious activity, machines and
robots and train cars rushing quickly all around them. As Avernus stepped
into the path of on-rushing vehicles, Derec froze, wanting to pull back.
But the expected accidents never took place, the robots and their machines
gauging all the actions around them and reacting perfectly to them. That’s
when the concept of deliberation became clear to Derec. Movement needed
to be deliberate, with constant forward momentum. All judgement was
based on the idea that movement would be steady and could be avoided
once gauged. It was the erratic movement that was dangerous — the
abrupt stop, the jump back; down here, such movements would be fatal.
Once he understood the concept, it became easier to walk into the path of
on-rushing vehicles.

Mike McQuay, Isaac Asimov’s Robot City

This dissertation is concerned with the provision of an integrated con-
trol architecture for autonomous agents and an associated simulation testbed
aimed at facilitating the specification and analysis of agents in a wide range
of complex multi-agent task scenarios. The intention is to provide an imple-
mentation of a software control architecture which is competent, functionally
rich, behaviourally diverse, and which encourages and readily facilitates ex-
tensive experimental evaluation. This desire is motivated by the observa-
tion that large-scale, computer-controlled systems and facilities are becoming
increasingly decentralised and thus potentially stand to benefit from the in-
corporation of distributed, task-achieving, autonomous agent processes which
are more intelligent, robust, and flexible than the predominantly centralised
computational processes used at present.

1



Introduction � 2

The type of agent process of concern here includes autonomous mobile ag-
ents which are expected to operate in a dynamic, real-time domain (for exam-
ple, an automated factory floor or traffic environment) and which are required
to carry out reasonably complex, time-constrained tasks in the presence of
other similarly goal-directed agents. It is the dynamic, real-time nature of the
chosen task-domain which poses most problems for the agents. In particular,
the agents — which are assumed to have limited internal computational re-
sources, limited knowledge of other agents’ intended tasks, and limited means
of acquiring information either from their environment or from other agents —
will be required to respond quickly to a number of immediate external threats
while at the same time dealing with a host of equally unexpected intra- and
inter-agent goal conflicts.

The dissertation presents a new integrated control architecture — the
TouringMachine agent architecture — which has been designed to provide
autonomous, resource-bounded agents with the diverse range of reactive,
goal-oriented, reflective, and predictive behaviours typically required in or-
der to carry out complex, time-constrained navigational tasks in partially-
structured, dynamic, real-time, multi-agent environments. � To analyse the
performance of TouringMachines and to facilitate the study of their behavioural
ecology — the relationship between each agent’s internal configuration, its
task environment, and its behavioural repertoire — the architecture has been
designed and implemented in conjunction with a feature-rich, instrumented
simulation testbed.

1.1 Intelligent Agent Design

The computer-controlled operating environments at such facilities as auto-
mated factories, nuclear power plants, telecommunications centres, and space
stations are continually becoming more complex. As this complexity grows,
it will be increasingly difficult to control such environments with centralised
management and scheduling policies that are both robust in the face of un-
expected events and flexible at dealing with operational and environmental
changes that might occur over time. One solution to this problem which has
growing appeal is to distribute — along such dimensions as space and func-
tion — the control and scheduling of operations to a number of intelligent,
task-achieving computational or robotic agents. In this dissertation, an agent
shall be considered to be any goal-directed computational process capable of
robust and flexible interaction with its environment.

�
Henceforth, to avoid further adjectival overload, the partially-structured, dynamic, real-

time, multi-agent environments of TouringMachines will often just be described as “complex”.
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Most of today’s computational or robotic agents are limited to performing
a relatively small range of well-defined, pre-programmed, or human-assisted
tasks. In order to survive and thrive in complex domains, future agents will
need to be made considerably more robust, flexible, and skilled at dealing
with exceptional events than they are at present. In such domains agents
will typically perform complex tasks requiring some degree of attention to be
paid to environmental change, temporal deadlines, computational resource
bounds, and the impact the agents’ shorter term actions might be having
on their longer term goals. On the other hand, time will not stop or slow
down for them to deliberate upon all possible courses of action for every world
state. Intelligent, resource-bounded agents will thus require a range of skills
to monitor and respond promptly to unexpected events, while simultaneously
being able to carry out pre-programmed tasks and resolve and recover from
unexpected conflicts in a timely and efficient manner.

Real-world domains are likely to be populated by multiple agents, each
pursuing any number of tasks. Because agents are likely to have incomplete
knowledge about the world and will compete for limited and shared resources,
it is inevitable that, over time, some of their goals will conflict. Attempts
to construct complex, large-scale systems in which all envisaged conflicts are
foreseen and catered for in advance are likely to be too expensive, too complex,
or perhaps even impossible to undertake given the effort and uncertainty that
would be involved in accounting for all of one’s possible future equipment,
design, management, and operational changes [Lee89, pages 7 and 182–189].

There is clearly an ongoing evolution of the intelligent functions that are
present in autonomous control systems. As Antsaklis et al. [APW90] sug-
gest, although there are characteristics which separate intelligent from non-
intelligent systems, the distinction tends to become less clear as intelligent
systems evolve. Thus, systems which might once have been considered in-
telligent — for example, James Watt’s governor for steam engines (see next
chapter) — subsequently evolve to gain more character of what are considered
to be non-intelligent or numeric-algorithmic systems. Control theory and con-
trol systems engineering [DW91, pages 103–175], for instance, provide var-
ious numeric-algorithmic methods (for example, finite difference equations
and differential equations) for analysing and synthesising control systems
for a wide variety of applications. However, for some applications — such as
those in which the control systems are constrained to operate with substantial
uncertainty (including execution, environmental, and epistemic uncertainty)
or those in which the systems must reason about the temporal and causal
structure of their environments — access to a richer, more powerful set of
representation and reasoning methods might prove more useful; Artificial
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Intelligence (AI) provides such methods. �
To date, much of the emphasis in AI research has been placed on study-

ing isolated functions and capabilities such as perception, planning, natural
language understanding, belief modelling, or learning. In general, little or
no attention has been paid to the problem of how to integrate and deploy
these capabilities in autonomous machines or systems capable of operating
effectively in complex environments. Motivated by the belief that research
into integrated agent architectures will serve as one of the main platforms
for the development of tomorrow’s intelligent robots, many researchers in AI
have recently become interested in the challenges of building integrated AI
systems which can interact with their surroundings and operate robustly and
flexibly in the presence of real-time environmental change and uncertainty.

This dissertation is concerned with the design and implementation of an
AI software architecture suitable for controlling and coordinating the actions
of a rational, autonomous, resource-bounded agent embedded in a partially-
structured, dynamic, multi-agent world. � The research presented in this dis-
sertation involved three complementary efforts: (i) understanding the func-
tional and behavioural requirements of intelligent, rational, autonomous, mo-
bile agents for a particular class of real-time, multi-agent domain; (ii) realising
a particular design and implementation of an integrated agent architecture
satisfying the requirements identified; and (iii) designing and implementing
a highly instrumented and parametrized multi-agent simulation testbed with
which to observe and analyse various aspects of agent-level problem solving,
coordination, and behavioural ecology.

Operating in the real world means having to deal with multiple events
at several levels of granularity — both in time and space. So, while agents
must remain reactive in order, say, to survive, some amount of strategic or
predictive decision making will be required if agents are to coordinate their

�
AI methods are a research vehicle which help in understanding complex problems and

thereby help in organising and synthesising new approaches to problem solving. It should
come as no surprise, then, that as solutions to control problems develop, purely algorithmic
approaches with more desirable implementation characteristics — such as those used in
control systems engineering — will eventually substitute those developed using AI techniques.�

The definition of rational behaviour used here is borrowed from Bratman et al. [BIP88,
page 349] and corresponds to “the production of actions that further the goals of an agent,
based upon [its] conception of the world.” An entity will be considered autonomous if — as
suggested by Covrigaru and Lindsay [CL91, page 111] — “it is perceived to have goals ...
and is able to select among a variety of goals that it is attempting to achieve.”, and if, in
addition, the entity includes “a measure of complexity; interaction; movement (preferably
fluid); a variety of behaviours; robustness and differential responsiveness to a variety of
environmental conditions; selective attention; and independent existence without detailed,
knowledgeable intervention.” [CL91, page 113].
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actions with other agents and handle complex, time-constrained goals while
keeping their long-term options open. Agents, however, cannot be expected
to model their surroundings in every detail as there will simply be too many
events to consider, a large number of which will be of little or no relevance
anyway. What is required, in effect, is an architecture that can cope with
uncertainty, react to unforeseen events, and recover dynamically from poor
decisions. All of this, of course, on top of accomplishing whatever tasks it was
originally assigned to do. Not surprisingly, it is becoming widely accepted that
neither purely deliberative nor purely non-deliberative control techniques are
capable of producing the range of effective, robust, and flexible behaviours
desired of future intelligent agents. �

The thesis of this dissertation is that it is both desirable and feasible to
combine non-deliberative and suitably designed and integrated deliberative
control functions in a single architecture in order to obtain effective, robust,
and flexible behaviours from rational, autonomous, resource-bounded agents
which are to carry out tasks in a class of challenging domains — those which
are partially-structured, dynamic, real-time, and inhabited by one or more
other intentional agents without central authority. A secondary hypothe-
sis which is investigated in this dissertation is the claim that establishing an
appropriate balance between reasoning and acting depends heavily on charac-
teristics of the task environments in which the agents are intended to operate.

To address one of the fundamental trade-offs involved in agent architec-
ture design, namely that which exists between an agent’s representational
power (in other words, the generality and flexibility of its behaviour, the ease
with which the designer can program, test, and debug it) and its run-time
efficiency, the resulting TouringMachine architecture has been designed by
integrating a collection of both deliberative and non-deliberative agent con-
trol capabilities. These capabilities include situated action, focus of attention,
planning, and various forms of commonsense reasoning about agents’ mental
states — namely, their beliefs, desires and intentions. The architecture is
centred on a number of modular, independent, task-achieving control layers
which are aimed at ensuring a high degree of operational concurrency. Also,
because of the real-time constraints imposed on agents embedded in dynamic
environments, an account is taken of TouringMachines’ limited computational
resources in order to guarantee an upper bound on the latency on its opera-

�
The term deliberative implies that the agent possesses reasonably explicit representations

of its own beliefs, plans, and/or goals that it uses in deciding which action it should select at
a given time. Conversely, non-deliberative implies that the agent’s beliefs, plans, and goals
are implicitly embedded or pre-compiled into the agent’s structure by its designer. Examples
of agent architectures which can be classified as deliberative, non-deliberative, and hybrid
(combining aspects of each approach) will be given in the next chapter.
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tions such as sensing, attention focussing, planning, and world modelling.
The result is an architecture which can produce a number of reactive, goal-
directed, reflective, and predictive behaviours — as and when dictated by the
agent’s mental state and environmental context.

The research presented in this dissertation adopts a fairly pragmatic ap-
proach toward understanding how complex environments might constrain the
design of agents, and, conversely, how different navigational task constraints
and functional capabilities within the agents might combine to produce dif-
ferent behaviours. To evaluate TouringMachines , a highly instrumented,
parametrized, multi-agent simulation testbed has been implemented in con-
junction with the TouringMachine control architecture. By enabling the user
to specify, observe, and analyse any number of user-customised agents in a
variety of single- and multi-agent settings, the testbed provides a powerful
platform for the empirical study of TouringMachine behaviour.

It is worth pointing out at this stage that the focus of this research is on
the functional and behavioural requirements of individual agents which are
to carry out non-shared tasks in heterarchical multi-agent environments. In
particular, this dissertation is not concerned with the requirements of agents
which are to operate within the framework of a hierarchical organisation or
which are to work on joint or collective tasks. In addition to this restriction, the
architecture presented in this dissertation ignores the “obvious” requirement
that agents be capable of adapting to new environments by learning from
their past experiences. It is clear that both skills — that is, being able to
interact and coordinate within a social context and being able to improve
task performance through some form of machine learning — are both highly
desirable (if not essential) for intelligent, autonomous agents operating in
multi-agent domains. These concerns lie outside the scope of this dissertation
but remain as candidates for future work (see Chapter 9).

1.2 Outline of the Dissertation

Chapter 2 gives a brief overview of some past work on intelligently controlled
systems from such fields as engineering, cybernetics, artificial intelligence,
robotics, and distributed artificial intelligence. A comprehensive review of
several recent examples of integrated agent architectures is then presented,
together with a discussion of some of the major requirements, challenges, and
desiderata vis-à-vis the design and construction of intelligent autonomous
agents.

The TouringMachine agent control architecture is introduced in Chap-
ter 3. An overview is given of the architecture’s capabilities and structure,
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including its three concurrent task-achieving layers, enveloping mediatory
control framework, and perception and action subsystem interfaces. Touring-
Machines’ resource-boundedness and real-time operational characteristics are
also addressed.

Chapters 4, 5, and 6 expand on the major design, operational, and im-
plementational issues relating to the three control layers which together
constitute the core of the TouringMachine architecture: the � (reactive), �
(planning), and � (modelling) control layers, respectively.

Chapter 7 describes the TouringWorld Testbed: the instrumented multi-
agent simulation testbed which enables controlled empirical investigations
on the dynamic behaviour of user-customised TouringMachine agents under a
range of user-specified environmental conditions. This chapter also provides
a detailed characterisation of the particular multi-agent navigation domain
which has been chosen as the platform for implementing and evaluating the
TouringMachine architecture.

Some experimentation with the TouringMachine agent architecture and
TouringWorld Testbed is described in Chapter 8. Various aspects of Tour-
ingMachine performance and behavioural ecology are studied and discussed
through a number of single- and multi-agent scenarios. Issues and ideas for
further evaluation are also presented.

Chapter 9 provides a summary of the dissertation and major contributions
of the research. Several limitations about and ideas for enhancing the present
agent architecture are given; finally, some concluding remarks are made about
the dissertation.

Appendix A gives the complete extended BNF grammar defining the Test-
bed’s user-level language for parametrizing TouringMachine agents and Tour-
ingWorld scenarios and environments.



2

Intelligent Agent Design

... the law ought always to trust people with the care of their own interest,
as in their local situations they must generally be able to judge better of it
than the legislator can do.

Adam Smith, An Inquiry into the Nature and

Causes of the Wealth of Nations

2.1 History and Evolution

The quest to design intelligent control in artificial systems dates back a
long time. Well before electronic computers had been invented, for instance,
the engineer James Watt (1736 – 1819) popularised the use of mechanical
feedback control as a way of automatically regulating the velocity of rotation in
steam engines, thereby controlling their energy intake. These feedback control
devices, known as governors, were designed to refine actions and produce
stability in dynamical systems via a process called negative feedback; in other
words, by feeding output from the system back to its input as a means of
comparing actual and intended performance so that compensatory changes in
the input could then be undertaken [Gre87, pages 259–261].

Almost two centuries later, the concept of feedback would also prove fun-
damental in the development of the field of cybernetics. A highly cross-
disciplinary field, cybernetics � was launched in the forties and fifties by the
likes of Norbert Weiner, Ross Ashby, and Grey Walter, their principal aim
being to unify mathematically the disparate studies of control and communi-
cation in animals and machines. Much of the inspiration behind their work

�
The term cybernetics derives from the Greek kubernetes meaning “governor”.

8
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came from the deployment during World War II of analog electronic computers
— machines which simulated physical systems by representing their chang-
ing quantities as analogous moves of shafts or voltages — for such tasks as
navigating aircraft, controlling anti-aircraft guns, and precision target bomb-
ing. Some of the developers of these early analog computers were struck by
the apparent similarity between the internal operations of the computers and
the regulatory systems in living beings (for example, the homeostatic control
of body temperature and blood glucose levels within humans) and so became
inspired to build machines which could learn and which would act as though
they were “alive” [Mor88, pages 6–17].

Due to a combination of representational and technological difficulties, the
field of cybernetics would thrive for less than two decades. With the arrival of
substantially more powerful digital computers — and thus the ability to per-
form problem solving of unprecedented complexity — another field, Artificial
Intelligence (AI), would continue the pursuit toward developing intelligent ar-
tificial systems. Inspired by the pioneering research of such people as John
von Neumann, Alan Turing, and Claude Shannon (all of whom cherished the
hope that the ability to think rationally might one day be performed by a ma-
chine) much of the early work in AI would adopt the view of problem solving
as formal theorem proving or as a heuristic search over a space of goal-subgoal
structures.

Since the foundational work of such researchers as Alan Newell, Herbert
Simon, John McCarthy, and Marvin Minsky, the field of AI has seen the
appearance of a host of artificial systems specialised — more or less success-
fully — in game playing, mathematical discovery, diagnosis, planning, and
natural language understanding, among others. Unlike the sensorimotor-
level and biologically-inspired artifacts produced by the cyberneticists, AI
researchers have by and large tended to concentrate on building narrowly de-
fined competence-oriented systems based on the formalisation and simulation
of human intellectual reasoning processes. �

In 1950 Alan Turing suggested there might be two ways toward the goal
of creating an intelligent machine. The first way — which Brooks calls the
unembodied path [Bro91a, page 573] — would be to concentrate on program-
ming intellectual activities such as playing chess; the second — the embodied

�
This characterisation of AI research, admittedly, only describes systems of the class iden-

tified by the physical symbol system hypothesis: namely, the class of systems which embodies
the “essential nature of symbols” and which is “the necessary and sufficient condition for a
generally intelligent agent” [New82, page 94]. Non-symbolic approaches to AI — for exam-
ple, those which are embodied in connectionist or artificial neural networks and in genetic
algorithms — have been omitted from the present discussion but can be read about elsewhere
[RK91, pages 483–528].
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path — would be “to provide the machine with the best sense organs that
money can buy, and then teach it to understand and speak English.” [Tur50,
page 460]. � While work in AI has almost exclusively followed the first path, a
relative of AI, robotics, would emerge in the mid-sixties and follow the second
of these paths. � Influenced by Minsky’s seminal work at the Massachusetts
Institute of Technology involving the coupling of sophisticated computer con-
trol programs to television cameras and mechanical robot arms, a number
of mobile robotics projects would soon begin to emerge at other institutions;
most notably the Shakey project led by Charles Rosen and Nils Nilsson at
the Stanford Research Institute, and the Cart project of John McCarthy, Les
Earnest, and Hans Moravec at the Stanford Artificial Intelligence Laboratory
[Mor88, pages 14–20].

While many industrial robots have recently found their way into a num-
ber of reasonably well-defined (and typically non-mobile) niches, progress in
robotics toward creating highly versatile, programmable, intelligent machines
which can systematically extract and manipulate information from their en-
vironments and carry out complex tasks has been no faster, it would appear,
than that achieved to date in AI.

The construction of intelligent artificial systems, or agents as they are
now commonly called, is also the goal of researchers in Distributed Artificial
Intelligence (DAI) — the branch of AI concerned with concurrency and distri-
bution in AI computations. This is most evident, perhaps, in the subfield of
DAI known as Multi-Agent (MA) systems which deals with the coordination of
intelligent behaviour among a collection of autonomous, intelligent agents. �
While an advance on much of the earlier work in AI (in the sense that it deals
with agent-level coordination and problem solving among multiple agents)
much of the initial work in DAI was restricted to considering strictly benevo-
lent [Len75], fully knowledgeable [RG85] and/or resource-unbounded agents
working on very well defined shared tasks [Geo83] or operating in highly

�
Wilson [Wil90] also refers to this approach as the animat (or artificial animal) approach:

one which is “holistic, focussing on complete systems ... that, like animals, exist in realistic
environments and must cope with the varied problems that they present.”�

The term robotics, in fact, first appeared in the 1942 science fiction story ‘Runaround’
by Isaac Asimov [Asi50]. The term itself derives from the Czech word for worker and would
first appear in the English language in 1923 via a translation of Karel C̆apek’s play ‘R.U.R’
(Rossum’s Universal Robots). The widespread popularity of the play helped replace the term
in vogue at the time — automaton — for the now more commonly used term robot.�

For the interested reader, an excellent overview of the major problem areas in DAI (for
example, task description and decomposition, inter-agent communication, coordination and
global coherence, agent modelling, resolving inter-agent disparities), as well as some of the
historical antecedents of and current research in DAI can be found in Bond and Gasser [BG88,
pages 3–35].
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structured task environments in which inter-agent conflict had been all but
programmed away [TMC81]. More recently though, researchers in DAI have
begun to consider more realistic, less well structured domains comprising
groups of decentralised autonomous agents which are constrained by limited
resources and capabilities, which have bounded rationality, � and which, by
virtue of the inherent complexity and unpredictability in their environments,
can at best be expected to behave satisficingly with respect to their goals:
that is, by using decision methods which produce “good enough” rather than
optimal behaviour [Sim81, page 35].

Most recently, a number of researchers from the fields of AI, DAI, and
robotics have started to turn their attention to the problem of designing and
implementing integrated control architectures for intelligent agents, or, as
they are also known, integrated agent architectures. An integrated agent ar-
chitecture, Drummond and Kaelbling [DK90] suggest, is a theory or paradigm
by which one may design and program intelligent agents. Typically targeted
for use in dynamic, unpredictable, and often multi-agent environments, an
intelligent agent can be regarded as a structured collection of sensors, com-
puters, and effectors; in this structure, the sensors measure conditions in the
world, the computers process the sensory information, and the effectors take
action in the world. Since changes in the world realised by the agent’s effec-
tors will close the loop to the agent’s sensors, the agent can be described as
being embedded in its environment.

A number of different integrated architectures have been proposed re-
cently, each one aimed at providing agents with a particular level of intelli-
gent, autonomous control. Broadly speaking, the different approaches can be
classified according to the mechanism for action selection which the agent uses
when determining what to do next. In particular, if the agent selects actions
by explicitly deliberating upon the various options that are present (for exam-
ple, with the use of an internal symbolic world model, via a search of its plan
space, or by considering the expected utility of available execution methods)
the agent can be considered deliberative. � Alternatively, if the agent’s choice
of action is situationally determined — in other words, pre-programmed or in
some way “hardwired” to execute given the occurrence of a particular set of
environmental conditions — then they can be described as non-deliberative. ��

An agent has bounded rationality if it is required to operate in “situations where the
complexity of the environment is immensely greater than the computational powers of the
[agent].” [Sim81, page 190].�

Genesereth and Nilsson prefer to describe such agents as “deliberate” [GN87, pages 325–
327].�

The distinction between deliberative and non-deliberative agents is similar to the distinc-
tion made by Simon [Sim81, pages 31–34] between systems exhibiting procedural rationality,
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Also of interest are architectures in which the choice of action is realised by
using some combination of deliberative and non-deliberative techniques. Such
agent architectures can be called hybrid.

The subject of this dissertation falls within the area of integrated agent
architecture design. As one might expect, integrated agent architecture re-
search shares roots with many of the research fields mentioned above. For
example, the architecture presented in this dissertation — the TouringMa-
chine agent control architecture — can be seen to borrow techniques from
control systems engineering (for example, self-regulation through negative
feedback), AI (for example, planning, causal reasoning), robotics (for example,
mobile domain, collision detection and avoidance), and also DAI (for example,
task coordination through modelling of agents’ actions and plans, recognising
and reconciling conflicting intentions among a collection of agents).

The design principles behind any control architecture must appropriately
reflect certain requirements of the different tasks and environments for which
it is being developed. This is true also of the TouringMachine control archi-
tecture. However, before discussing the particular criteria which were used
in arriving at the TouringMachine architecture, it would be useful — pri-
marily to characterise the various strengths and weaknesses of the different
extant design approaches — to review some representative examples of de-
liberative, non-deliberative, and hybrid agent architectures. Given the fairly
recent surge of interest in integrated agent architecture research and conse-
quent proliferation of proposed designs, it would be quite difficult to review
all existing agent architectures in this dissertation. As a result, the following
three sections will be limited by focussing on architectures which are rela-
tively mature and which, arguably perhaps, have been the most influential or
have made the largest impact in the field. �

2.2 Deliberative Architectures

Deliberative agent architectures have their roots in the sense-plan-act problem
solving paradigm of classical AI planning systems such as STRIPS [FN90] and
NOAH [Sac90]. The aim of these planning systems was to generate provably
correct action sequences or plans, which, upon separate execution, would have
the effect of achieving some desired goal state. The success of such planners

that is, systems which compute the rational thing to do; and systems exhibiting substantive
rationality which simply do the rational thing.�

For the interested reader, ACM SIGART Bulletin, Vol. 2, No. 4, 1991 [Lai91] includes
a special section on Integrated Cognitive Architectures containing discussion papers on a
number of architectures not reviewed here.
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rested on a number of important assumptions; namely, that the system would
have complete and up-to-date knowledge about the state of its world, that the
effects of its actions (as represented in its plan operators) would always be
correct and known in advance, and that the state of the world would remain
unchanged unless explicitly acted upon by the planner itself.

To deal with the uncertainty of generating plans in more complex dynamic
worlds, a number of planning systems have since been developed which can
interleave plan formation and execution (for example, NASL [McD90]) and
which can also monitor the execution of planned actions and initiate some
form of plan modification or replanning should the actions not achieve their
desired effect (for example, AUTOPILOT [TMC81] and ELMER [MRS82],
and the domain-independent planners SIPE [Wil85] and IPEM [AIS90]). The
plans generated by these systems typically contain explicit descriptions of the
conditions that are required to hold for correct plan execution; these conditions
are then periodically checked by the planner at execution time.

Planners which can interleave generation and execution are typically less
susceptible to errors caused by changes in the environment and thus more
able to cope with a degree of execution uncertainty. However, the planning
techniques typically employed by these systems can be very time-consuming
and so are not likely to be suited to domains where replanning is frequently
necessary, where the planner’s initial goals and intentions may themselves
need modifying at some stage, or where the time available for planning an
action varies depending on the planner’s situational circumstances [Geo90]. ���
More recently, however, a number of sophisticated planning systems have
been developed which, to a greater or lesser degree, are able to meet some of
these requirements. Some of these are now described.

2.2.1 IRMA — Bratman et al.

The Intelligent Resource-Bounded Machine Architecture (IRMA) [BIP88] is a
practical reasoning system — a system by which an agent forms plans —
aimed at producing rational behaviour in resource-bounded agents by includ-
ing a number of mechanisms which limit the amount of computation to be per-
formed. IRMA is a Belief/Desire/Intention (BDI) architecture as it includes
fairly direct representations of the agent’s beliefs, desires, and intentions. Ag-
ents’ intentions are viewed as being structured into larger plans, and, besides

���
As Bratman [BIP88] notes, replanning modules in such planners typically have the same

drawbacks as the planning modules themselves: as well as operating under the assumption
that the world around them is fixed during execution, they usually require complete and
correct information about all possible unexpected events.
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their functional role in producing actions, plans in IRMA are also viewed as
having a role in constraining the agent’s options for further reasoning.

The architecture incorporates a number of modules including an intention
structure (a time-ordered set of partial, tree-structured plans), a means-end
reasoner, an opportunity analyser, a filtering process, and a deliberation pro-
cess. The means-end reasoner suggests options for action by considering the
agent’s partial plans. Further options are suggested by the opportunity anal-
yser which monitors the agent’s environment for pertinent dynamic events.
All options are passed to the filtering process where they are tested — using
a compatibility filter — for consistency with the agent’s existing plans. Sur-
viving options are then passed to the deliberation process which, after due
consideration, will decide which new intention to adopt.

In addition to a compatibility filter, the filtering process contains a filter
override mechanism — effectively a user-level control knob which determines
the agent’s environmental sensitivity by controlling the number of new op-
tions the agent should consider for deliberation. Single-agent experiments
with the IRMA architecture using a number of different meta-level reasoning
(deliberation and filtering) strategies under a range of different environmental
conditions have been studied using the Tileworld simulation testbed [PR90].

2.2.2 AUTODRIVE — Wood

Motivated by the desire to address the different human task requirements
involved in vehicle driving, the AUTODRIVE architecture [Woo90] enables
agents to plan routes in a simulated multi-agent traffic environment. The
architecture is centred around a planner which integrates traditional problem
solving (the generation of hierarchical, temporally ordered route plans) with
a process called dynamic goal creation: the continual run-time creation and
modification of planning subgoals which, while aiming to address the planner’s
changing situational constraints, simultaneously strives to bring the agent
nearer its goal.

This style of plan generation is based on the notion of isolating the plan-
ner’s high-level goal stability (for example, its fixed, unchanging route plan)
from its subgoal or lower level action instability (for example, whether or not
it will encounter and have to stop at a red light). In order to identify poten-
tially relevant subgoals or situational constraints for incorporating into the
plan at run-time, the agent’s planner is extended with various modules for
performing dynamic world modelling: namely, perception, heuristic focus of
attention, and plan/intention recognition. By recognising other agents’ plans,
AUTODRIVE agents are able to associate observationally-derived informa-
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tion with that which can only be inferred abstractly. This then enables them
to make dynamic changes to their plans based on their predictions of possible
future conflicts or interactions.

2.2.3 Behaviour Hierarchies — Durfee and Montgomery

Durfee and Montgomery [DM90] have experimented with a number of
blackboard-based agents which autonomously and flexibly coordinate their
own activities by exchanging information about their intended task-related
behaviours. The agents, which set out with no prior knowledge about each
others’ tasks, employ a hierarchical negotiation protocol to exchange — itera-
tively at differing levels of abstraction — information about their anticipated
behaviours. The protocol is centred on the notion of a behaviour hierarchy
which is used by agents to represent their own behaviours and which, upon
comparison with the behaviour descriptions received from other agents, can
be used by the agent to discover potential task interactions.

Behaviour hierarchies subsume the traditional notions of plan and goal
hierarchies and can be used to represent several composition/decomposition
dimensions of an agent’s behaviour; namely, who the agent is, what it is trying
to achieve, when it is trying to achieve its task, where it intends to carry out
its task, how it is going to carry out its task, as well as why it is doing what
it is doing. Agents map received behaviours into their 6-dimensional local
behaviour representations and then proceed to identify interacting behaviours
which might have arisen through particular resource conflicts. Agents, which
are given unique authority levels to resolve such conflicts, can then decide
whether to continue by using an alternate, non-interacting behaviour (for
example, one that differs in terms of space or time), or whether to exchange
increasingly more detailed information in order to identify, in more specific
terms, how or whether the behaviours actually interact. Scenarios involving
up to three mobile agents, each attempting to plan collision-free paths through
a common area with shared access points have been analysed using the MICE
testbed [DM89].

2.2.4 Agent-Oriented Programming — Shoham

Shoham [Sho90] has proposed a computational framework called Agent-
Oriented Programming (AOP) for the specification and programming of ar-
tificial agents. Agents are defined as entities possessing formal versions of
mental state; that is, formal versions of knowledge, belief, and the like. In
their current form, AOP agents can be considered purely deliberative. In ad-
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dition, AOP agents are assumed to be operating in non-physical environments
without any time pressure.

From an engineering point of view, AOP can be regarded as a specialisation
of object-oriented programming in which the objects — in this case, agents —
can possess various mental states about themselves and about one another.
From a formal point of view, AOP can be regarded as a specialisation of a
formal language (a temporalised epistemic logic of belief) augmented with
various modal operators such as commitment, choice (commitment to oneself),
and capability.

The AOP framework includes three components: (i) a restricted formal lan-
guage for describing an agent’s mental state — specifically, an explicit-time,
point-based temporal logic with the two basic modalities of belief (the stan-
dard KD45 operator � ) and commitment (a ternary KD4 operator �������
	���������
signifying that the agent 	 is committed to  about � ); (ii) an as yet unimple-
mented interpreted programming language whose semantics are to be derived
directly from the semantics of agent mental state; and (iii) a compiler based on
Rosenschein and Kaelbling’s compiler for situated automata (see Section 2.3
below) from the agent-level language to an abstract model of processes.

2.2.5 Homer — Vere and Bickmore

Homer [VB90] is an integrated AI artifact which is embedded in a simu-
lated, single-agent, object-cluttered marine environment called the Seaworld.
Homer integrates a number of deliberative capabilities including limited nat-
ural language generation and recognition (using an 800-word English vocab-
ulary and medium coverage grammar), temporal planning and reasoning,
acting on and perceiving its environment, as well as the ability to reflect upon
its own experiences.

Homer’s operations are centred around a temporal planner which it uses
to synthesise plans in response to a human user’s natural language goal com-
mands. Goal commands typically include time constraints on their achieve-
ment and preservation. The planner then imposes goal protection conditions
which are constantly monitored in order to detect plan violations, both at
plan time or later during execution. Associated with the planner is a set of
declarative activity models in precondition/postcondition format, describing
all of the actions, inferences, and events that the agent knows about. Homer
employs one of these actions — the “go” action — to plan collision-free trajec-
tories to desired locations. Besides being able to form and retain compound
future plans, Homer’s planner is also capable of limited replanning in order
to accommodate additional goals that are given to it.
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Homer sets out with limited knowledge of its world, eventually gaining
new information about the different objects in its world either by perceiving
them or by being told about them directly by the user. Homer time-stamps
and records all events which have transpired in its life by placing these in
its episodic memory. Homer’s events include its perceptions, all of the goal
commands and questions it has previously received from the user, as well as
any actions that it has taken. With the use of its temporal planner and various
reflective processes for monitoring and processing its personal memory, Homer
is able to make inferences and provide answers to a range of questions about
its past experiences, present activities and perceptions, as well as its future
intentions.

2.3 Non-deliberative Architectures

A number of new architectures have recently been proposed which, when com-
pared to the deliberative architectures described above, adopt a radically dif-
ferent stance vis-à-vis how they select which actions to take. Non-deliberative
architectures — including those often referred to as reactive, situated, or
behaviour-based — typically make all necessary control decisions at run-time
on the basis of limited amounts of information (usually only that which is cur-
rently available from their sensors), limited internal state, and with a minimal
amount of inference [HF90]. ���

Whereas traditional planners are required to produce optimal or correct
actions, non-deliberative architectures are designed to produce robust actions.
Typically built from relatively simple control mechanisms — for example,
finite-state machines (FSMs) or domain-specific stimulus-response rules —
the design of such architectures is motivated, in part, by Simon’s hypothesis
that complex behaviour in an agent need not necessarily be the product of a
complex internal design; rather, the complexity of the agent’s behaviour may
simply be a reflection of the complexity of the environment in which it operates
[Sim81, page 64].

The common emphasis in these systems is put on, among other things,
fairly direct coupling of perception to action, decentralisation of control, dy-
namic interaction with the environment (characteristics of the environment
are exploited to serve the functioning of the agent), as well as intrinsic mecha-

���
In the extreme case where the agent has no internal state (its activity, therefore, being

determined entirely by its current environment), it is referred to as a tropistic agent [GN87,
pages 307–311]. Most, if not all, existing non-deliberative architectures do make use of some
internal state; what all of them avoid, however, is the need to store and maintain complete
and correct internal models of their worlds.
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nisms for dealing with innate resource limitations and incomplete knowledge
[Mae90]. To gain a better understanding of how such systems work, a number
of non-deliberative agent architectures are described below.

2.3.1 Subsumption Architecture — Brooks

Brooks has developed a methodology and architecture — the subsumption ar-
chitecture — for controlling a number of mobile robots known as artificial be-
ings [Bro86] or Creatures [Bro91b]. The subsumption architecture is a layered
controlled system in which each layer, rather than implementing some individ-
uated control function such as perception, memory, attention, or judgement,
realises instead a particular task-achieving behaviour or domain-specific com-
petence (for example, obstacle avoidance, random wandering). This way of di-
viding up an agent’s faculties is often referred to as a vertical decomposition,
in contrast with the more conventional horizontal method of faculty decompo-
sition [Fod83, pages 10–23] used by, among other things, traditional planning
systems.

Each layer in the subsumption architecture is composed of a fixed-topology
network of FSMs, together with one or more data registers and internal timing
units. Layers communicate with each other using fixed-length messages over
low-bandwidth channels or wires. The FSMs within a layer can be made
to change state upon the arrival of messages from other layers or after the
expiration of designated time periods. Layers operate asynchronously and in
parallel with each other and do not employ any shared global memory.

Control is layered (non-hierarchically) with higher level layers subsuming
the roles of the lower level layers when they wish to take control. In par-
ticular, layers are able, for finite pre-programmed time periods, to substitute
(suppress) the inputs to and remove (inhibit) the outputs from lower level
layers, and thus affect the normal flow of data within the layers. Careful pro-
gramming of this inter-layer control will have the overall effect of “biasing”
the agent’s actions toward achieving its higher level goals while still attending
to its lower level or more critical goals. Robots controlled using the subsump-
tion approach have been successfully deployed for such tasks as indoor room
exploration, map building, and simple route planning [Bro91a].

2.3.2 Situated Automata — Rosenschein and Kaelbling

Rosenschein and Kaelbling have developed an architecture for real-time op-
eration based on the foundations of situated automata theory [Kae87, Kae91].
Situated automata theory is a formal semantics of embedded computation
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which gives a specification of the information content of the internal states
of a machine in terms of the external states of the environment in which the
machine is embedded. This specification can be described thus: when a ma-
chine is in state � it can be said to carry the information that � iff whenever
the machine is in state � , the proposition � holds in the environment; in such
a situation, the machine is said to “know” � .

This theory of computation has lead to a programming methodology for
embedded agents in which an agent is viewed as performing a transduction
from the stream of perceptual inputs that it receives from the environment to
a stream of actions that it then effects upon the environment. Computation
within an agent is modelled as a finite-state machine, expressed as a fixed-
depth sequential circuit which is guaranteed to perform its computations in
constant-time bounded steps.

The situated automata approach is designed to allow the automatic compi-
lation of high-level task/environment descriptions into low-level reactive con-
trol mechanisms. To assist in this task, the authors have developed Gapps,
a high-level goal-reduction language which facilitates the programming of an
agent’s action component by automatically generating appropriate combina-
tional logic networks (condition-action rules), and Rex, a Lisp-like hardware
description language for generating low-level executable sequential circuits.

2.3.3 Pengi — Agre and Chapman

Pengi [AC87] is an autonomous agent (a penguin) that operates in a simulated
world (a real-time video game) which it cohabits with a number of hostile
predator agents (killer bees). Pengi’s design was inspired by investigations
into the dynamics of routine activity, the results of which would suggest,
according to Agre and Chapman, that activity mostly derives from very simple
sorts of machinery interacting with an agent’s immediate situation.

Pengi’s activity is based on the notion of a routine — a pattern of interaction
between the agent and its world. Routines are opportunistic and are typically
not represented within the agent itself. An agent engaging in a routine is
not driven by any preconceived notion of what will happen; rather, when the
situation changes, other responses simply become applicable. Such an agent
can be said to improvise its actions. In addition, Pengi’s activity is also guided
by focussing on relevant properties of the immediate environment. Agre and
Chapman call such properties the agent’s indexical-functional aspects. In
such a framework, the agent accesses the world by using terms in an agent-
centred ontology (for example, the-block-I’m-pushing) rather than by using a
more traditional and computationally more expensive objective ontology such
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as first-order logic which would require the instantiation of variables.
The agent architecture is composed of a central system and a peripheral

system. The central system is implemented as a combinational network of
situation-action rules and is responsible for selecting actions that are ap-
propriate given the agent’s present situational circumstances. The periph-
eral system is responsible for processing perceptions and for effector control.
Guided by the central network, and with the use of a set of domain-tailored
visual routines, the peripheral system is charged with identifying, marking,
and indexing those aspects — that is, the intrinsic features and properties of
particular local objects — in the environment which are deemed relevant to
the agent’s goal.

2.3.4 Reactive Action Packages — Firby

Firby has developed a reactive planner based on the notion of Reactive Action
Packages (RAPs) [Fir87]. RAPs are effectively autonomous processes which
pursue a given planning goal until that goal is achieved. If the planner has
several goals, then it will correspondingly have several independent RAPs,
each trying to achieve its own particular goal.

The reactive planner is composed of a RAP execution queue, a RAP in-
terpreter, a constantly updated current world model, as well as a hardware
interface to the robot’s sensors and effectors which also provides feedback to
the planner’s world model about action execution failures and/or successes.
RAPs consist of a predefined set of methods for achieving some particular
goal. Methods, which are annotated with suitable applicability constraints,
are either primitive commands — actions sent to the robot hardware interface
— or consist of a task net — a partially ordered network of subtasks.

RAPs sit on the planner’s execution queue and wait to be selected by the
RAP interpreter. RAPs are selected on the basis of the planner’s approaching
temporal deadlines and according to any ordering constraints which reside in
the RAPs’ task nets. When selected, a RAP will consult the world model and,
based solely on the current situational information that it finds, will either
issue a command to the hardware interface or will be interpreted through
the processing of its task net. Such processing has the effect of placing a
RAP’s task net (subgoal) commands on the execution queue for subsequent
processing. RAPs will be returned to the execution queue if they are waiting
for some subgoal to execute: at that point, another RAP may be selected, so
RAP execution effectively becomes interleaved. Since each RAP has control
over the execution queue for no more than one cycle at a time, and since
inferences made on the current world model are always tightly constrained (for
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example, no backward inferences are performed on queries and no predictions
are made of the agent’s future state) the planner can guarantee a high degree
of reactivity.

2.3.5 Universal Plans — Schoppers

Universal plans [Sch87] are a representation for agent behaviours that specify
appropriate actions (reactions) for all of the situations that can be classified
and perceived within a particular domain. A universal plan is effectively a
highly conditional linearised plan or decision tree which, given any initial
starting state in the environment, can map each possible world state to a
specific action to be taken by the agent. Unlike the actions in the plans of tra-
ditional planners, actions in a universal plan are selected via a classification
of the actual situation encountered at execution time. In order to do this, the
universal plan must explicitly identify all of the world state predicates that
will need to be monitored at execution time.

Universal plans are compiled in advance with a nonlinear planner using
a process of backchaining and goal-reduction on a set of state-space STRIPS-
like operator schemas. The decision tree that results from the compilation
process embodies the agent’s top-most goal condition (root node of the tree)
plus the various subgoals (remaining nodes) of this top-most goal. During
execution, the compiled plan is interpreted in order to find, at each time
instant, the action that is appropriate for the current state of the world.
Initially, the agent’s top-most goal is achieved by backchaining down through
its precondition subgoal arcs, looking for any node (operator) conditions that
are false and then identifying whatever actions need to be taken to make the
particular node preconditions true. Once an appropriate action is found, it is
executed continuously until the truth value of some state predicate changes,
after which the tree is traversed again in order to find the next appropriate
action.

If the world is cooperative long enough, the planner’s actions will have their
intended effect and so its behaviour, in the long run, will be goal-directed. If,
on the other hand, an action fails to achieve its desired effect, no replanning
(in the traditional planning sense) is necessary, but rather only the selection
of a new initial point from which to execute the plan.

2.3.6 Dynamic Action Selection — Maes

Maes [Mae90] proposes an action selection algorithm which views an auton-
omous agent as a collection of competence modules. The modules resemble
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operators in a classical planning system: in other words, they specify the
preconditions necessary to become active, as well as their expected effects,
the latter being expressed using a STRIPS-like add-/delete-list representa-
tion. In addition, each module has an associated activation level. Like the
situation-action rules in the agent Pengi described above, Maes’ modules es-
chew variables, making use instead of the agent’s indexical-functional aspects.

Competence modules are inter-linked in a network using three types of
links (successor, predecessor, and conflicter) that indicate which modules make
references to each another — this information resides within their precondi-
tion lists and/or their execution add- and delete-lists. The modules use these
links to activate or inhibit each other so that after some time the activation
energy accumulates in those modules which represent the “best” actions to
take. Modules are selected for execution when their activation levels reach
some pre-defined threshold.

Input of activation energy comes from both the currently observed situ-
ation (represented as a set of propositions) and from the global goals of the
agent. Inhibitions are carried out by those goals of the agent’s which have
already been achieved or which need subsequently to be protected. The global
behaviour of the action selection algorithm is mediated through a collection
of user-level parameters which are used to set such things as the module
activation threshold ( � ), activation energy levels injected into the network by
observed propositions ( � ) and goals ( � ), and the activation energy consumed by
protected goals ( � ). In Maes’ algorithm the control structure which regulates
when a particular action gets activated is emergent: the dynamics of inter-
action between the actions (modules) themselves establishes the sequence of
selected actions in a completely distributed way.

2.4 Hybrid Architectures

A critical problem facing a non-deliberative agent is that should its environ-
ment diverge enough from that for which it was originally designed, then the
agent may end up producing inappropriate behaviours. While such an agent
might be robust enough to avoid producing harmful or fatal behaviours — per-
haps even over extended periods of time — it is not so clear whether it would
also be capable of behaving in such a way that it was able to carry out its
intended long-term tasks in an effective manner. To address such a problem,
a number of architectures have recently been proposed which, to a greater
or lesser degree, aim to provide agents with appropriate reactive capabili-
ties, while at the same time permitting high-level, deliberative and predictive
reasoning about plans or goals. A number of these hybrid architectures are
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described below.

2.4.1 Procedural Reasoning System — Georgeff et al.

The Procedural Reasoning System (PRS) [GI89, KG91] is a system for con-
trolling and carrying out the high-level reasoning of a robot that combines
traditional means-end reasoning with the abilities to react to unanticipated
events and to change goals and intentions as situations warrant. PRS has
been used to control the movements of a real robot operating in an single-
agent, indoor navigation domain [GLS87].

A PRS agent comprises a set of changing beliefs (facts about the world), a
set of current goals or desires, a set of procedural plan schemas or Knowledge
Areas (KAs) which describe how to achieve its goals and how to react to partic-
ular events, an interpreter for manipulating each of these components, and a
process stack of currently active KAs or intentions. PRS operates as a partial,
hierarchical planner, its interpreter permitting the interleaving of planning
and execution. As KA interpretation is time-bounded, a guaranteed level of
responsiveness can always be maintained.

The set of KAs also includes metalevel KAs. Interpreted in the same
manner as regular KAs, these metalevel routines contain application-specific
knowledge which instruct the agent how to manipulate its own beliefs, desires,
and intentions; how to prioritise and select among conflicting KAs; and how
to make best use of the available resources given the system’s changing real-
time constraints. The agent’s beliefs and goals determine which KAs are to
be considered for execution and, as KAs are executed, new subgoals will be
posted and new beliefs derived.

2.4.2 Adaptive Intelligent Systems — Hayes-Roth

An Adaptive Intelligent System (AIS) is a knowledge-based system that rea-
sons about and interacts with other dynamic entities in real time
[HR88, HR90]. For an AIS to be effective, it must be capable of perception,
action, cognition, and attentional focus.

Hayes-Roth has developed an AIS called GUARDIAN for use in an in-
tensive care patient monitoring application. GUARDIAN comprises a cogni-
tive component, a set of asynchronous I/O subsystems, a set of dynamic I/O
channels, and a satisficing reasoning cycle. Implemented as a parallel black-
board system, the cognitive component performs general-purpose reasoning
by engaging in dynamic control planning. This is a process for incremen-
tally constructing and modifying control plans: temporally ordered patterns
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of control decisions, each of which describes a class of operations the agent
intends to perform during a particular period of time. Operations within the
cognitive component are cyclically processed in turn by an agenda manager,
an operations scheduler, and an operations executor.

GUARDIAN’s asynchronous I/O subsystems integrate perception with cog-
nition, as well as relaying intended actions to the agent’s effectors. The
dynamic I/O channels integrate the agent’s sensors and effectors with the
cognitive component by implementing a range of pre-processing and heuristic
selective attention functions. GUARDIAN employs a satisficing reasoning cy-
cle in order to provide the guaranteed latency required for real-time operation.
This is achieved through the use of a heuristic operations control policy, the
role of which is to limit the total number of operations to be processed by the
cognitive component. The policy is defined by a set of cycle parameters which,
with the use of feedback from the I/O channels, can be fine-tuned at run-time
for improved system performance.

2.4.3 Dynamic Reaction — Hendler et al.

Hendler et al. have recently developed a collection of agent architecture de-
signs based on the notion of dynamic reaction, a set of techniques for manag-
ing observation and action in dynamic domains [SH88]. Most recently, these
techniques have been extended to interact with a planning system called the
Abstraction-Partitioned Evaluator (APE) architecture which has been tested
in a simulated, single-agent, indoor navigation domain [SH90].

The APE architecture is composed of a number of concurrent, hierarchi-
cally abstract action control layers, each representing and reasoning about
some particular aspect of the agent’s task domain. Implemented as a parallel
blackboard-based planner, the five layers — sensor/motor, spatial, tempo-
ral, causal, and conventional (general knowledge) — effectively partition the
agent’s data processing duties along a number of dimensions including tempo-
ral granularity, information/resource use, and functional abstraction. Percep-
tual information flows strictly from the agent sensors (connected to the sen-
sor/motor level) toward the higher levels, while command or goal-achievement
information flows strictly downward towards the agent’s effectors (also con-
nected to the sensor/motor level).

Besides mechanisms for communicating with other layers, each layer in
the APE architecture comprises a number of other modules which include
a NASL-like planner which is capable of interleaving plan generation and
execution, a collection of NOAH-like plan operators for carrying out various
reactive and deliberative tasks, and a State of Affairs (SOA) structure which
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contains an up-to-date model of the agent’s world as well as records of the
agent’s current goals. The plan operators also contain a number of monitors —
independent information gathering components whose duties include sending
reports to the SOA model of any significant observed events or plan constraint
violations and initiating replanning and taking action in the light of predicted
exceptions.

2.4.4 Phoenix — Cohen et al.

The Phoenix project [CGHH89, HHC90, HC90] is an investigation into real-
time agent behavioural ecology — that is, the functional relationships be-
tween the designs of agents, the environments in which they operate, and
their resulting behaviours. Phoenix is also a real-time, adaptive planning
architecture used for controlling a variety of different autonomous and semi-
autonomous agents embedded in a simulated forest fire domain.

Phoenix agents are composed of two parallel and nearly independent mech-
anisms for generating actions. The first of these, the reflexive component, is
designed to generate immediate reactions to a range of different environmen-
tal situations. The second mechanism, the cognitive component, is charged
with performing longer term, computationally expensive planning. Each com-
ponent is independently connected to the agent’s sensors and action effectors.

The cognitive component has ultimate control of the agent’s actions. Its
main duty is to instantiate and execute stored plans using a method of deferred
commitment called lazy skeletal refinement. In addition, the cognitive com-
ponent is also responsible for responding to interrupt flags set by the agent’s
reflexive component, for handling communications with other agents, and for
performing such functions as plan selection and scheduling, error recovery and
replanning, as well as monitoring of the agent’s plans and activities. Activity
monitoring is accomplished with the use of envelopes — in-plan, predictive
processes which can be used both to assess expectations of progress and also
to generate recovery actions or plans when these expectations are not met.

2.4.5 Decision-Theoretic Control — Ogasawara

Ogasawara [Oga91] has developed a mobile robot control system for navigat-
ing and map building in a simulated environment containing a number of fixed
and moving obstacles. The architecture is composed of a set of task-oriented,
subsumption-like behavioural modules, with one for each of the three tasks
performed by the agent: Avoid Obstacles, Get to Goal, and Build Map. The
architecture also comprises a centralised world model structure and an arbi-
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tration procedure for mediating and selecting among the agent’s competing
behaviours.

Each behavioural module has access to a number of problem solving strate-
gies, each differing in terms of its computational cost or solution accuracy.
Behavioural modules store local (per-module) decision-theoretic formulations
of the utilities of specific outcome states (for example, hitting a wall) and the
probabilities of each problem solving strategy yielding a particular action se-
quence output. Once computed, behavioural modules send their utilities and
probabilities to the arbitration module which, upon application of a multi-
attribute utility estimation function, will ultimately determine the agent’s
optimal problem solving strategy, information action (if any), and base-level
motor action.

2.5 Intelligent Agency — The Issues

An autonomous agent operating in a complex environment is constantly faced
with the problem of deciding what action to take next. As Hanks and Firby
[HF90] point out, formulating this problem precisely can be very difficult since
it necessitates consideration of a number of informational categories which are
often difficult to ascertain — for example, the benefits and costs to the agent
of executing particular actions sequences; or which have been demonstrated
from previous research to be problematic to represent — for example, models of
agents’ beliefs and desires about a world which is complex and unpredictable.

The control problem in an agent is the problem of deciding how to manage
these various sources of information in such a way that the agent will act in
a competent and effective manner. This problem, Hanks and Firby [HF90]
suggest, amounts to balancing two “reasonable” approaches to acting in the
world: the first, deliberation, involves making as many decisions as possible
as far ahead of time as possible; the second approach, reaction, is to delay
making decisions as long as possible, acting only at the last possible moment.
At a glance, the first approach seems perfectly reasonable since, clearly, an
agent which can think ahead will be able to consider more options and thus,
with forethought, be more informed when deciding which action to take. On
the other hand, since information about the future can be notoriously unreli-
able and, in many real-world situations, difficult or even impossible to obtain
given the agents’ changing time constraints, it would also seem reasonable
that acting at the last moment should be preferred. In fact, except perhaps for
a small number of special-case task domains, it would seem much more rea-
sonable to assume that neither approach — deliberation or reaction — should
be carried out to the full exclusion of the other.
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As described in the previous chapter, this dissertation is concerned with the
design and implementation of an integrated software control architecture —
the TouringMachine architecture — suitable for controlling the actions of an
autonomous agent operating in complex environments. Of particular interest
in this dissertation is the integrated control of an autonomous, mobile agent
capable of rationally carrying out a number of routine tasks in a complex
multi-agent traffic domain — the TouringWorld .

The tasks or duties to be carried out by each agent in the TouringWorld are
prioritised in advance by the agent’s designer and include goals like avoiding
collisions with other mobile agents and fixed obstacles, obeying a commonly
accepted set of traffic regulations, and also relocating from some initial lo-
cation to some target destination within certain time bounds and/or spatial
constraints. Besides being limited in terms of its internal computational re-
sources, each TouringMachine will start out with only limited knowledge of its
world: in particular, although each TouringMachine possesses a topological
map of the various paths and junctions defining all of the navigable routes in
the world, it will have no prior knowledge regarding other agents’ locations or
goals or the obstacles it might encounter en route. In addition, each Touring-
Machine has limited means for monitoring and acquiring information from
its surroundings and will be restricted in its capacity to communicate with
other agents: intentions to turn or overtake are communicated via primitive
signalling alone, much like a human driver does in a car.

The aim of this dissertation is to produce an integrated control architec-
ture which will enable TouringMachines to carry out tasks and act on their
environments autonomously and in accordance with a set of domain-specific
evaluation criteria, namely, effectiveness, robustness, and flexibility. These
criteria suggest a broad range of behavioural and functional capacities that
each TouringMachine might need to possess :

� A TouringMachine should be capable of autonomous operation. Opera-
tional autonomy requires that the agent have its own goals and be able to
select among these as and when required. In addition, as Covrigaru and
Lindsay [CL91] argue, the agent should, among other things, be capable
of interacting with its environment, be able to move (preferably fluidly)
around its environment, have selective attention (this is also desirable
since TouringMachines have limited computational resources), have a
varied behavioural repertoire, and have differential responsiveness to a
variety of environmental conditions.

� A TouringMachine should carry out its goals in an effective manner. Ef-
fective goal achievement requires that the agent be capable of carrying
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out its multiple tasks in an efficient and timely manner. Since among its
various tasks, a TouringMachine must navigate along some route within
a pre-specified time limit, the agent should be able to reason predictively
about the temporal extent of its own actions. Also, because Touring-
Machines will operate in a partially-structured multi-agent world, they
should, in order to complete their tasks, be able to coordinate their activ-
ities with other agents that they might encounter: that is, they should
be capable of cooperation. ���

� A TouringMachine should be robust to unexpected events. Successful
operation in a real-time dynamic environment will require that Touring-
Machines be able to identify and handle — in a timely manner — a host of
unexpected events at execution-time. For many events (such as the sud-
den appearance of a path-blocking obstacle) an agent will have little or no
time to consider either what the full extent of its predicament might be
or what benefits consideration of a number of different evasive manoeu-
vres might bring. In order to cope with such events, TouringMachines
will need to operate with guaranteed responsiveness (for example, by
using latency-bounded computational and execution techniques) as well
as being fairly closely-coupled to their environments at all times. Since
the time and location of such events will be unpredictable, TouringMa-
chines will need to monitor their surroundings continually throughout
the course of their goals.

� A TouringMachine should be flexible in the way it carries out its tasks.
Due to the dynamic and unpredictable nature of the TouringWorld en-
vironment, and the fact that its multiple inhabitants must operate in
real time with limited world knowledge, TouringMachines will inevitably
be faced with various belief and/or goal conflict situations arising from
unforeseen interactions with other agents. ��� Agents operating cooper-
atively in complex domains must have an understanding of the nature
of cooperation. This, Galliers [Gal90] argues, involves understanding
the nature and role of multi-agent conflict. To behave flexibly and to

�	�
Following Bond and Gasser [BG88, page 19], cooperation in the TouringWorld is viewed

simply as a special case of coordination among non-antagonistic agents. While TouringMa-
chines are not actually benevolent (they are selfish with respect to their own goals and have
the ability to drop or adopt different intentions according to their own preferences and situ-
ational needs) they are also not antagonistic since they do not intentionally try to deceive or
thwart the efforts of other TouringMachines .��


Since TouringMachines operate in a multi-agent environment but perform actions purely
for their own purposes (that is, they do not cooperate on a common plan), their interactions
can be described as being merely contingent [Dav90, page 439].
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adjust appropriately to changing and unpredicted circumstance, Tour-
ingMachines should be designed to recognise and resolve unexpected
conflicts rather than to avoid them. Also, for the purposes of control and
coordination, TouringMachines must be able to reason about their own
and other agents’ activities. In this respect, each TouringMachine must
have the capacity to objectify particular aspects of the world — that is,
to construct and deploy internal models of itself and of other agents —
to see where it fits in the coordinated process and what the outcomes of
its own actions might be [BG88, page 25].

Although much of the above functionality could be described as deliberative
(for example, reasoning about the temporal extent of actions, conflict resolu-
tion, reflexive modelling), it is unclear whether a strictly deliberative control
approach based on traditional planning techniques would be adequate for suc-
cessful operation in the TouringWorld domain. Most classical planners make
a number of important simplifying assumptions about their domains which
cannot be made about the TouringWorld : namely, that the environments
remain static while their (often arbitrarily long) plans are generated and exe-
cuted, that all changes in the world are caused by the planner’s actions alone,
and that their environments are such that they can be represented correctly
and in complete detail. Given that the TouringWorld is dynamic and multi-
agent and given that TouringMachines also have inherently limited physical
and computational means for acquiring information about their surround-
ings, it seems clear that a strictly traditional planning approach to controlling
TouringMachines would be unsuitable. Also, while it is true that planning
systems capable of execution monitoring and interleaved planning and execu-
tion represent a significant advance on the earlier traditional planners, their
usefulness in a highly dynamic and real-time domain like the TouringWorld
is questionable, particularly given the reservations expressed in Section 2.2
above (and echoed by Georgeff [Geo90] and Bratman et al. [BIP88]) concerning
their computational efficiency and inability to cope with situationally-varying
time constraints.

Similarly, while the inclusion of at least some degree of non-deliberative
control in TouringMachines would seem essential — particularly since the ag-
ents will need to be closely coupled to their environment, robust to unexpected
events, and able to react quickly to unforeseen events and operate with guar-
anteed levels of responsiveness — it is questionable whether non-deliberative
control techniques alone will be sufficient for providing TouringMachines with
the complete behavioural repertoire necessary for successful operation in the
TouringWorld environment. This argument deserves closer consideration.

The strength of purely non-deliberative architectures lies in their ability
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to identify and exploit local patterns of activity in their current surround-
ings in order to generate more or less hardwired action responses (using no
memory, predictive reasoning, and only minimal state information) for a given
set of environmental stimuli. Successful operation using this method of con-
trol presupposes: (i) that the complete set of environmental stimuli required
for unambiguously determining subsequent action sequences is always pres-
ent and readily identifiable — in other words, that the agent’s activity can
be strictly situationally determined; (ii) that the agent has no global task
constraints — for example, explicit temporal deadlines — which need to be
reasoned about at run-time; and (iii) that the agent’s goal or desire system is
capable of being represented implicitly in the agent’s structure according to a
fixed, pre-compiled ranking scheme.

Situationally determined behaviour will succeed when there is sufficient
local constraint in the agent’s environment to determine actions that have
no irreversibly detrimental long-term effects. Only then, as Kirsh [Kir91]
argues, will the agent be able to avoid representing alternative courses of
actions to determine which ones lead to dead ends, loops, local minima, or
generally undesirable outcomes. It follows, then, that if the agent’s task
requires knowledge about the environment which is not immediately available
through perception and which can, therefore, only be obtained through some
form of inference or recall, then it cannot truly be considered situationally
determined. Kirsh [Kir91] considers several such tasks, a number of which are
pertinent to the TouringWorld domain: activities involving other agents (as
these often require making predictions of their behaviour and reasoning about
their plans and goals [Dav90, page 395]); activities which require responding
to events and actions beyond the agent’s current sensory limits (such as taking
precautions now for the future or when tracking sequences of behaviours that
take place over extended periods of time); as well as activities which require
some amount of reasoning or problem solving (such as calculating a shortest
route for navigation). ��� The common defining feature of these tasks is that,
besides requiring reliable and robust local control to be carried out, they also
possess a non-local or global structure which will need to be addressed by
the agent. For instance, to carry out a navigation task successfully in the
TouringWorld an agent will need to coordinate various locally constrained (re-
)actions such as slowing down to avoid an obstacle or slower moving agent
with other more globally constrained actions such as arriving at a target
destination within some pre-specified deadline.

���
Kirsh also considers a set of non-situationally determined tasks which, while not carried

out in the TouringWorld domain, nevertheless reflect key aspects of intelligent behaviour.
These include activities which are creative and therefore stimulus free, such as much of
language use, musical performance, mime, and self-amusement [Kir91, page 173].
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While non-deliberative control techniques ensure fast responses to chang-
ing events in the environment, they do not enable the agent’s action choices
to be influenced by deliberative reasoning. In most non-deliberative architec-
tures, the agent’s goals are represented implicitly — in effect, embedded in the
agent’s own structure or behavioural rule set. When goals are not represented
explicitly, Hanks and Firby [HF90] argue, they will not be able to be changed
dynamically and there will be no way to reason about alternative plans for
carrying them out. ��� Maes [Mae90] also argues that without explicit goals, it
is not clear how agents will be able to learn or improve their performance.

Complex agents will need complex goal or desire systems — in particular,
they will need to handle a number of goals, some of which will vary in time,
and many of which will have different priorities that will vary according to
the agent’s situational needs. The implications of this, Kirsh [Kir91] argues,
is that as agents’ desire systems increase in size, there will be a need for some
form of desire management, such as deliberation, weighing competing benefits
and costs, and so on.

There are undoubtedly a number of real-world domains which will be suit-
able for strictly non-deliberative agent control architectures. It is less likely
whether there exist any realistic or non-trivial domains which are equally
suited to purely deliberative agents. What is most likely, however, is that
the majority of real-world domains will require that intelligent autonomous
agents be capable of a wide range of behaviours, including some basic non-
deliberative ones such as perception-driven reaction, but also including more
complex deliberative ones such as flexible task planning, strategic decision-
making, complex goal handling, or predictive reasoning about the beliefs and
intentions of other agents.

The thesis of this dissertation is that it is both desirable and feasible to
combine suitably designed deliberative and non-deliberative control functions
to obtain effective, robust, and flexible behaviour from autonomous, task-
achieving agents operating in complex environments. The arguments put for-
ward so far have attempted both to outline some of the broader functional
and behavioural requirements for intelligent agency in complex task domains
like the TouringWorld , and also to justify a hybrid control approach that
integrates a number of deliberative and non-deliberative action control mech-
anisms. Remaining issues, such as how these particular requirements should
be approached and designed for, and also how such design solutions are to be
realised within the framework of a practical integrated architecture will be

���
Note that these criticisms apply equally to systems whose goals are hardwired directly

by the designer (for example, Pengi [AC87] or Creatures [Bro91b]) and to those whose goals
are obtained through automatic compilation (for example, Kaelbling’s situated automata
[Kae91]).
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the main focus of Chapters 3 through 6.
In addition to addressing the conjecture concerning the suitability of a hy-

brid control approach, the proposed control architecture is intended to address
the importance of and need for extensive empirical evaluation of integrated
agent architectures, not merely in terms of the per-agent, task-oriented crite-
ria identified earlier in this section (effectiveness, robustness, and flexibility),
but also in terms of the controlled agents’ behavioural ecology [CGHH89] —
that is, in terms of the functional relationships between agent design (agents’
internal structures and processes), agent behaviour (the choice of tasks to be
solved and the manner in which they are solved), and environmental charac-
teristics. To address these issues, a highly parametrized and instrumented
multi-agent simulation testbed has been implemented in conjunction with the
TouringMachine control architecture. Enabling controlled, repeatable experi-
mentation and facilitating the creation of diverse single- and multi-agent task
scenarios, the TouringWorld Testbed is described in more detail in Chapter 7.
Some preliminary experimentation with and analysis of the TouringMachine
architecture is then presented in Chapter 8.



3

TouringMachines

‘You see how it works, don’t you? There’s some sort of danger centering
at the selenium pool. It increases as he approaches, and a certain distance
from it Rule Three potential, unusually high to start with, exactly balances
the Rule Two potential, unusually low to start with.’

Donovan rose to his feet in excitement. ‘And it strikes an equilibrium.
I see. Rule Three drives him back and Rule Two drives him forward—’

‘So he follows a circle around the selenium pool, staying on the locus
of all points of potential equilibrium. And unless we do something about
it, he’ll stay on the circle forever, giving us the good old runaround.’

Isaac Asimov, Runaround

3.1 Introduction

Operating in real-world domains means having to deal with multiple events
at several levels of granularity — both in time and space. In these domains
an agent will often need to perform complex tasks requiring it to pay some
degree of attention to environmental change, temporal deadlines, computa-
tional resource bounds, and the impact the agent’s shorter term actions might
be having on its longer term goals. An agent, however, cannot be expected to
model its surroundings in every detail as there will simply be too many events
to consider, a large number of which will be of little or no relevance anyway.

To operate successfully in the chosen TouringWorld domain, an autonomous
resource-bounded mobile agent must be both robust and flexible — it must
be capable of carrying out its intended goals in the presence of dynamic,
unpredictable events. To do this, the agent must be capable of exhibiting
a range of different skills and behaviours. First, it will need to be reactive
to deal with events which it may not have had sufficient time or resources to
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consider: since time will not stop or slow down for the agent to deliberate upon
all possible courses of action for every world state, it must remain reactive if it
is to survive long enough to complete its various tasks. Secondly, since one of
the agent’s main tasks in the TouringWorld will be to get from some starting
location to some target destination within some specified time, it should be
capable of rational goal-directed behaviour. And thirdly, since it will inhabit
a world populated by other complex intentional entities — about which very
little will be known in advance — it must be able to reason about what events
are taking place around it, determine what effect these events could have on
its own goals, and, within the real-time constraints imposed upon it by its task
environment, select timely and appropriate action sequences which enable it
to coordinate with any other agents that may be present.

What is required, in effect, is an agent architecture that can cope with
uncertainty, react to unforeseen events, and recover dynamically from poor
decisions. All of this, of course, on top of accomplishing whatever tasks the
agent was originally assigned to do. Because the skills needed to operate in
the TouringWorld have such disparate characteristics and requirements, the
most sensible way of realising them, it will be argued below, is as separate
activity-producing behaviours in a layered control framework. This has been
the approach adopted in designing and implementing TouringMachines .

3.2 Overview

The TouringMachine agent architecture comprises three separate control lay-
ers: a reactive layer � , a planning layer � , and a modelling layer � . The three
layers (see Figure 3.1) are concurrently-operating, independently-motivated,
and activity-producing: not only is each one independently connected to the
agent’s sensory apparatus (via the agent’s Perception Subsystem — see Sec-
tion 3.3.1 below) and has its own internal computational mechanisms for
processing appropriate aspects of the received perceptual information, but
they are also individually connected to the agent’s effectory apparatus (via
the agent’s Action Subsystem) to which they send, when required, appropriate
motor-control and communicative action commands.

Mediated by an enveloping control framework (see Figure 3.1 and Sect-
ion 3.3 below), each of the TouringMachine ’s activity-producing layers is de-
signed to model the agent’s world at a different level of spatio-temporal ab-
straction and so is endowed with different task-oriented capabilities. The
reactive layer � , for instance, is intended to provide the agent with fast re-
active capabilities for coping with immediate or short-term events which the
agent’s higher layers ( � and � ) are either unaware of or have not had suf-
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Figure 3.1: The TouringMachine agent control architecture.

ficient time or computational resources to compute suitable responses to. A
typical event handled by layer � , for example, would be the sudden appearance
of a nearby and hitherto unseen agent or obstacle. Described in more detail
in Chapter 4, layer � is designed to compute hardwired, domain-specific ac-
tion responses to particular sets of environmental stimuli and thereby provide
the agent with immediate feedback about various unexpected and potentially
life-threatening events that can take place in the world.

The main purpose of layer � , on the other hand, is to generate and exe-
cute plans of action which can help to achieve the agent’s primary long-term
domain task: that of relocating to a given target location within certain pre-
specified spatio-temporal constraints. Starting with a topological map of the
various paths and path junctions in the world (but with no initial knowledge
regarding any obstacles or other agents’ whereabouts or intended actions),
layer � ’s planner — the main functional component in this layer — makes use
of a library of partially-elaborated, procedural plan structures to construct
single-agent, linear route plans to the agent’s desired destination. To cope
with the fact that these “ideal” plans are likely to fail if the agent subse-
quently encounters any obstructing entities en route, layer � ’s planner, as
described more fully in Chapter 5, has been realised as a hierarchical, partial
planning system which can interleave plan formation and execution and defer
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committing to specific subplan execution methods until absolutely necessary.
While adopting such measures in layer � can help to minimise the need

for corrective run-time replanning (this is also called transformational plan-
ning), situations will nevertheless arise in which the agent’s initial plans fail
to achieve their intended effect and where the only viable course of action will
be to alter or dispose of some of its existing plans and then generate new ones
which address the agent’s newly acquired tasks and/or identified opportuni-
ties. Such situations are called goal conflict situations and they arise, in the
TouringWorld domain, as a result of unexpected spatio-temporal interactions
between two or more entities — for example, when the space-time trajectories
of two agents intersect at a common point. Targeted at the levels of intra- and
inter-agent goal coordination, the main purpose of a TouringMachine’s layer�

is to detect and foresee potential goal conflict situations — via execution
monitoring (observation), abductive inference (explanation), and temporal and
counterfactual reasoning (prediction) — and then to propose suitable courses
of action which will hopefully preclude such conflicts. As described in Chap-
ter 6, layer

�
provides an agent with facilities for incrementally building and

saving mental or causal models of other world entities (and also of itself) which
can enable it to “answer questions” about any entity’s actions, dispositions, or
motives [Min86, page 303]; for example, “What are the entity’s current inten-
tions?”, “Which of the entity’s goals is most threatened in the current conflict
situation?”, “How will the entity resolve its most pressing goal conflict?”, or
“What will the entity be doing � units of time from now?”

Collectively, the three control layers � , � , and
�

are aimed at providing
a TouringMachine agent with a variety of deliberative and non-deliberative
task-achieving behaviours; these include behaviours that are situationally
determined or reactive, goal-directed, reflective, and also predictive. However,
because layers operate concurrently, are activity-producing (that is, each layer
can independently send action commands to the agent’s Action Subsystem),
and are designed so that each addresses a different (and therefore limited)
aspect of the agent’s necessary behavioural repertoire, it is inevitable that,
from time to time, one layer’s proposed actions will conflict with those of
another. Layers, in effect, are approximate machines, and as a result, need
to be mediated by an enveloping control framework if the agent, as a single
whole, is to behave appropriately in each different world situation.

3.3 The Control Framework

Like the behaviours employed in the agent architectures of Kaelbling [Kae87]
and Brooks [Bro86] or like the three control components used in the Entropy



TouringMachines � 37

Reduction Engine (ERE) architecture [BD90], each of the three TouringMa-
chine control layers exhibits a more or less independent ability to carry out its
own assigned tasks. In the TouringWorld domain, in particular, this includes
reacting to immediate threats and short-term events (layer � ), planning time-
constrained routes to specified locations (layer � ), and detecting and resolving
ongoing conflicts within the agent’s current goal set (layer � ). As Bresina
and Drummond [BD90] point out, however, independent ability alone cannot
guarantee appropriate performance: a layer operating in isolation will typi-
cally exhibit fairly poor performance (each TouringMachine layer, after all, is
an approximate machine dealing only with a subset of the agent’s complete
goal set) and thus its performance will only improve through suitably designed
interactions with the agent’s other layers. Such interactions form the basis of
the TouringMachine control framework.

The primary purpose of the TouringMachine control framework, then, is
to ensure the agent behaves appropriately in each different world situation.
It attempts to do this by taking into account the agent’s changing situational
and task-related needs. As shown in Figure 3.2, a TouringMachine’s internal
control framework consists of three major functional components: the Per-
ception and Action Subsystems through which each layer interfaces to the
external environment, a facility for inter-layer message passing enabling lay-
ers at run-time to exchange certain types of control information, and a set of
context-activated mediatory control rules which, by effecting modifications to
the inputs to and outputs from any of the agent’s layers, can be used to resolve
any action conflicts which might arise as a result of the limited functional and
behavioural scope of each of the agent’s three control layers. Each of these
aspects of the control framework will now be described in more detail.

3.3.1 Perception and Action Subsystems

Being planning agents, TouringMachines are able to construct predictive mod-
els about a number of different future world states and about the potential
effects that its planned actions, if carried out in full, should have in these
states. However, while the ability to predict can often prove a very useful
asset, at other times, such as when the agent is operating in a rapidly chang-
ing world or when the agent has only limited initial knowledge about its task
environment, any predictions that are made could ultimately prove very unre-
liable. As Dean and Wellman [DW91, pages 9–10] suggest, one way an agent
can overcome — or at least partially offset — the effects of imprecise predictive
models is to rely on such models for short-term predictions only, and to sup-
plement the agent’s control function with feedback obtained through frequent
sensing of the environment which can then be used to correct any potential
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Figure 3.2: A TouringMachine’s mediating control framework incorporating Perception

and Action Subsystems, inter-layer message passing, and context-activated mediatory

control rules.

errors in its longer term predictions.
The Perception and Action Subsystems are aimed at providing TouringMa-

chines with the necessary input-output or sensorimotor control capabilities for
sensing and acting in a dynamically changing world. In the TouringWorld do-
main such control capabilities must include the perception of any entities
which are initially unknown in the world (for example, other TouringMa-
chines , traffic lights, or obstacles), as well as the effecting of various throt-
tle ( ����������	�
����	�	�� ), steering ( ����������	�
�������	�������������� ), and communicative action
commands (for example, ������������
���	���� , ��������
�������� , or ����������
���	���������������� ).

Similar to the approach used in Kaelbling’s agent design [Kae87], inputs to
and outputs from a TouringMachine are generated cyclically in a synchronous
fashion, the start and finish times of each synchronous input-output process-
ing cycle — or timeslice — being established with the use of an internal agent
clock (see Figure 3.2). � A timeslice can be regarded as the basic unit of agent
processing activity: at the start of each timeslice the agent receives sensory
input via its Perception Subsystem; at the end of each timeslice the agent

�
Although the clocks used for synchronising input-output processing are internal to each

TouringMachine agent, they are in fact initialised by another clock which is global to the
entire TouringWorld environment. As described in Section 7.4.2, this common world clock is
operated and maintained by a TouringWorld simulator process called WorldUpdater.



TouringMachines � 39

(a) (b)

[

]

entity1,
57.9,
120.4,

2,
-1.0,

40.0,
brake,

2,
agent

name:
X-location:
Y-location:
velocity:
acceleration:
orientation:
communications:
size:
type:

World
Entities

Perception
Buffer

Control
Layers -

to
Symbolic
Sensors -

speed: 2,

Figure 3.3: A TouringMachine’s Perception Subsystem (a) and an example sensory item

that would be stored in the subsystem’s Perception Buffer (b).

effects any required actions on the world via its Action Subsystem; in between
these two stages, the agent — or more precisely, each one of the agent’s three
independent and concurrently-operating control layers — is charged with the
task of processing the information produced by the Perception Subsystem
and, if required, submitting suitable action commands to the agent’s Action
Subsystem. � The specific computational mechanisms each layer uses in pro-
cessing its sensory input and generating action commands are not important
at this point and will instead be detailed in the next three chapters. The oper-
ations of the Perception and Action Subsystems do, however, deserve further
description.

As shown in Figure 3.3 (a), a TouringMachine’s Perception Subsystem
comprises two main components: a set of symbolic sensors with which to
acquire items of information describing the current environmental layout,
and a Perception Buffer which is used for storing the perceptual information
items recently received from these sensors.

TouringMachines are intended for use in a simulated environment, the
TouringWorld , in which everything can be regarded as a discrete symbolic
entity. Via its sensors, then, a TouringMachine is considered capable of
uniquely identifying each different world entity (that is, it is considered ca-

�
The length of a timeslice is expressed as a positive real number of (simulated) world

seconds and is defined via a TouringWorld testbed parameter called WorldTimeIncrement.
Along with with the concept of the simulated world clock, the notions of timeslice and timeslice
length are described more fully in Section 7.4.2.
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pable of assigning a unique symbolic name to each separately perceived en-
tity), as well as being able to recognise certain physical properties of each
entity: namely their current �������	� location 
 , speed, acceleration, orientation,
observable communicated signals, dimensions, and type (the latter enabling
it to distinguish, for instance, whether the entity is a TouringMachine , ob-
stacle, traffic light, path junction, wall, kerb, lane marking, or path-side
information sign). In this respect, TouringMachines ’ sensory capabilities
resemble those of most other agents deployed in simulated environments
[CGHH89, DM90, PR90, SH88, VB90, Woo90].

Each time a given world entity has been fully identified by a TouringMa-
chine’s sensors, a multi-attribute information record is created for it which is
then submitted for storage to the agent’s Perception Buffer. Each stored infor-
mation record (see Figure 3.3 (b), for example) can be regarded as a “snapshot”
of the current physical extent of a particular world entity, and the Perception
Buffer’s entire collection of records can consequently be regarded as a momen-
tary snapshot of the TouringMachine’s external observable environment.

Of course, being resource-bounded agents, TouringMachines cannot be ex-
pected to perceive every entity that might be present in the world. In fact,
since TouringMachines are intended for use in real-time environments, it is
important to ensure that the combined latencies of each of their internal func-
tional operations be guaranteed constant-bounded (see Section 3.6 below). As
far as a TouringMachine’s sensing operations are concerned, this effectively
means placing a limit on the total number of entities that may be sensed
during any given timeslice. In TouringMachines this can be approximated by
placing an upper bound on the agent’s spatial sensing range. �

A TouringMachine’s Action Subsystem is shown in Figure 3.4. This con-
sists of a limited-capacity Action Buffer for receiving the motor-control and
communicative action commands sent by the agent’s three control layers ( �
,  , and � ), and a set of effectors which are capable of translating such
commands into corresponding physical actions on the agent’s world. � The

�
Entity locations in the TouringWorld are treated as real-valued two-element points on a

global Cartesian coordinate grid (see Section 7.3).�
In fact, as described more fully in Section 7.4.3 (and also illustrated on page 146), range

is merely one of several user-level properties or parameters that can be used to “customise”
TouringMachines’ sensors. Other parameters include the frequency with which the agent
senses the world (SensingRate) and the specific sensing algorithm that it uses (SensingAl-
gorithm) — the latter dictating, for example, whether the agent can sense occluded objects
and/or whether it can sense objects that are behind it as well as those that are in front of it.
For present purposes, these parameters can be ignored; they will, however, be returned to
when describing the TouringWorld simulator in Chapter 7.�

Of course, since TouringMachines operate in a simulated environment, their physical
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Figure 3.4: A TouringMachine’s Action Subsystem.

complete set of TouringMachine action commands is given in Figure 3.5.
A TouringMachine’s control layers are designed to submit action commands

in response to the agent’s changing situational and task-related needs. Which
of these needs any given layer will decide to respond to will ultimately depend
on each layer’s internal programming. For instance, a TouringMachine’s re-
active layer � might submit an orientation-changing action command if the
agent’s sensors have detected the presence of an obstacle which is considered
(by layer � ) to be too close to ignore; at the same time, a TouringMachine’s
planning layer might submit a different action command if, for example, the
route plan that layer � is currently executing stipulates that the agent change
direction at an upcoming path junction. Regardless of why a particular layer
might choose to submit an action command, though, it should be understood
that, during any given timeslice, any layer — � , � , or � — is capable of doing
so.

To simplify the programming of a TouringMachine’s Action Subsystem and,
perhaps more importantly, to ensure the agent remains responsive to any im-
portant events that might take place in the environment while the agent is
processing its sensory input, the TouringMachine architecture has been con-
strained in two ways. Firstly, each activity-producing control layer has been
designed to submit at most one action command per input-output processing
cycle; in other words, if during a given timeslice a layer decides to submit
an action command to the Action Buffer, it will do so and then immediately
suspend all of its operations until the start of the next timeslice. Secondly,
the TouringMachine’s effectors have themselves been constrained to effect one
action (or zero if no action command happens to reside in the Action Buffer)

actions are in fact mimicked with the use of one of the TouringWorld simulator processes —
WorldUpdater — which is designed to maintain an up-to-date and physically plausible model
of the agents’ world (see Section 7.4.2).
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Figure 3.5: Motor-control and communicative action commands available to TouringMa-

chines operating in the TouringWorld.

during any given timeslice. Of course, given that each of the three layers
can independently submit an action command and that only one of these may
be effected during any given timeslice, this obviously raises the question of
which action command should be selected. This, in fact, is one area where the
TouringMachine’s mediatory control rules come into play. Before discussing
these, however, some final comments regarding TouringMachine actions and
effectors should be made.

For the sake of creating as realistic a simulation of mobile agent control as
possible, a number of physical and kinematic control constraints have been
imposed on TouringMachine agents: these include limits on their maximum
speed, rates of acceleration and deceleration, as well as the rate at which they
are able to change orientation (in other words, the maximum angle through
which they are able to turn during a single timeslice). S Whenever a Tour-
ingMachine’s effectors are faced with executing a new action command, these
control constraints are used to determine whether the corresponding action
can be carried out in full as intended and, when not, to prompt the TouringMa-
chine’s effectors to send a message to the appropriate control layer — in other
words, the layer that originally submitted the “offending” action command —
explaining what “problem” has just occurred. T In fact, regardless of whether
U
In fact, these constraints have been implemented as TouringWorld Testbed parameters

(MaxSpeed, MaxAcceleration, MinAcceleration, and MaxTurningRate, respectively)
and so will be re-visited in Chapter 7.V

Two such “problems” can be identified with TouringMachines at execution time: when
attempting to effect a ����������	�����
	�	�� action that causes the agent to exceed its maximum
speed, and when effecting any action that cannot be completed within a single processing
cycle and therefore requires iteration over two or more processing timeslices. Both of these
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an action is deemed problematic or not, each time any action is executed, the
TouringMachine’s effectors will automatically send a message to whichever
layer submitted the action command that was selected, essentially to confirm
the fact that its command was the one accepted for execution. The purpose of
such feedback is primarily to enable the agent’s control layers to distinguish
between planned actions (those submitted by layers � or � ) and unplanned
actions (those submitted by layer � ). As discussed in Chapter 6, this is useful
when a layer has to decide whether to re-try its failed action attempts.

3.3.2 Control Rules: Suppressors and Censors

A consequence of TouringMachines employing three concurrently-operating
activity-producing control layers that have independent access to the agent’s
sensors and effectors and that function with only partial views of the agent’s
external surroundings, is that, from time to time, the actions taken by these
layers will conflict.

In the TouringMachine architecture two types of inter-layer conflicts can
be identified: (i) those which result from two or more layers perceiving and
addressing a common event in the environment (for example, when layer �
and layer � each propose separate actions to avoid the same obstacle); and
(ii) those which result from two or more layers addressing different events
in the environment (for example, when layer � suggests an action to move
in the direction of the agent’s target destination and layer � suggests an
evasive maneuver to avoid colliding with a nearby obstacle). Resolution of such
conflicts requires some form of mediation. In the TouringMachine architecture
this is achieved with the use of context-activated mediatory control rules.

Acting as filters both between the agent’s sensors and its control layers, and
between the agent’s control layers and its effectors, control rules are applied,
in parallel, once at the beginning and once at the end of each input-output
processing timeslice (see Figure 3.2). In fact, not all rules are applied at both
synchronisation points. There are two types of control rules: those which
are applied exclusively at the beginning of each timeslice and those which
are applied exclusively at the end of each timeslice. The rules applied at the
beginning of a timeslice are called censor rules and these have the effect of
filtering (censoring) selected information (sensory items) from the inputs to
the three control layers. The rules applied at the end of a timeslice are called
suppressor rules and these have the effect of filtering (suppressing) selected
information (action commands) from the outputs of the three control layers.

Both types of control rules are of the if-then condition-action type. In

will be discussed in more detail in Chapters 5 and 6.
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H ��������
���IJ��
�������� is the reactive (layer I ) rule which is invoked in order to
avoid crossing a path lane marking (see Section 4.3).K

“ ” denotes a don’t-care or anonymous variable [CM81] (see also the comment
about Prolog unification in Section 5.4.2).

Figure 3.6: Two example control rules: �������.��
���
�&�����4� and ���'�'�
��4���.��
���
���	���)5 .
the case of censor rules, the conditional parts are conjunctions of statements
that test for the presence of particular sensory records in the agent’s Per-
ception Buffer. Censor rules’ action parts consist of operations to prevent
particular sensory records from being fed as input to selected control layers.
In Figure 3.6, for example, the censor rule �������.��
���
�&�����4� is used to prevent
layer L from perceiving (and therefore, from reacting to) a particular obsta-
cle which, for instance, layer M might have been programmed to deal with.
In the case of suppressor control rules, conditional parts are conjunctions of
statements which, besides testing for the presence of particular action com-
mands in the agent’s Action Buffer, can also test the truth values of various
items of the agent’s current internal state. N Suppressor rules’ action parts
consist of operations to prevent particular action commands from being fed
through to the agent’s effectors. In Figure 3.6, for example, the suppressor
rule �,�'�'�
��&���	��
���
���	���	5 is used to prevent layer L from reacting to (steering
away from) a lane marking object whenever the agent’s current intention is to
overtake some other agent that is in front of it.
O
Internal TouringMachine state, as discussed later in Chapter 6, comprises statements

about the agent’s current (present timeslice only) beliefs, desires, and intentions.
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Any number of censor control rules can fire (and remove selected control
layer input) when these are applied at the beginning of a timeslice. Suppres-
sor control rules, on the other hand, are assumed to have been crafted by the
agent’s designer in such a way that: (i) at most one will fire in any given
situational context (an agent’s situational context is taken to be the combina-
tion of its perceptual input set and its current internal state), and (ii) at most
one action command will remain in the Action Buffer after the appropriate
suppressor rule’s action part has been executed. In Figure 3.6, for example,
the two �������	�
������	�������
�������������� operations in the action part of suppressor
control rule �����������������	�������
������� will ensure that at most action command —
in this case, that sent by layer  — will remain in the agent’s Action Buffer.
By crafting suppressor control rules in this way, a TouringMachine’s effectors
can be guaranteed to receive no more than one action command during any
given timeslice.

In principle, a TouringMachine’s suppressor and censor control rules can be
seen to operate in a manner similar to Minsky’s suppressor-agents and censor-
agents, respectively. In Minsky’s Society of Mind framework, suppressor-
agents are those which wait until you “get a bad idea” — which in the case
of TouringMachines , is equivalent to submitting a “bad” action command —
and then prevent you from taking the corresponding action. Censor-agents,
on the other hand, do not wait until a certain bad idea — or “bad” action
command — occurs; instead, they intercept the “states of mind” — or in the
case of TouringMachines , perceptual inputs — that usually precede the idea
[Min86, page 275]. Application of a TouringMachine’s suppressor and censor
control rules also approximates the use of output signal inhibition and input
signal suppression, respectively, in Brooks’ subsumption architecture [Bro86]
(see also Section 2.3.1).

3.3.3 Inter-layer Message Passing

The main attraction of the TouringMachine mediatory control rule framework
just described is that its operation is more or less “transparent” to the agent’s
three control layers: each layer can essentially act as if it alone were control-
ling the agent’s activities, remaining largely unaware of any “interference” —
either by other control layers or by the censor and suppressor rules of the con-
trol framework — with its own inputs and outputs. The potential advantages
of such a control scheme include increased operational concurrency, robust-
ness, as well as enhanced programmability and testability gained through the
use of highly modular design components (more on this topic below).

TouringMachine control layers, nevertheless, are approximate machines
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addressing isolated aspects of the agent’s full behavioural repertoire; as a
result, layers will invariably be ill-equipped to deal with each and every one
of the agent’s evolving task demands. One way to overcome this “isolation”
problem is by enabling layers to assist with each others’ operations through
the exchange of control information concerning relevant aspects of the agent’s
changing task-related requirements or situational context. For this purpose,
an inter-layer messaging scheme is included in the TouringMachine control
framework.

The messages which are exchanged between control layers all agree with
the simple format: ����������	�
���������������������	��������! ��#"�$
where

��������	�
���
and

�����%����'&)(#*,+�-/.�0/1�2
,
*,+�-/.�0/1�3

,
*�+�-4.5041#6 7

,
�8	����

is the
time (according to the agent’s internal clock) when the message was originally
sent, and

�! ��#"
, the content of the message, is some application- or layer-

specific pattern which can be interpreted — and subsequently acted upon —
by the receiving control layer.

Messages can be classified into two types: those which are used in a passive
way, simply to convey potentially relevant information to some other layer (for
example, when layer

2
offers suggestions to layer

6
about which world entities

the latter might want to focus its attention on — see Section 4.2); and those
which are used in an active way, to alter another layer’s control decisions (for
example, when layer

6
sends instructions to layer

3
outlining a new task it

must generate a plan for — see sections 5.4.2 and 6.5.4). Precisely when and
for what purpose particular messages are exchanged between layers is very
much tied in with the lower level operations of the individual agent control
layers. As such, further discussion of the TouringMachine inter-layer message
passing mechanism will be deferred to the next three chapters.

3.4 TouringMachines — A Layered Approach

The principal feature of the TouringMachine agent architecture is that it in-
tegrates a variety of deliberative and non-deliberative control functions. The
main reason for advocating such a hybrid control approach is to attempt to
combine into a single framework some of the advantages most often associated
with purely deliberative architectures — namely, reasoned action choice and
flexible long-term goal handling — with some of those which are more typical
of purely non-deliberative ones — in particular, operational robustness, distri-
bution of control, real-time responsiveness, and closer coupling of perception
to action.
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Two broad categories of hybrid agent control architectures can be distin-
guished: uniform architectures, which employ a single representation and
control structure for both action and deliberation, and layered architectures,
which use different representations and algorithms to perform these functions
in a number of different layers. As Hanks and Firby [HF90, page 67–68] ar-
gue, the division between uniform and layered approaches reflects “a bias” as
to which problems the architectures’ implementors wish to address. Uniform
architectures such as PRS [GLS87, GI89] or GUARDIAN [HR88, HR90], for
example, make the assumption that action and deliberation are so closely re-
lated that these cannot usefully be handled separately. � By design, uniform
architectures can easily bring all of their deliberation machinery to bear on
every individual action decision that has to be made; however, because of the
considerable computational cost of doing this, any agents that were controlled
this way would soon fail to react in a guaranteed timely manner. To cope
with this problem of responsiveness, uniform architectures need to provide
means for making explicit control decisions about when the agent should act
versus when it should deliberate further. While most uniform architectures
have addressed this problem by allowing agents to include their control de-
cisions explicitly within their internal plan representation and by allowing
them to reason about their own reasoning methods (using meta-KAs in PRS
[GLS87] and control plans in GUARDIAN [HR88], for example), care needs to
be taken to ensure that such control frameworks avoid an infinite regress of
metareasoning.

Layered architectures, on the other hand (for example, APE [SH90], ERE
[BD90] and Phoenix [CGHH89]), all make the basic assumption that the ag-
ent’s reaction time is so critical and that deliberation is so slow that the agent
will often need to act without resorting to any deliberation at all. Because of
such timescale mismatches, then, deliberation and action in layered architec-
tures are separated into distinct modules using different control methods and
possibly also different world models or plan representations [HF90, page 68].

To an agent operating in the TouringWorld domain, a number of events at
several levels of spatio-temporal granularity can take place at any given point
in time: for example, the sudden appearance of an obstacle within immediate
collision range, the observed changing of colour of an upcoming traffic light,
or the projected failure to arrive at some yet-to-be-observed target destination
within the agent’s pre-specified time bounds. Successful operation in the
TouringWorld, it would therefore seem, will require that agents be capable of

�
In fact, since neither of these particular systems make any specific commitments as to

when and how deliberation and action should be interleaved, Hanks and Firby [HF90, page
67] prefer to refer to these systems simply as “frameworks” for encoding agent architectures
rather than as actual agent architectures.
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fulfilling a number of pre-specified goals while simultaneously responding to a
number of dynamic events and making timely and appropriate short- and/or
long-term control adjustments when any of their pre-specified goals appear
threatened.

Following Hanks and Firby [HF90], among others, the design methodol-
ogy adopted for the agent control architecture proposed in this dissertation
reflects the belief that, since short-term acting is driven primarily by urgency
but longer term deliberation requires (often substantial amounts of) time in
order to consider alternative action choices and their possible consequences,
different reasoning methods and representations will be appropriate for act-
ing and deliberating. The TouringMachine architecture, therefore, adopts a
layered approach to the agent control problem. ���

As with the non-deliberative architectures of Brooks [Bro86] and Kaelbling
[Kae87], overall control in the TouringMachine architecture is divided across
a number of vertical layers — at present, three — each of which is designed
to achieve a particular level of task-oriented competence. ��� Like Brooks’ sub-
sumption levels, a TouringMachine’s control layers are designed so that if a
higher layer (for example, � ) ceases to function, one or more of its lower
layers (for example, � ) will still continue to provide the agent with some
degree of competence, albeit considerably limited. This is made possible by
ensuring that control layers have continuous and independent access to the
agent’s perceptual and effectory machinery.

Like Ogasawara’s behaviour modules [Oga91] (and unlike Brooks’ sub-
sumption levels [Bro86]), higher level TouringMachine control layers need not
necessarily subsume all of the operations of the agent’s lower level layers.
TouringMachine layers are designed to work independently — but also coop-
eratively — on complementary aspects of the agent’s overall task load: layer �
is designed to handle short-term events and immediate threats, layer � is de-
signed to handle basic task planning duties, while layer � is intended to deal
with plan conflicts arising from unforeseen multi-agent conflicts. In the Tour-
ingMachine architecture, no individual layer is capable of addressing each

�
	
There are a number of other reasons for advocating a layered control approach, including

increased behavioural robustness and operational concurrency, as well as improved program
comprehensibility and system testability and analysability. These points have been argued
elsewhere, most notably by Brooks [Bro86, Bro91b], Spector [SH90], and Davis [Dav90, page
312].���

While it is true that a certain amount of horizontal (functional) decompostion takes place
within some of the TouringMachine layers (this, perhaps, being most evident when looking at
the internal workings of layer � — see Chapter 6), the primary decomposition of the agent’s
control problem is vertical — in other words, divided among several activity-producing or
task-achieving modules “on the basis of desired external manifestations of the [agent] control
system.” [Bro86, page 16].
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and every one of the agent’s situational and task-related needs; thus, if any
task-level “intelligence” could ever be attributed to a particular TouringMa-
chine, this would simply be the result of a carefully programmed combination
of its three component control layers. In this respect, TouringMachine control
layers are quite similar — in principle, at least — to the proto-specialist agen-
cies in Minsky’s Society of Mind framework: separate (sub-)agencies sharing
a common set of sensory and effectory “organs” with each proto-specialist
addressing a different basic need of the (super-)agent [Min86, page 165].

As much as possible, the division of labour among a TouringMachine’s
three activity-producing control layers is intended to reflect the different lev-
els of spatio-temporal granularity which characterise the TouringWorld task
environment. However, while in this sense, a TouringMachine’s control lay-
ers could be described as constituting a hierarchy — the representations for
world modelling used by its three layers appear increasingly abstract as one
moves from layer � up to � — a similar characterisation cannot readily be
made about the flow of control between the layers. Like Brooks’ subsumption
architecture [Bro86] (and unlike Spector and Hendler’s APE design [SH90]),
there is no strict hierarchical or prioritised flow of control between the differ-
ent layers of the TouringMachine architecture. Rather than consisting of a set
of high-level layers which try to account for the “big picture” either by issuing
general advice to faster low-level layers [DW91, page 470] or by calling such
lower level layers as mere subroutines, TouringMachine layers operate concur-
rently, proposing actions independently of each other’s operational activities.
It is not the case, therefore, that a TouringMachine’s layer � will always be
favoured over its layer � or that its layer � will always be favoured over its
layer � ; instead, whichever action an agent ends up taking ultimately de-
pends on the agent’s situational context, which, defined in terms of its current
observations, beliefs, desires, and intentions, is taken into consideration at ex-
ecution time through application of the agent’s suppressor control rules. Thus,
although TouringMachines can essentially be described as planning agents,
the layered control framework employed by TouringMachines acknowledges
the potential unreliability of predictive plans by ensuring that their plans are
treated simply as resources for action rather than as strict recipes for control-
ling every aspect of the agent’s behaviour. This issue will be touched upon
again in Chapter 8.
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3.5 TouringMachines — Resource-boundedness
and Rationality

A perfectly rational agent would always bring all of the information in its mem-
ory and in its environment to bear on its various perception, decision-making,
and execution tasks. Ideally one would wish for an agent control architecture
which, on the one hand, was capable of generating rational, minimal, and
provably correct action sequences, and on the other, was capable of flexibly
and robustly dealing with the real-time pressures that are characteristic of
dynamic multi-agent domains.

In toy domains like the blocks worlds of classical AI planning fame, it may
well be possible for a single agent to guarantee the generation and execution of
optimal action sequences. In realistic domains, however, the requirements to
behave at once correctly, flexibly, and robustly conflict with each other, agents
often having to rely on heuristic or satisficing methods of decision-making to
ensure the successful completion of their tasks. As Simon puts it: the agent
will have a choice between ‘optimal decisions for an imaginary simplified world
or decisions that are “good enough,” that satisfice, for a world approximating
the complex real one more closely.’ [Sim81, page 35].

The TouringMachine architecture is aimed at supporting the development
of real-time embedded agents. In such agents, there is not always enough time
— nor indeed computational power — to make use of all available knowledge
for each and every task-related activity. To cope with such constraints, Tour-
ingMachines are designed to make use of latency-bounded heuristic functions
to simplify some of their decision-making processes. For example, TouringMa-
chines satisfice with respect to planning by employing a limited search that is
directed by stored heuristic knowledge. Also, TouringMachines’ layers � and�

are designed so as not to process all of the sensory input collected by their
Perception Subsystems; instead they make use of a selective attention mech-
anism which helps them to focus only on those environmental features which
are deemed relevant to the agent’s situational and task-related needs. A con-
sequence of this, however, is that, at times (for instance, in sufficiently time-
constrained situations), TouringMachines may well generate plans which are
less than optimal, some even failing to achieve their initially intended tasks
unless appropriately repaired.

Another complication which arises vis-à-vis guaranteeing rational behav-
iour is the fact that TouringMachines have multiple goals, some of which,
on occasion, will conflict with one another. For example, the act of slowing
down to avoid colliding with another agent will likely conflict with the agent’s
main time-constrained navigational task, especially if this task’s deadline was
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reasonably tight to begin with. Similarly, if an agent waiting at a red light
determines that it is about to be hit from behind by another entity, a Touring-
Machine will, by design, reactively move to avoid the collision — even if this
results in driving through the red light. ��� So, because a TouringMachine will
not be able to attend to all of its goals simultaneously, some of its actions may
occasionally be inconsistent with one or more of these goals. Note, however,
that such actions typically serve a protective purpose for the agent and so
should not be regarded as undesirable. On the contrary, since in dynamic do-
mains agent robustness and survival are usually considered more important
than correctness, protective actions — perfectly rational or otherwise — must
surely be considered indispensable.

According to Bratman et al. [BIP88], a rational agent is one which is com-
mitted to doing what it plans; and as such, only under exceptional circum-
stances — for example, when an explicit impediment is detected or when
some task delay can be foreseen — should the agent undertake to alter its
plans. Knowing when to reconsider committed plans is not simple: as Min-
sky [Min86, page 163] points out, “Too much commitment leads to doing only
one single thing; too little concern produces aimless wandering.” What this
suggests, in fact, is the existence of a “tension” between the stability that
an agent’s plans must have in order to provide a focus for the agent’s delib-
erative reasoning processes, and the revocability that the same plans must
also exhibit, given that they will only ever have been conceived with partial
information about the agent’s past, present, and future states.

Long-term rational behaviour, then, would appear to result from continu-
ally balancing the tension between plan stability (goal-orientedness, future-
directedness) on the one hand, and plan revocability (reactivity, flexibility)
on the other. As Maes [Mae90] suggests, obtaining the right balance of such
behavioural characteristics will depend on particular aspects of the agent’s
task and environment: for example, the precision with which the task must
be carried out, the time available for making control decisions, or the degree
of predictability in the agent’s surrounding environment. In fact, as shown
in Chapter 8 — and confirmed by several other investigations into resource-
bounded agency [BIP88, SH88, CGHH89, HHC90, PR90] — the production of
rational behaviour can also be seen to depend on characteristics of the agent’s
own internal design or configuration — for example, the agent’s degree of
sensitivity to unanticipated environmental change.
���

As will be explained in Chapter 6, a TouringMachine builds and executes run-time plans
to stop at red lights in order to satisfy �	��
�����
	�����������	��� — one of several layer � goals.
In this example, then, the action of going through a red light will conflict with the agent’s
goal �	��
	�����
��������������� .
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3.6 TouringMachines — Real-time Activity

Successful operation in a dynamic environment like the TouringWorld will
require real-time responses to a range of unanticipated events and planning
exceptions. Real-time response might be required, for example, if an agent
is to avoid missing an important task deadline or, more importantly, if it
is to prevent the catastrophic consequences of colliding with another agent
or obstacle. In fact, as is most often the case when operating in complex
environments, agents will typically carry out a mixture of different tasks,
some of which will be characterised in terms of hard deadlines — those which
are time-critical and have to be met at all costs — and others which are
characterised by soft deadlines — those which, if not met, will not result in a
compromise to the agent’s integrity.

Conventional real-time systems are designed to meet the individual timing
requirements of a set of system tasks in such a way that they are not only
logically predictable, but also temporally predictable — particularly when
operating in peak-time or worst-case conditions. For such real-time systems
to be successful — that is, for these systems to be both fast and predictable —
they must be capable of scheduling their tasks in such a way that all highly
critical tasks can always be guaranteed to meet their own pre-specified timing
constraints. For this to occur, such a system must ensure, in advance, that
sufficient resources can be pre-allocated for achieving each and every one of
its time-critical tasks [SR88].

For a resource-bounded agent operating in a dynamic, multi-agent (and
thus inherently unpredictable) world like the TouringWorld, the conception of
real time needs to be revised somewhat. Whereas conventional real-time sys-
tems are usually defined in terms of a statically determined control sequence
(often programmed as a fixed decision tree), TouringWorld agents, in order to
interact robustly with other agents which are present in their world, have to
be capable of dealing with both hard and soft aperiodic real-time events which
might occur at unexpected times throughout the period of their operation. ���

To cope with such aperiodic events (for example, the sudden appearance
of another agent from a nearby side path), TouringMachines make use of an
opportunistic control strategy — embodied, primarily, in their reactive control
layer (see Chapter 4) and attention focussing modules (see Chapters 5 and 6)
— which gives them the ability to direct their choice of actions dynamically
in response to unanticipated real-time events. While such a strategy can
virtually guarantee timely responses to a number of localised hard real-time

���
Aperiodic events are those whose start and end times occur at irregular points in time; in

other words, asynchronously with respect to the agent’s internal operations.
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events, it also means that TouringMachines’ precise action sequences and
long-term goal behaviours can no longer be pre-determined with absolute
certainty. ��� Then again, since TouringMachines are resource-bounded systems
operating in an unpredictable world, this is only to be expected: as argued
above, just as the correctness of TouringMachine’s behaviours might need to be
traded-off against their robustness, so too might the long-term predictability
of their task-level activities.

Although TouringMachines, then, can at best only strive to satisfy their
long-term task requirements, they do however possess a number of design
features — some already described above, others to be considered in more
detail in the next three chapters — which are often viewed as being necessary
or at least highly desirable for any embedded real-time system to operate
successfully in complex environments. These include:

� continuous monitoring of the outside world to provide the agent with
immediate feedback on any dynamic events that might be taking place;

� guaranteed constant-bounded operational latency within and between
all of the agent’s main functional and behavioural modules to ensure
a minimum level of responsiveness in the agent as a whole — these
modules include the Perception Subsystem, layer � , layer � , layer � ,
and the Action Subsystem; �	�

� context-dependent, priority-based scheduling of action execution events
— this is implicit in the domain-specific programming of the agent’s
mediating (suppressor) control rule set; ��


� an embedded reactive control component (layer � ) which ensures be-
havioural robustness (by virtue of operating in parallel with the agent’s
slower, non-real-time deliberative components) [Kae87, page 399], and

��
For example, since a TouringMachine can only travel so fast, it is quite possible that

in a situation where the agent’s progress is impeded long enough by some outside force (for
example, another agent), it might end up being unable to meet its original navigational task
deadline.���

This suggests that the TouringMachine architecture satisfies Kaelbling’s definition of a
real-time system: namely, one which guarantees a constant bound on the length of time
between the system receiving a specific input and the system generating a response which
might have depended on that input [Kae87, pages 399–400].���

In the parlance of real-time systems [SR88], a TouringMachine’s mediatory control rules
can viewed as implementing a scheduler which is static (the control rules are fixed throughout
the agent’s operation), online (the rules deal with processes as they occur in the world, includ-
ing aperiodic ones), preemptive (action commands of high priority are able to preempt those
of lower priority), and opportunistic (the agent’s resulting activity occurs through responding
to dynamic events in real time).



TouringMachines � 54

which guarantees time-critical responses to any of the agent’s hard real-
time task constraints; ���

� multi-tasking control — control layers operate concurrently on different
aspects of the agent’s task set;

� context-dependent selectivity of perceptual input to protect the agent
against any possible perceptual overload — this is achieved primarily
through the use of heuristic focus of attention mechanisms in layers �
and � ;

� a facility for explicit temporal reasoning about long-term task deadlines
(the agent’s soft real-time constraints) as well as a mechanism for detect-
ing and resolving goal conflicts which can arise as a result of threatened
goal deadlines.

Because TouringMachines will almost constantly be in a state of percep-
tual, cognitive, and action overload, they will generally not be able to perform
all potential operations in a timely manner. This, it should be noted, has
less to do with precisely how fast TouringMachines can operate than with
the fact that they are inherently rationally bounded. Following Hayes-Roth’s
philosophy, the aim in designing TouringMachines , therefore, is not to cre-
ate agents which are optimised for the performance of a single pre-determined
task; rather, it is to design a control architecture which is capable of satisficing
performance over a range of tasks, each potentially differing in terms of their
required functionality, knowledge sources, and associated time constraints
[HR90]. In the TouringMachine framework, then, achieving real-time perfor-
mance should really be viewed as one of many of the agent’s objectives, which
it will be able to achieve to a greater or lesser extent depending on prevailing
environmental conditions and the availability of necessary resources. Before
considering these issues further in Chapter 8, more detailed descriptions of
the three TouringMachine control layers will now follow.

�	�
In fact, in sufficiently time-constrained, fast-paced, or densely cluttered environments,

it might still be possible for an agent to miss a hard deadline and perhaps collide. This,
as elaborated further in Chapters 4 and 8, results from a TouringMachine’s control layers
requiring at least a minimum constant amount of time to process and respond to any given
external stimulus.
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TouringMachines – Reactive
Layer

Those who will not reason
Perish in the act:
Those who will not act
Perish for that reason.

W.H. Auden

4.1 Introduction

To operate in complex domains, an autonomous agent must be capable of ex-
ecuting timely responses to unexpected or critical events. In realistic domains,
the agent will not always have sufficient time or computational resources to
choose the best action for each situation it might find itself in. Thus, to ensure
that the agent at least take an appropriate action, particularly in situations
where detailed planning or decision-making can be regarded as too expensive,
it is vital to provide the agent with a suitable non-deliberative or reactive
capability.

Critical events faced by an agent are those which either threaten the
agent’s liveliness or which simply must be responded to within strict, task-
specific time limits. For example, in the TouringWorld domain, the sudden
appearance of an obstacle within the agent’s sensing range would constitute
a critical event requiring immediate attention. In other words, the reactive
layer is responsible for dealing in a timely and appropriate manner with the
agent’s hard deadlines — those which it cannot afford to ignore or miss under
any (reasonable) circumstances.

55
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A TouringMachine’s reactive capability is embodied in a control module,�
, which is independently connected to the agent’s sensors and effectors, the

main component of which is a set of domain-specific situation-action rules. To
guarantee a suitable degree of reactivity, this layer uses neither search nor
inference when determining which rule to select at any given time. At this
level of description, no explicit model of the world is employed — only the
“here and now” of the agent is of concern. Thus, although these rules can
make references to the agent’s current physical state (see below), layer

�
is

essentially “myopic” in that it neither holds nor infers any knowledge about
the consequences of the actions it proposes.

Although a TouringMachine’s reactive capability is somewhat inflexible
(the agent’s reactions are, after all, “hardwired” to its situational input), layer�

nevertheless provides the agent with a high degree of robustness by minimis-
ing the amount of time needed to determine which action should be proposed.
Through its situation-action rules, layer

�
permits a close coupling of percep-

tion to action as well as a reasonable level of dynamic interaction between the
agent and its environment. At this level of operation, then, a TouringMachine
can be considered situated in its environment — an attribute widely consid-
ered not only desirable but also critical for successful operation in dynamic,
multi-agent environments [AC87, Kae87, CGHH89, HC90, Mae90].

4.2 Operation of Layer �
As an independent control layer,

�
operates concurrently with layers � and�

. Like these other layers,
�

also receives input from the agent’s Perception
Buffer and sends output to the agent’s Action Buffer (see Figure 4.1). Each of
these I/O operations is performed in a synchronous fashion: input is received
at the beginning of a timeslice and output is generated at the end of each
timeslice. Perceptual input in the form of symbolic multi-attribute informa-
tion records (see Figure 3.3 (b)) representing the physical configurations of
any perceived entities — including that of the agent itself — is received and
passed to the layer’s Situation-action Rule Set for further consideration.

A situation-action rule consists of two parts: a condition set and an ac-
tion. A condition set is composed of one or more conditions, each of which
can either be an arithmetic test on the received perceptual input (for exam-
ple, ���	�
������������
��������� ) or a domain-specific, typed predicate (for example,� �� � �� �!�"�#����$����	�%���&�(')����������*+� , which is satisfied if any part of the contour of
���	�%���,� , an entity of type -%�	���
� , falls within the frontal sensing arc of ���	�%����* ). .
/
The only other predicate used to date has been

� �� %0	�%1 � �2�3��
�2�������4'5�������
�	*+� which is
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Situation-action

Rule Set
Action Filtering

Mechanism

Focus of Attention
(layer M)

Clock

to Action
Buffer

Buffer

from
Perception

Figure 4.1: Top-level view of the reactive control layer � .

The action part of a situation-action rule corresponds to a reactive command
intended as a control sequence for the agent’s effectors. In the TouringWorld
domain, a reactive command is one of �������
	��
���������� (accelerate by some pos-
itive or negative amount) or �������
	��

���������
����������� (turn the agent’s steering
wheel through some clockwise or counterclockwise angle).

The rules operate as daemons: each is sensitive to certain environmental
stimuli and will independently trigger its action command if its conditions are
satisfied by the current perceptual input. Because rules operate in parallel,
more than one rule might trigger during a given timeslice. Consequently, an
Action Filtering Mechanism is used so that at the end of the current timeslice
layer � will be left with at most one action to submit to the agent’s Action Buffer
(see Figure 4.1). At present, the filtering mechanism employs a single heuristic
to determine which rule’s action should be chosen, namely, that which was
triggered by the environmental stimulus spatially nearest the agent.

In terms of their purpose and level of abstraction, layer � rules are very
similar to Kaelbling’s reactive behaviours [Kae87], to reflexes in the Phoenix
architecture [CGHH89, HC90], and to the situation-action rules of Pengi
[AC87], among others. Like Agre and Chapman’s Pengi agent, a Touring-

satisfied if any part of the contour of an agent ��	����
��� falls within the rear sensing arc of agent
�
	����
�� . In addition, some of the reactive rules used in the TouringWorld domain make use of
a number of arithmetic and trigonometric functions: for example, �����������������!�#"%$������&�
'��)(
$��
�*�!��'� �+ which returns the distance between the Cartesian locations of two named entities
(see Section 4.3)



TouringMachines – Reactive Layer � 58

Machine’s reactive behaviour arises from the interaction between its reactive
rules and the agent’s current environmental situation. If, for example, a
TouringMachine is being controlled by a rule which causes it to flee from an
approaching agent, it will only stop doing so when the encroaching agent
alters its speed or otherwise falls outside the area within which the Touring-
Machine’s fleeing rule is triggered. After that, the TouringMachine’s reactive
behaviour will be controlled by whatever other rule gets stimulated into ac-
tion. In other words, at this level of control, a TouringMachine is not driven
by any preconceived idea of what event will occur next. The behaviour of layer�

is opportunistic, and so provides the TouringMachine with a high degree of
robustness under uncertainty.

In principle, layer
�

is also similar in behaviour to a type of cognitive system
Fodor calls an input process: a modular, non-intellectual, domain-specific,
quasi-reflexive, informationally encapsulated process which may run contrary
to what “reasoning” would dictate [Fod83]. � Such vertical processes, as Fodor
calls them, buy speed at the price of unintelligence. They contrast with what
he calls central processes which exploit information from outside of the process,
for example memory, in order to make decisions. In this sense, layers �
and � would be considered central. He also suggests that because input
processes compute representations of the layout of environmental stimuli on
the basis of less information about the environment than the agent actually
has, these computations will need subsequent corrections in light of the agent’s
background knowledge and in light of the decisions made by other processes.
As described in the previous chapter, this is precisely why a TouringMachine’s
control layers, particularly layer

�
, require mediation by a global control

framework to produce effective behaviour.
As a final operational detail of layer

�
, it should be mentioned that a

second output is generated by layer
�

(as shown in Figure 4.1). Specifically,
if a situation-action rule triggers, and that action is chosen by the Action
Filtering Mechanism, a message is sent by layer

�
to the Focus of Attention

module in the modelling layer � informing � of the type of entity that caused
the rule to trigger. The implicit assumption on which this is based is that if the
agent has just reacted to some entity it could well be that the agent’s modelling
layer does not possess a model of this entity: if it had a model it probably could
have avoided this near-miss with it. In a limited way, this ensures that the
agent’s modelling layer is kept up-to-date with certain aspects of the agent’s
changing surroundings. More detail on agents’ focus of attention capabilities
will be given in the next two chapters.

�
A quasi-reflexive process is one which is computationally more elaborate than a true reflex.

Encapsulation relates to the range of information that a process needs to access in deciding
what result to produce.
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4.3 Reacting in the TouringWorld

To illustrate the range of reactive behaviours available to a TouringMachine
operating in the TouringWorld, the complete set of situation-action rules that
comprises layer � is given below in pseudo-code form. Throughout this set,
bold terms, for example KerbThreshold, are user-defined parameters which
are used to configure an agent’s reactive layer. These and several other param-
eters that are used to configure TouringMachines for different TouringWorld
scenarios will be described in more detail in Chapter 7 and Appendix A. Seven
rules have been used:

��������	�
�� �������	������������������
������� 	��!��	���������"$#&%������('*)��+� ���������-,.�����

�!/���� �$#0)��-�1��� ������,32546�����
�1��/�������"-� ���7#8%���� �9':)��-�1���������+,<; KerbThreshold"�=����
��=�����>���	����+� ����"���"-�1���7# KerbAvoidanceAngle ,

enables the agent )��+� ��������� to avoid hitting a kerb. Example values in the
TouringWorld : KerbThreshold = 0.5 metres and KerbAvoidanceAngle
= ?A@$B ���-� ����"���"-�1���7#0)��-� ���������+, ? (making the agent’s angle of deflection with
respect to the given kerb equal in size to its angle of approach).

��������	�CD� E�������	������������������
������� 	��!��	���������"$#&F�� ���$'*)��+� ���������-,.�����

�!/���� �$#0)��-�1��� ������,32546�����
�1��/�������"-� ���7#8F���� �G':)��-�1���������+,<; WallThreshold"�=����
��=�����>���	���/������D# WallAvoidanceSpeed ,

enables the agent to avoid hitting a wall. Example values: WallThreshold
= 1 metre and WallAvoidanceSpeed = 	 1 H �!/����I�$#0)��+� ��� ������, (which would
bring )��-� ��������� to a full stop short of F������ ). It should be noted that walls and
kerbs are reacted to differently in the TouringWorld merely for the sake of
behavioural variety.

��������	 J9� ��������"�	���>�����"�	 ��������������� �
������� 	��!��	���������"$#0)�" =����7'K)��-�1���������+,.�����

�!/���� �$#0)�"�=�����,3;L�!/���� �$#0)��-�����������-,.�����
�1��/�������"-� ���7#M)�"�=����('*)��+� ���������-,N; FrontalAgentThreshold"�=����
��=�����>���	���/������D# FrontalAvoidanceSpeed ,
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Figure 4.2: An agent will react to another if it is approached too closely. In the left-hand

frame, the chevron-shaped agent � starts to encroach upon the stationary round-shaped

agent � from � ’s rear; once � falls within � ’s collision avoidance range (right-hand

frame), agent � starts to pull away to avoid a collision. (In this example agent � has

been made effectively non-reactive by setting its FrontalAgentThreshold parameter

to 0.)

enables the agent to avoid hitting another agent �����	��
 from behind. Example
values: FrontalAgentThreshold = 2 metres and FrontalAvoidanceSpeed
= ����������������	��
������������������������
��	��
�� (which would lower ��������
��	��
 ’s speed down
to that of ��������
 ).

��� �����!#" 
���$�
	��$�%	��&��	��$���')(��)$�&)*��

(�+,(������	���-(�&.�/�0��������
213��������
�����
-�4$�&.�
����������������	��
��657�������������������
��)��
��8$�&.�
������$�
�$���(�'�&9�:�����)��
;1<���-����
�����
��4= RearAgentThreshold

���	��&
*���$�&�%����.���	�����/� RearAvoidanceSpeed �

enables the agent to avoid being hit by another agent �����	��
 from behind.
Example values: RearAgentThreshold = 2 metres and RearAvoidance-
Speed = ������>������������
��?�����	�������0��������
�����
�� . The use of this rule is illustrated
in Figure 4.2. @
A
It is worth pointing out that all graphical figures like those illustrated in Figures 4.2

and 4.3 which bear the B Window System C logo and title bar are, in fact, actual outputs
generated by the TouringWorld Testbed program. This and other capabilities of the Touring-
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����������	�
 ����������������������������������
����������� �������������"!$#�������������&%'#�������������)(*�����

� +������"!$#�)�,����������(.-0/1�����
�,��+��������)�����2!3#�)�4���������"%'#�������������)(65 ObstacleThreshold��7����
��7�����8��������������������)�,���2! ObstacleAvoidanceAngle (

enables the agent to avoid hitting an obstacle (anything other than a kerb,
wall, or agent). Example values: ObstacleThreshold = 1 metre and Obsta-
cleAvoidanceAngle = +/ � 20 9 , the latter’s sign depending on the size of the
obstacle-to-kerb gap either side of #�)����������� .
����������:�
 ����������;)����<�� ��8=�����=���������=���

����������� �������������"!?>�������@=����<�����8A%B#�)�,����������(6�����
� +������"!$#�)�,����������(.-0/1�����
�,��+��������)�����2!C>����=��@�����<��4��82%D#�)�,����������(65 LaneMarkingThreshold��7����
��7�����8��������������������)�,���2! LaneMarkingAvoidanceAngle (

enables the agent to avoid straying over a lane marking. Example values:
LaneMarkingThreshold = 0.5 metres and LaneMarkingAvoidanceAngle
= EGF"H ���)�,���������������I!J#�)�������=���)( E .
����������KA
 ��� �������)�,���=��������;�������������8

����� +������"!$#�)�,����������(.-0/1�����
���)�����������)�,���"!$#��������������(MLN'O / 9 %QP�/ 9 %SR�T�/ 9 %VUWK�/ 9?X��7����
��7�����8��������������������)�,���2!?�=�������=�4�����=����;)����������8����Y!$#�)�,����������(�(

enables the agent to change its orientation to the normal angle (0 9 , 90 9 , 180 9 ,
or 270 9 ) nearest its current orientation. Note: this only improves an agent’s
efficiency because in the TouringWorld domain, path orientations are always
orthogonal to these normal angle values (see Section 7.3). The effects of this
and several of the above rules are illustrated in Figure 4.3.

The purpose implicit in this set of rules is to prevent the agent from col-
liding with other world entities. An exceptional rule is ���������WK whose purpose
is almost more aesthetic than practical. More importantly, however, ����������K
differs from the other rules in that it triggers in the absence of environmental
stimuli — there is no reference to any other world entity in its condition set.
Because it will trigger during most timeslices, it is given less priority by the

World Testbed are described later in Chapter 7. Z\[ Window System is a trademark of the
Massachusetts Institute of Technology.
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Figure 4.3: Appropriate situation-action rules can enable an agent to avoid obstacles and

kerbs, prevent it from straying over lane markings, and, when no other events require

attention, adjust the agent’s orientation to one of four orthogonal directions.

Action Filtering Mechanism than any other of the above rules. Indeed, it is
only ever selected if no other rules trigger during a given timeslice.

Apart from the behaviour to avoid being hit from behind by another agent
( ���������
	 ), the above rules control the TouringMachine either by reducing its
speed or by changing its orientation. By and large, these behaviours have
been found to be effective at keeping the agent from colliding with other
world entities. However, because situation-action rules maintain no history
of past events and make no inferences about future events, they will clearly
be of limited use in certain task-domains. For example, reacting to avoid
one obstacle might actually drive the agent into another if the two obstacles
are close enough together. How useful the particular set of rules described
above might be in a given situation depends on many factors, including the
agent’s speed, the density of obstacles on the agent’s path, and the sensitivity
thresholds of the agent’s rules. These and several other issues are examined
in more detail in Chapter 8. Additionally, it is important to remember that
layer � is but one of three layers used in controlling TouringMachines; the
usefulness of layer � can only be fully appreciated by understanding the roles
played by TouringMachines ’ planning and modelling layers. These are the
subjects of the next two chapters.



5

TouringMachines – Planning
Layer

In the search of truth there are certain questions that are not important.
Of what material is the universe constructed? Is the universe eternal? Are
there limits or not to the universe? What is the ideal form of organisation
for human society? If a man were to postpone his search and practice for
Enlightenment until such questions were solved, he would die before he
found his path.

Buddha

5.1 Introduction

A sophisticated agent operating in a real-world domain must be capable of
accomplishing complex tasks. A task can be considered complex for several
reasons. For instance, it might have to be carried out over a long period of
time. The task might, in fact, be a composite of several smaller tasks, each
requiring the agent’s attention at distinct times or spatially-distant locations.
Additionally, the task might be incompletely specified or it might specify cer-
tain prior restrictions on the way the agent is allowed to tackle it.

One of the oldest problems in the field of AI has been the design of compu-
tational systems which, given an initial description of some goal or task, can
produce a sequence of actions or plan, the successful execution of which will
result in the agent having accomplished the assigned task. As past research
shows, constructing a sophisticated, general-purpose planner which is capa-
ble of solving complex tasks is itself non-trivial, requiring the consideration
of many deep and complex issues: for example, how to represent and reason

63
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about plans and actions, how to control the search of the agent’s plan space, or
how to generate optimal plans for a collection of simultaneous or conjunctive
tasks [Geo90, HTD90].

TouringMachines are primarily task-oriented agents and as such should be
capable of generating and executing sequences of actions to achieve the tasks
assigned to them. The skills required to do this are many and varied. Among
others, these include the ability to decompose large, composite tasks into sim-
pler subtasks; the ability to reason about the plans adopted or actions taken
to achieve these tasks; the ability to reason strategically or predictively about
the outcome of a plan and about the effects the plan will have on the envi-
ronment; and the ability to monitor progress of plans and to take appropriate
action when the intended effects of these plans are not realised. Furthermore,
since TouringMachines are intended for use in realistic domains, they must
be capable of carrying out these assigned tasks under real-time pressure, us-
ing limited computational resources, and in the presence of other agents and
other external events. �

In realistic environments, agents will need to handle dynamic events at
several levels of granularity. As a result, the decision to implement an agent’s
necessary operating skills as separate, distributed activity-producing layers
has been adopted as a principal tenet of the TouringMachine architecture.
With that in mind, the required set of skills for carrying out planned tasks
can be usefully divided into two classes: those pertaining to the construc-
tion and execution of basic, single-agent plans which handle the initial tasks
assigned to the agent; and those addressing what might best be called the
agent’s metaplanning requirements: reasoning about the interactions among
different tasks and plans, monitoring the execution of plans and applying
techniques to repair failed plans, and reasoning about the interactions among
the goals and plans of other agents. It is along this division of planning
functions that two of the three layers comprising TouringMachines have been
defined: namely, layer � — which handles the metaplanning skills and will
be discussed in the next chapter — and layer � — which handles the agent’s
primary planning skills.

�
It is important to distinguish the notion addressed here of individual agents in a multi-

agent world generating plans purely for their own use, from the DAI notions of multi-agent
planning — wherein a single agent generates plans for multiple agents to work on; and
distributed planning — wherein a single, common plan is produced through the cooperation
of multiple agents. The latter two notions are not addressed in this dissertation. See Bond
and Gasser [BG88, pages 15 and 21–22] for further details.
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Figure 5.1: Top-level view of the planning control layer � .

5.2 Overview of Layer �
The main objective of layer � is to build and execute plans which carry out the
agent’s assigned tasks or goals. More precisely, layer � deals with one specific
class of agent goals called achievement goals. An achievement goal is one
which has a well-defined set of start and final states in the agent’s state space
such that, upon arriving in a final state, the goal would be considered achieved
and thus able to be terminated. In the TouringWorld domain, for example,
navigating to a given location or landmark would be an achievement goal.
This class of goals contrasts with the agent’s preservation or homeostatic goals
which are achieved continuously by the agent and have no well-defined final
states [CL91]. In TouringMachines these goals are handled by the modelling
layer � , so their treatment will be deferred until the next chapter.

Layer � , like layers � and � , operates as an independent control module.
In a synchronous fashion, � receives input from the agent’s Perception Buffer
at the start of a timeslice, and sends output to the agent’s Action Buffer at
the end of the timeslice (see Figure 5.1). In the TouringWorld domain, � ’s
input takes the form of symbolic multi-attribute information records — see,
for example, Figure 3.3 (b) — which describe the physical configurations of any
perceived world entities, including that of the agent itself; in particular, these
records include information about each entity’s current Cartesian location,
speed, acceleration, orientation, plus any information that the entity might
be communicating (for example, if its brake lights are on). Output takes the
form of control commands for the agent’s effectors and will be discussed in
more detail below.
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The functionality of this layer, as shown in Figure 5.1, is shared between
two major components: the Focus of Attention Mechanism and the Planner.
Unlike layer � whose operations were sufficiently fast to justify direct manip-
ulation of the agent’s perceptual input, layer � ’s planning operations, which
include potentially lengthy searches of the agent’s plan space, are relatively
computationally intensive. TouringMachines are intended for use in dynamic
worlds, and, in order to guarantee a suitable degree of reactivity from the
agent as a whole, the inter-operation latency of any of its planning activities
must be bounded. One way to achieve this is to limit the amount of informa-
tion that layer � will be required to store and manipulate. This, as described
in Section 5.3, is the main purpose of the Focus of Attention Mechanism.

The Planner is charged with taking a high-level description of a given
achievement goal or task and constructing and executing a plan for it which,
when carried out, will result in the goal being accomplished. As noted above,
the functional requirements for an optimal, general-purpose planner are nu-
merous. What seems to be the case is that such functional requirements con-
flict with a TouringMachine’s behavioural requirements: namely, that given
limited computational resources they be capable of operating successfully in
complex environments. As Sanborn and Hendler have argued, there is no gen-
eral way, in dynamic environments, to capture all of the relevant aspects of
the domain that may be relevant to the agent’s planner [SH88]. � McDermott
has similarly argued that, “in general, it is not worth a special effort to make
sure that every foreseeable interaction is forseen, since there will always be
some unforeseeable ones that will have to be dealt with.” [McD90, page 240].
Goal attainment may not be possible if the agent’s environment is sufficiently
“hostile”. In fact, the only foolproof way to know if an agent’s plans are correct
is to execute them and find out. What this suggests, then, is that to construct
a practical planner, one will need to tradeoff between generality and optimal-
ity of the planning process on the one side, and flexibility and responsiveness
of operation on the other. � The “solution” to this tradeoff must come from
consideration of the agent’s domain of application.

TouringMachines are required to navigate to some assigned location within
given time bounds. Intuitively, then, it would make sense for them to perform
a certain amount of forward planning — for example, by constructing a route-
level path. Indeed, Latombe has argued that even if an agent’s initial planned
path turns out not to be the motion plan used (due, perhaps, to in-built un-

�
While plan generation in even fairly simple, static domains has been shown to be exponen-

tially hard [Cha90], Sanborn and Hendler have recently shown that the analogous problem
in dynamic domains is in fact undecidable [SH88, page 96].�

Hendler et al. also refer to this as trading precision in decision making for time in re-
sponding to events [HTD90, page 71].
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certainties in the planner’s world model), the plan will nevertheless remain
an essential piece of information since it can be used, for instance, to provide
the agent with important navigational landmarks for use at execution time
[Lat91]. All the same, while some amount of forward planning would seem to
be useful, the dynamic and unpredictable nature of the TouringWorld domain
would also intuitively suggest that large, detailed plans would be very likely
to fail before their successful completion.

Described more fully below in Section 5.4, the resulting TouringMachine
Planner should be viewed as a pragmatic solution aimed at coping with such
task- and domain-imposedconstraints. By incorporating such features as hier-
archical decomposition, interleaved generation and execution, time-bounded
and suspendable operation, and deferred choice of execution method, the Plan-
ner enables TouringMachines to behave as purposive, goal-driven agents —
despite operating in dynamic environments. Before going into the operational
details of the Planner any further, however, a description of layer � ’s attention
focussing capabilities will prove useful.

5.3 Focus of Attention

TouringMachines are, by definition, computationally resource-bounded. In
particular, they have an in-built limit on the amount of available resources
for acquiring, representing, or processing information about their surround-
ings. In other words, TouringMachines have limited attentional capacity: by
expending computational resources on one particular event, they will neces-
sarily decrease the resources available with which to consider other events
[Gre87, pages 59–61]. To ensure, then, that a TouringMachine’s planning
layer provides timely and appropriate responses under a variety of changing
conditions, the agent must be able to reduce the set of all perceived world
events to the set containing only those events which it considers relevant.
That is, layer � needs to control its perceptual intake by focussing attention
on important events while ignoring those of lesser importance.

In designing an attention focussing capability many issues need to be ad-
dressed. The most important is ensuring that any events which are focussed
on remain relevant to the agent’s changing context. Also important is to
ensure that the mechanism provides the agent with an appropriate level of
sensitivity vis-à-vis whatever changes are taking place in the world. While
the agent will generally only require information about events that are re-
lated to its assigned task, not noticing some unexpected event (for example,
a nearby agent coming to a sudden halt) could prove catastrophic. Focussing
on selected events also implies that some other events will either be ignored
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Figure 5.2: The Focus of Attention Mechanism.

outright or not modelled as thoroughly, thereby increasing the agent’s degree
of uncertainty about its surroundings. Thus, since the agent will occasionally
focus on inappropriate events, the issue of how to cope with bad judgements
should also be addressed. These matters will be looked at in the next section
and also later in Section 6.3.

5.3.1 Operation

The main component of the Focus of the Attention Mechanism is a set of
user-specified Prioritised Focussing Rules which selectively filter information
from the agent’s Perception Buffer and produce output in the form of a Cur-
rent Focus Set (see Figure 5.2). The Current Focus Set contains perceptual
information about only those world entities that were considered “relevant”
according to the heuristic selection criteria expressed in the focussing rules.
The information contained in the Current Focus Set is then used by the Plan-
ner during the remainder of the current timeslice.

Focussing rules are if-then rules whose conditional parts are conjunctions
of Horn-clause predicates which express domain-specific relations about or
between different entities in the agent’s world (see Figure 5.3 for the predicates
used in the TouringWorld domain). These predicates are always applied from
the perspective of the agent doing the focussing and are always relative to the
present world time. Thus, for example, if ��� , who is the focussing agent, has
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perceived at the start of the present timeslice some other agent ��� , then ���
will satisfy the predicate ���	��
��������� if ��� is behind ��� ; that is, if any part of
the contour of ��� falls within the circular arc corresponding to the range of
��� ’s rear sensors. As entities alter their behaviours or move about in time or
space, the relationships between the focussing agent and these other entities
will change. When relationships change, different focussing rules will be
satisfied and so different entities will be focussed upon as time progresses.

The Attention Mechanism possesses a finite number of user-ordered fo-
cussing rules and these are applied sequentially to each of the entities ap-
pearing in the current perceptual input. Any entity which satisfies each of
the conditions of the particular rule being applied are deemed “relevant” and
placed in the Current Focus Set. However, since both the number of perceived
entities and the number of focussing rules being applied could be potentially
large, the total number of entities that get placed in the Current Focus Set
has to be controlled if the inter-operation latency of layer � is to be guaran-
teed. In the focussing mechanism, this is done by “charging” for each entity
that is focussed upon; that is, from an initial pool of resources made available
for focussing at the start of each timeslice, deductions are made to the pool’s
total resources each time an entity is selected for placing in the Current Focus
Set. Focussing stops, then, when the available resources run out or when all
focussing rules have been considered and no new entities have been selected. �

The predicates appearing in focussing rules can be used to express three
types of relations over world entities: physical, which relate to some aspect of
the perceived entity’s spatial or physical configuration (for example, ���	��
���������
or ��������� �"!�!�#� ); identity, which relate to an entity’s type or identity (for exam-
ple, ���	��$����$"% ����� ); and temporal (for example, ���	��� �"& ��' ). Temporal predicates
differ slightly from the two other types in that, while still relating to events
perceived in the present timeslice, they are used in making comparisons be-
tween an entity’s current configuration and that exhibited in the previous
timeslice. So, for example, an entity will satisfy �����"� ��&��' if it has been per-
ceived in the current timeslice and if there is no record of it having been
perceived in the previous timeslice. To handle such predicates a copy of the
Current Focus Set is taken at the end of each timeslice and placed in a buffer
called the Previous Focus Set (see Figure 5.2). The contents of this buffer
are then used by the focussing rules during the next timeslice as a historical
record of what was focussed on in the immediate past. Several other temporal
predicates used in the TouringWorld domain are listed in Figure 5.3.

A TouringMachine’s Focus of Attention Mechanism functionally approx-
(
Total focussing resources and unit costs of focussing on world entities are TouringWorld

Testbed parameters which are described more fully in Chapter 7.



TouringMachines – Planning Layer � 70

Physical relations:�������	��
�����
��������������	����
������������
���	������������	�������
���������������	� �
������������!���"�"����#$����!	���$�$���$�����$� %
����������&�&$'���������	���#	������#�$��"�� (

Identity relations:��������������������)
�������������#	����
���������������*$�����
����������"��

Temporal relations:������	��!	��"

	�$��� �����������$�����$���

	�$������
	���#	���+��������� �

	�$������
	���#	���+� �$���$�����	����

	�$�������	�����	���+������&�&�'�	�����������#	������#����"�� (

� , % , and ( are distance, speed, and signalling variables
respectively.

Figure 5.3: Focussing predicates used in the TouringWorld.

imates the Attention Director of Wood’s AUTODRIVE agents [Woo90] as
well as the filtering capability of the perception subsystems in Hayes-Roth’s
blackboard-based architecture [HR90]. It is effective at generating an up-
to-date, context-sensitive focus set and is also somewhat robust to errors;
because TouringMachines constantly monitor the world and are able to react
at all times to unexpected events, temporary focussing errors need not prove
fatal. All the same, the TouringMachine mechanism can by no means be con-
sidered a complete, general-purpose focussing capability. For instance, the
contents of the rule set can only change through explicit requests from the
Planner; currently if some part of the agent’s plan refers to an entity about
which the agent has no information, the Planner will flag the focussing mech-
anism (see Figure 5.2) to demand that the relevant entity or entity type be
focussed on during the next timeslice — the effect of this being that an appro-
priate focussing rule gets added at the beginning of the ordered rule set. The
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bulk of the rules, however, are static and need to be specified and ordered by
the user in advance.

One way to increase TouringMachines ’ adaptiveness would be to enable
the focussing mechanism to make use, at run-time, of historical information
— for example, number and type of rule firings during previous scenarios —
to establish an improved statistical ordering of the focussing rules (Russell
[RW89] refers to this as post hoc inductive metalearning). This capability,
however, has not been implemented but would be a possible candidate for
future work involving learning (see Chapter 9).

5.4 The Planner

5.4.1 Overview

The Planner generates and executes plans as a means of achieving some ini-
tially assigned task of the agent. As described at the beginning of the chapter,
layer � , and thus the Planner, is not intended as a general-purpose planning
capability. Rather, it is designed to be of some practical use at generating ef-
fective goal-oriented behaviours in a multi-agent dynamic world, while at the
same time operating as an independent control module in conjunction with
two other rather dissimilar ones — layers � and � .

The Planner exhibits many of the characteristics often considered neces-
sary for practical operation in complex domains. In particular, because lengthy
detailed plans are very likely to fail in such worlds, the Planner interleaves
plan generation and execution. Unlike many of the early planning systems
such as STRIPS [FN90] or NOAH [Sac90], the TouringMachine Planner does
not start out with a complete picture of its world. Rather, its knowledge is
very much limited to what it currently perceives or has focussed on, and so
cannot always be relied upon to produce complete and correct plans for each
different situation.

The approach to interleaving adopted here is similar to that used in NASL
[McD90] and to the method of lazy skeletal expansion used in Phoenix agents
[CGHH89, HC90]; that is, plan generation and execution are mixed by choos-
ing one step of a plan at a time and then executing it. The advantage this
has is that it makes the Planner less susceptible to unexpected events in the
environment and so can potentially help minimise wasted planning effort. On
the other hand, as Hendler et al. [HTD90] point out, this approach can make it
more susceptible to (subplan) interaction errors because it might commit pre-
maturely to particular subplan temporal orderings which later prove incorrect.
To alleviate this problem, the Planner has been designed to defer committing
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to specific choices of plan execution methods until absolutely necessary. Also,
since TouringMachines are able, through reaction in � and execution monitor-
ing in � both to keep abreast of changes in the world and to take corrective
actions when necessary, they should be reasonably well prepared to deal with
most eventualities that arise from sub-optimal planning.

It is also widely recognised that in complex domains, planning must be
done hierarchically at different levels of abstraction to allow the planner to
manipulate a simpler but computationally more tractable theory of its world
[Wil86]. Abstraction levels are distinguished by the granularity of the discrim-
inations they make of the world. The TouringMachine Planner employs such
levels, both in the plan generation process (by producing a partially-elaborated
hierarchical subgoaling structure) and in its description of the environment.
In particular, plans are used at different abstraction levels to describe only
those aspects of the world which are pertinent to the current situation. In the
TouringWorld domain, for instance, reasoning about such things as absolute
world coordinates is done at a level well below that which is concerned with
route-level navigation to some target landmark. In a navigation domain such
as the TouringWorld , this is particularly useful since it facilitates the plan-
ning of tasks for which full details are not initially available but which can
subsequently be obtained during execution of the task (for example, the pre-
cise Cartesian location of a given landmark). A similar view has been taken
in the design of other navigation-oriented planners such as ELMER [MRS82]
and AUTODRIVE [Woo90].

As an independent, synchronously-timed control layer, � ’s inter-operation
latency must be guaranteed. Since the computational demands of planning
would seem, at first glance, to be incompatible with this requirement, certain
design constraints must be imposed on the planning process. As a result, the
Planner has been designed to work incrementally (as Kaelbling describes):
doing a few computation steps during each timeslice, then storing its state
until the next timeslice [Kae87]. Thus, when the Planner has a real action to
effect on the world it will simply execute it; at any other time, the Planner’s
output will be interpreted as if saying that the Planner does not yet have
a complete solution. The advantage of such an embedded design, Kaelbling
points out, is that it allows the agent’s programmer to specify a hierarchical
action map which separates — and thus enables concurrent execution of — ac-
tions specified in terms of Planner-level operators and actions which are more
easily expressed as reflexive reactions [Kae91]. This, of course, is precisely
the relationship that exists between layers � and � .

Since one of the tenets of the TouringMachine architecture is to minimise
the amount of work any one control layer has to perform, it is worth under-
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Figure 5.4: The Planner.

lining that the Planner’s design has been simplified to act as a single-agent
device; in other words, it is designed to act “blindly” as if no other agents were
present in its world. The Planner, in effect, assumes the existence of an ide-
alised, exception-free environment and so does have to be burdened with such
functions as temporal projection or plan execution monitoring. These, and
several other such metaplanning capabilities, are performed by the agent’s
modelling layer � and are described in the next chapter. Before considering
these, however, some operational details of the Planner will be given first.

5.4.2 Operation

The TouringMachine Planner comprises two main components: a
Message/Task Handler and a Plan Processor (see Figure 5.4). The Message/
Task Handler is charged with handling messages requesting the Planner to
work on some task. Task requests are received both from the agent’s modelling
layer and from its effectors. From the former it receives the agent’s initial task
(for example, to plan some route) as well as any extra tasks that are dynami-
cally generated to deal with certain exceptional events (for example, stopping
to give way to another agent); from the effectors it receives requests to iter-
ate certain actions that require more than one timeslice to execute (see Plan
Execution below). New task requests can be taken on at the start of each
timeslice so the Planner’s activities can generally be relied upon to reflect the
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agent’s changing task-related needs.
The Plan Processor constructs plans for any task requests passed on to it

by the Message/Task Handler. Plans are built by retrieving suitable partially-
elaborated plan templates or schemata from the Schema Library which, upon
retrieval, are combined by the Plan Processor to form a plan structure for sub-
sequent processing. Similar in function to skeletal plans in Phoenix [HC90]
and to procedural KAs in PRS [GLS87], schemata are general representations
of some task-related activity to be performed by the Plan Processor. Such
activities can either involve further library retrievals to decompose and pro-
cess a schema’s constituent plan sub-steps or body (see Plan Generation
below) or it can involve the execution of some low-level action. � As the bodies
of schemata are decomposed, their constituent sub-steps are incrementally
placed at appropriate points in the Plan Processor’s plan structure — a hi-
erarchical, temporally constrained tree representing the Planner’s working
solution to the given task. Eventually, due to their position in this temporally
constrained structure, low-level actions will get selected for processing and
subsequent submission to the agent’s effectors. The Plan Processor’s opera-
tion terminates only when the entire generated plan structure has been fully
processed and when no further task requests are received from the Planner’s
Message/Task Handler.

Just as the Focus of Attention Mechanism’s operational costs were mon-
itored to guarantee an upper-bound on its computational latency, so too are
the Planner’s. In particular, the costs of such operations as handling task
request messages, retrieving schemata from the library and placing them in
the plan structure, as well as executing any low-level actions present in the
plan structure, are continuously tallied and deducted from the Planner’s per-
timeslice resource allowance. When resources eventually run out, the Planner
suspends all plan processing and becomes inactive until the beginning of the
next timeslice. Such incremental behaviour guarantees the time-bounded re-
sponsiveness required of the Planner, in particular, and therefore of layer �
as a whole.

Besides making use of stored plan templates residing in the Schema Li-
brary, the Planner can access information from two other sources: the Focus of
Attention Mechanism and the Topological World Map (see Figure 5.4). Since
many of the retrieved schemata make reference to such things as the agent’s
own location or some other entity’s speed, the Planner uses the Current Focus

�
In fact, just before its operation is suspended at the end of each timeslice, the Plan

Processor performs a third activity: it instructs layer � ’s Message/Task Handler to send
layer � a message, the content of which specifies the name of the current plan schema being
processed. As described in Chapter 6, this information is used by layer � to maintain a model
of the agent’s own current intentions.
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Set produced by layer � ’s Focus of Attention Mechanism to “fill in” appropriate
gaps — uninstantiated variables — in the generated plan structure (see be-
low). The Planner also has access to a database which it uses as a long-term,
static storage medium; in the TouringWorld domain this database embodies
a Topological World Map containing the names and locations of the various
paths and path junctions that can be found in the agent’s world. This informa-
tion can likewise be used to instantiate unbound variables in the generated
plan structure.

5.4.2.1 Plan Generation

Plan generation starts with the retrieval of an appropriate plan template
or schema matching the agent’s initially assigned task. Tasks, received as
messages from layer � , are represented as (task name, argument list) pairs.
In the TouringWorld domain, for example, the initial task description

�����	��
��	�����������������������
����������
	���! "��$#&%'
���	�)(��	*'�&%!
�����%)�'
��+���	������',- "��$�����.��	�����%!,&�/�1032� "��$4&%'�	5&%'
��6(�%	*7����
�8)���:9� 	 <;
would be interpreted by the Planner of TouringMachine

������
�=�
as an instruc-

tion to generate and execute a route to some location called
���	������',

, to take
no more than 30 units of time getting there, and to end up no more than 5
units of distance off the final target.

Schemata are frame-like structures which are defined by a set of (at-
tribute,

.��	�����
) pairs, as shown in Figure 5.5. Schema retrieval is performed

by searching the Schema Library for any schema whose name and argu-
ments attribute values match the name and argument list, respectively, of
the Planner’s assigned task. > When a suitable match is found the chosen
schema is selected and its variables unified with corresponding values from
the assigned task description. For example, given the initial

�����
���	�������)���
task from above and the corresponding schema from Figure 5.5, ? ��*'�&%'
����<%���

would be replaced with

���	������',
. Once instantiated, the schema is used to

start the construction of the Plan Processor’s hierarchical plan structure: the
first instantiated schema — typically

���	��
���	����������
in the TouringWorld do-

main — is made the root node of the structure, this root node becomes the@
Name and argument matching is done using standard Prolog unification [CM81]. Schema

entries starting with a lower case letter (for example,
#<%'
��	��6(���*'��%7
��'�<%A�'


in Figure 5.5)
are treated as ground terms and entries starting with an upper case letter (for example,? �-*7�<%7
����&%)�'
 ) are treated as variables. “ ” denotes the anonymous or don’t-care variable.
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Figure 5.5: A composite schema: top-most schema used in generating a route to some

target destination within a given time.
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Plan Processor’s current plan, and this current plan or instantiated schema is
then considered for subsequent processing.

The Plan Processor processes instantiated schemata — in other words, plan
nodes in its plan structure — according to their type. The type of a schema
primarily dictates how the Plan Processor is to interpret its executable core
or body. There are two schema types: composite and primitive. A composite
schema (see Figure 5.5) is one whose body slot contains a list of one or more
body steps. Body steps are interpreted as subtasks of the initial schema and
thus processing a composite schema will result in the Plan Processor per-
forming further retrievals from the Schema Library. A primitive schema (see
Figure 5.6) is one whose body contains an executable routine or code frag-
ment which, rather than triggering further Library searches, either performs
a numerical computation whose result is to be used elsewhere in the agent’s
plan structure (for example, the agent’s estimated stopping distance) or effects
some low-level action on the world (see Plan Execution below).

Processing a composite schema amounts, primarily, to decomposing its
body of subtasks, retrieving suitable library schemata for these subtasks, and
then placing such instantiated child schemata or plans at appropriate points
in the Plan Processor’s plan structure. To decide where in this structure to
place these child plans, the original (composite) parent schema’s applicabil-
ity conditions must be considered. The applicability conditions of a schema
are a set of constraints which are used to establish a temporal ordering for the
schema’s own body steps. Constraints are triples of the form:�������	�
������������������������ �������!��� �
���"#�$��%'&
each of which expresses a particular temporal or relational ordering,

����������� ���
,

between the processing start times,
�!���	�(��������)�

and
�����	�
���������%

, of a given
pair of body steps appearing in the schema’s body slot. So, for example, in the*,+	-/.,0 -	0)132)46537 schema of Figure 5.5, the constraint 8 5:9
;<7,=
*3-)1?>@+/5A>B5:9
;:7	C)*3-)1 D
is used to denote the fact that the body step E 7/5,0/1,2)4 5,7 , whose first argument
is 8 5<9(;<7,=
*,-/1A> D , should be processed before the body step E 7)530)132)4	537	0GF
*,7	7)H ,
whose first argument is 8 5:9
;:7	C)*3-)1I> D . Similarly, the constraint 8 5<9(;<7	C/*,-/1A>+)5A>J5<9(;<7LKM*,-/1	D indicates that the body step E 7)5,0/1,2/4	5,760GF�*G7 7)H should be pro-
cessed before N 2	+ +	2/O,0)132)4 5G7 . The relational ordering operator +/5 is interpreted
by the Plan Processor as “less than”: in other words, occurring earlier in time.
Other ordering operators that can be used include +	7 (less than or equal), E 5
(greater than), and E 7 (greater than or equal).

After comparing all pairs of ordered starting times, the body step cor-
responding to the earliest starting time is determined and its corresponding
schema selected from the library and placed in the Plan Processor’s plan struc-
ture as the left-most child of the current (parent) node. This is then repeated
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Figure 5.6: A primitive schema: calculates the stopping distance for an agent travelling

at a given speed and decelerating at a given rate per unit of time.

for every other body step of the original parent schema, with each new child
schema being located to the right of any sibling nodes already placed in the
plan structure. Having established a complete ordering for the original sche-
ma’s body steps (or children) the Plan Processor proceeds with processing the
next schema which will be the first (left-most) of these recently placed child
schemata. Processing of this schema is then carried out in the same manner
as the parent schema. Schemata, thus, are processed in a strict earliest-first
postorder (children before parents) manner.

So far, schema processing has been described solely in terms of schema
body processing; however, two secondary schema processing activities have
yet to be addressed. The first of these, in fact, takes place before a schema’s
body is processed and involves processing of the schema’s preconditions.
The second of these activities takes place immediately after the body is pro-
cessed, and involves processing of the schema’s postconditions. Essentially,
a schema’s precondition slot is used to specify conditions about the agent’s
external world which must be true before processing of the schema’s body can
commence. The postconditions slot, on the other hand, is used to specify ex-
ternal world conditions which must be true before the Planner can complete
processing of the current schema and move on to process the next schema in
the plan structure. In the TouringWorld domain, for example, the schema
����������	�����J�J��'���$��/�$K�	 , which is selected for processing if the agent comes up to
a red traffic light, has as its postconditions slot a test to check whether the
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traffic light in question has changed its colour to green. If the conditions ap-
pearing in the preconditions or postconditions of a schema do not match those
that are currently true of the world, the Plan Processor suspends all activity
and the Planner is exited until the next timeslice, at which point the same
schema will reconsidered again. So, for example, the ���������	��
��	�����������������
schema will be processed repeatedly from one timeslice to another until the
appropriate traffic light turns green. � Unlike applicability conditions, then,
which are used to state conditions about events internal to the Planner (such
as the order in which different subplans should be processed) preconditions
and postconditions are used to state conditions about events which are out-
side the Planner’s direct control and which may or may not ever take place.
While it is conceivable, then, that the Planner could get stuck processing the
same schema indefinitely (for example, a particular traffic light never turns
green), such an occurrence is considered exceptional and is therefore handled
elsewhere in the TouringMachine ; namely in layer � .

Before describing the execution phase of plan processing, one final aspect
concerning schema retrieval requires addressing. If the agent’s Planner can
achieve an assigned task in more than one way, its Schema Library will contain
a corresponding number of schema templates, each with the same name as
the particular task but each distinguished by a unique identifier or version
number. If the library is being searched for a schema which turns out to have
several matching versions, the Plan Processor will decide, based on whether
the schema’s type is composite or primitive, how many or which ones it should
select. In particular, if the schema being retrieved is composite, only one is
retrieved, the selected version number in fact being arbitrary. This reflects
the view, similar to that adopted in McDermott’s NASL planner, that if plan
execution and generation are being interleaved, maintaining backtracking
points for all possible ways of achieving the planned task — as done in STRIPS
[FN90] for example — is simply unsuitable. As McDermott puts it, “if [the
plan] fails, the state of the world will in general have been changed enough by
the attempt so that the alternative plans are out of date” [McD90, page 227]. If
the schema is primitive, on the other hand, again only one schema is retrieved,
but in this case all alternative schema version numbers are considered as
potential backtracking points and are recorded — for possible future use —

�
Note that the current schema will also be suspended if the entity referred to in its pre-

conditions or postconditions slot is not part of the agent’s Current Focus Set. However, as
mentioned above in Section 5.3.1, a side-effect which occurs when the Planner makes a refer-
ence to a non-focussed entity is that a flag gets sent to layer � ’s Focus of Attention Mechanism
instructing it to focus on this entity in the future. It is quite likely, then, that the entity will
become part of the Current Focus Set by the next timeslice. Of course, if the entity is not
presently within sensing range, the current schema will have to remain as the current schema
— and be repeatedly processed and suspended — at least until the entity is sighted.
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in the plan structure alongside the retrieved schema. This approach reflects
the view that while exhaustive backtracking would typically be unsuitable,
the ability to defer commitment to a particular primitive schema — that is, to
a particular execution method — can potentially help to minimise the extra
work that would be required if the Planner’s “preferred” execution method
later failed for some reason. This will be discussed in more detail shortly.

5.4.2.2 Plan Execution

Repeating the decomposition/retrieval/placement procedure described thus far
results in the creation of a temporally constrained, hierarchical action order-
ing or plan structure. Starting with the original task’s retrieved schema as
the root of this structure, this generative procedure continues until the next
schema to process is a primitive schema. Composite schemata, in effect, can
be considered nodes in this plan structure, while primitive schemata can be
regarded as leaves. �

Primitive schemata, unlike composites, do not have decomposable bod-
ies. Rather, their bodies consist of a routine or code fragment which can
be directly executed by the Plan Processor. � Two types of operations can be
performed in a primitive schema body. The first of these involves computing
values for unbound argument variables that are referred to elsewhere in the
plan structure. For example, �����	��
	����	����������� , which appears as a body step
of the composite schema �������	����
�������� in Figure 5.5, is a primitive schema.
It computes the agent’s ideal average travelling speed and, through its ar-
gument ���
	�������������������! 
	���	���"#��������$ , shares its computed result with any
other nodes in the generated plan structure which also have �%��
���������&��������'�
 
���������"��	����#$ as an argument (for example, its sibling node (�������)���
	����	� ).
The arguments of primitive schemata are divided logically into input and
output arguments (composite schemata only have input arguments). Compu-
tations are shared with other schemata in the plan structure by propagating
any computed results through the appropriate output arguments. For exam-
ple, the schema *���*��	���������+�������-,����	����,��+������*�� of Figure 5.6 shares its result
through its one output argument �.���	����/,���������,���������*�0�21-,��������*��$ . Results
are propagated first to the schema’s siblings, and then up through the struc-
ture repeatedly to any of the schema’s ancestors possessing the appropriate
argument.

The second type of operation a primitive schema can perform is that of
3
More precisely, composite schemata should be considered AND-nodes since, as described

above, no choicepoints — that is, no backtracking points with alternative versions of the
schemata — are recorded for these.4

Code fragments are written in SICStus Prolog (see, for example, Figure 5.6).
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submitting some action command to the agent’s Action Buffer. In the Touring-
World domain the set of action commands that the Planner can submit include
the same two performed by layer � ( �������
	��
������
��� and �������
	��

��������������������� )
and also a variety of communicative action plans such as �
��	
���
�
��
����� , ���
������
���
��������	
����� , or �����
 �������
� . As mentioned previously, the Planner executes one
action at a time. More precisely, it submits at most one action command to
the agent’s Action Buffer per timeslice, after which it suspends its operation
until the next timeslice.

Of course, some of the actions submitted by the Planner to the effectors
may take several timeslices to execute in full. For instance, if the Planner
instructs the agent’s effectors to execute a change in orientation of, say, 180 !
but the agent is only capable of turning 45 ! per timeslice, it would take four
timeslices for this particular action to complete. Rather than permit any
single TouringMachine control layer to tie up the effectors over arbitrarily
long periods of time, effectors have been programmed to execute as much as
they possibly can in one timeslice (a 45 ! turn, say) and then resubmit the
remainder of the action as a future task for the Planner. At the beginning of
the next timeslice the Planner’s Message/Task Handler will pass the new task
to the Plan Processor for processing: the corresponding action will be partially
executed again, and the procedure repeated until the action is ultimately
completed. "$#

The TouringMachine Planner is resource-bounded and since executing ac-
tions must realistically use up resources of some sort, schemata have been
provided with a cost attribute (see Figures 5.5 and 5.6) which is used to in-
form the Planner of the minimum number of per-timeslice resources it must
have before a particular schema can be processed. Whereas the cost associated
with a composite schema is intended to cover such operations as its retrieval
and subsequent subplan decomposition (and so is calculated as a factor of the
number of body steps present in the schema), the cost of a primitive schema
is intended to cover the expense of processing its executable body.

The cost attribute of a schema is used in deciding whether to suspend
the Planner’s operations: if insufficient resources exist either to retrieve a
schema from the library or process a schema’s body, the Planner’s operations
are suspended until the next timeslice when its resource pool will be reini-
tialised. More precisely, if the current schema being processed is composite
and resources become sufficiently depleted, the Planner’s suspension takes
place immediately. If, however, the current schema is primitive, the Plan Pro-
%'&

This, of course, is what happens to iterated actions in non-exceptional circumstances. Like
any actions submitted by any of the control layers, iterated actions are potential candidates
for suppression (see Section 3.3.2) and thus may be terminated prematurely.
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test preconditions of current plan
if preconditions not satisfied
then � suspend current plan and goto Planner exit �
if current plan is active begin

if body steps to expand � 1
then � retrieve/place schema for selected body step

and goto process current plan �
else � retrieve/place schema for this last body step,

determine next plan, and goto process current plan �
end else begin

test postconditions of current plan
if postconditions satisfied
then � dequeue current plan, determine next plan,

and goto process current plan �
else � suspend current plan and goto Planner exit �

end

Figure 5.7: Algorithm to process a composite schema (pseudocode). The current plan
is the schema in the Plan Processor’s plan structure currently being processed. A plan

is active if it was not suspended in the previous timeslice. The statement “goto process
current plan” is an iterative call to process the current plan (using this algorithm or the

one shown in Figure 5.8 depending on its type).

cessor will first consider whether any of the schema’s recorded choicepoints
(alternative versions of the current schema) have a suitably low cost attribute
to warrant further processing during the current timeslice. The idea behind
having different versions of the same primitive schema is the same as that
of having access to several execution methods with differing computational
requirements which solve a common task (for example, different distance
ranging schemata with varying degrees of accuracy). At present Touring-
Machines are heuristically programmed to maximise per-timeslice resource
utilisation and so consider different schema versions in order of decreasing
cost. If a suitable schema can be found, any remaining choicepoints are dis-
carded and the chosen schema executed; otherwise processing is suspended
and then continued in the next timeslice.

Besides executable bodies, primitive schemata, like their composite coun-
terparts, also possess preconditions (which are processed before the schema’s
body) and postconditions (which are processed immediately after the body).
Once a primitive schema has been fully processed it is removed from the plan
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test preconditions of current plan
if preconditions not satisfied
then � suspend current plan and goto Planner exit �
if current plan is active begin

if sufficient resources to execute current plan
then � execute body, propagate appropriate

variable bindings, dequeue current plan,
determine next plan, and goto process current plan �

else if suitable choicepoint exists
then � retrieve/place schema for selected choicepoint,

make it the current plan,
and goto process current plan �

else � suspend current plan and goto Planner exit �
end else begin

test postconditions of current plan
if postconditions satisfied
then � dequeue current plan, determine next plan,

and goto process current plan �
else � suspend current plan and goto Planner exit �

end

Figure 5.8: Algorithm to process a primitive schema (pseudocode).

structure. The Plan Processor must then decide which node of the plan struc-
ture to process next. The strategy, as described above, is to process first all
siblings of the recently removed schema, each time selecting the earliest: in
other words, via a postorder search of the plan structure. Once all of these
sibling schemata have been processed, the Plan Processor moves up one level
in the plan structure, removes the parent of the last schema to be processed,
and then commences to process each of the siblings of this latest one. This
process is repeated until the root of the plan structure — the schema corre-
sponding to the Planner’s original task — becomes the current plan, at which
point the Planner suspends all activities. ��� The full pseudocode algorithms

���
Processing all of the child goals of some parent node before considering any of the parent’s

siblings implies that interactions are assumed not to occur among the different goals and
subgoals in the plan. In other words, the Planner makes the linearity assumption [HTD90].
In the TouringWorld task-domain where the solutions to different subgoals (for example,
separate stages of the route) can be fairly easily decoupled, this seems to be a reasonable
simplifying assumption to make. Clearly though, this decision would have to be reconsidered
if TouringMachines were to be given tasks which are less suited to linear planning methods.
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for processing schemata are given in Figures 5.7 (composite schemata) and
5.8 (primitive schemata).

5.5 Planning in the TouringWorld

A TouringMachine’s Planner is charged with building an initial single-agent
plan which, when executed, will accomplish the agent’s main goal of reaching
some target destination within some given spatio-temporal bounds. Through
the use of a Library of template schemata and a Topological World Map con-
taining the locations of all known paths and path junctions, ��� the Planner
generates a shortest length route to the target location as well as computing
a suitable cruising speed with which to satisfy the given deadline. ���

After generating an initial ordered list of component path names, the Plan-
ner proceeds to tackle in sequence each intermediate stage of the route. To
handle individual paths, the Planner has to generate further plans to help de-
termine, among other things, where the agent currently is and the direction
in which it has to head to reach the next path in the route. Ultimately, the
Planner also has to submit the necessary actions which will physically move
the agent in the right direction at the right speed along each intermediate
path comprising the route (see Figure 5.9).

At the level of individual paths, the Planner makes use of external land-
marks — for example, particular objects or information signs — to establish
when certain actions need to be taken. Landmarks, which are listed in the
Topological World Map, are associated with different paths or path junctions
and can be used, for example, to mark the transition from one path to another
(note, however, that these are not visible in Figure 5.9). Since the exact loca-
tions of external landmarks are not given in the topological map, the Planner
must explicitly look out for particular objects or signs if it is to make all of the
correct path-to-path transitions. Although processing sensory input creates
extra work for the Planner (landmarks are explicitly tested for in schemas’
preconditions and postconditions slots), closely coupling the Planner to the
agent’s sensors has the advantage of making it less dependent on detailed
prior information, and thus potentially less brittle at execution time.

As a single-agent device, the Planner does not usually concern itself with
���

See Appendix A (page 191) for a syntactical description of an agent’s Topological World
Map, and Appendix A (page 194) for the complete list of TouringWorld schema template
names.�
	

The algorithm used to calculate the shortest length route is based on Sterling and
Shapiro’s best-first search algorithm [SS86, pages 292–294], appropriately modified to favour
routes with the fewest hops; in this case, junction turnings.
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Figure 5.9: In a single-agent, exception-free environment (no obstacles or obstructions of

any sort), a TouringMachine’s initially generated route plan will be sufficient to accomplish

its initially assigned navigation task.

other agents’ activities or whereabouts. For example, since the Planner has
no prior knowledge regarding the whereabouts of traffic lights or stop signs
(these are not recorded in the Topological World Map), TouringMachines only
make planned stops when changing direction — that is when leaving one
path and joining another. However, since the Planner is intended to operate
in complex environments, it should be able to cope with a degree of world
change; that is, it should also be capable of taking on new tasks prompted
by the agent’s changing context. As mentioned above, the Planner takes
on extra tasks when appropriate task request messages are received from
the agent’s modelling layer � . New task requests (for example, yielding to
another agent at a junction or stopping at a red traffic light) are considered to
be of high priority in the TouringWorld domain and therefore always placed
earliest in the Planner’s plan structure. Whether the schema retrieved for
the new task is composite or primitive, it will be handled accordingly — as if
it were simply part of the agent’s original task. But, whereas the “mechanics”
to process dynamically generated tasks is, as this chapter should hopefully
have demonstrated, essentially quite straightforward, the steps required to
generate such tasks are rather more involved and so will be the topic of the
next chapter.
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TouringMachines – Modelling
Layer

I sat in my room and I drew up a plan
but plans can fall through as so often they do
and time is against me now...

Morrissey, Accept Yourself

6.1 Introduction

Like most real-world domains, the TouringWorld is populated by multiple
autonomous entities and so will often involve dynamic processes which are
beyond the control of any one particular agent. For a planner — and, more
generally, for an agent — to be useful in such domains, a number of special
skills are likely to be required. Among these are the ability to monitor the
execution of one’s own actions, the ability to reason about actions that are out-
side one’s own sphere of control, the ability to deal with actions which might
(negatively) “interfere” with one another or with one’s own goals, and the abil-
ity to form contingency plans to overcome such interference. Georgeff [Geo90]
argues further that we will require an agent to be capable of coordinating
plans of action and of reasoning about the mental state — the beliefs, goals,
and intentions — of other entities in the world; where knowledge of other
entities’ motivations is limited or where communication among entities is in
some way restricted, an agent will often have to be able to infer such mental
state from its observations of entity behaviour. Kirsh, in addition, argues that

86



TouringMachines – Modelling Layer � 87

for survival in real-world, human style environments, agents will require the
ability to “frame and test hypotheses about the future and about other agents’
behavior” [Kir91, page 177].

Now, while much of the behavioural repertoire needed for operating in
complex dynamic environments is made available through a number of differ-
ent reactive (layer � ) and planning (layer � ) control functions, situations will
nevertheless arise in which a TouringMachine’s initial goals — or the plans
generated to achieve such goals — can no longer be carried out with success.
As Minsky [Min86, page 163] puts it, “no matter how neutral or rational a
goal may seem, it will eventually conflict with other goals if it persists for long
enough.” These exceptional situations, as noted in Chapter 3, are called goal
conflict situations and they arise, in the TouringWorld domain, as a result of
unexpected interference between two or more entities — for example, when
the space-time trajectories of two agents intersect at a common point. � In such
situations, the only viable or effective course of action will be for the agent
to alter or dispose of some of its existing goals or plans and then to generate
new ones which address the agent’s new requirements and/or opportunities.
Often, though, such exceptional situations will demand from agents a fairly
sophisticated level of autonomous control: control providing a high degree of
goal flexibility and which adds an enriched spatio-temporal dimension to the
agent’s decision making capabilities. In other words, control which would be
very difficult to achieve solely with the kind of hardwired and pre-planned
responses produced by a TouringMachine’s reactive and planning layers.

6.2 Overview of Layer �
The main objective of layer � is to provide an agent with the reflective and pre-
dictive — or metaplanning (see page 64) — capabilities which are necessary,
or at least strongly desirable, for effective operation in complex multi-agent
environments. More precisely, it provides the agent with a range of tools and
functions for building and maintaining mental or causal models of world enti-
ties (including itself) which the agent can then use, for example, for identifying
entity behaviours or any other world events which had not been expected, for
causally explaining such observed behaviours and events, for detecting and re-

�
Certain types of goal conflict will occur sooner or later in any reasonably interesting

multi-agent TouringWorld scenario. As described in the previous chapter, a TouringMachine,
ignorant at first of any other agents or of any objects other than the navigable paths that
will lead it toward its destination, does not initially set out to stop at traffic lights or to give
way to other agents at uncontrolled junctions; conflicts will occur, then, if the environment is
populated with other such entities and if the agent is to obey certain traffic regulations and
to avoid colliding with these other entities. More on this below.
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Figure 6.1: Top-level view of the modelling control layer � .

solving any goal conflicts which might have arisen from these events (conflicts
can occur within the agent’s own set of goals or between the goals of differ-
ent world entities), and also for making short- or long-term spatio-temporal
predictions about entities’ possible future behaviours and about the possible
future outcomes of observed world events.

Layer � , like layers � and � , operates as an independent control module.
In a synchronous fashion, � receives input from the agent’s Perception Buffer
at the start of a timeslice, and sends output to the agent’s Action Buffer at
the end of the timeslice (see Figure 6.1). In the TouringWorld domain, � ’s
input takes the form of symbolic multi-attribute information records — see
Figure 3.3 (b) — which describe the physical configurations of any perceived
world entities, including that of the agent itself. Output takes the form of
physical and communicative action commands for the agent’s effectors and
will be discussed in more detail below.

The functionality of this layer, as shown in Figure 6.1, is shared between
three major components: a Focus of Attention Mechanism, the Explanation
Module, and the Prediction Module. Like layer � ’s operations which could
include potentially lengthy searches of the agent’s plan space, the deliberative
operations of layer � are also computationally expensive, certainly relative
to those of layer � . In order for TouringMachines to be capable of operating
in dynamic real-time environments, then, the inter-operation latency of its
various deliberative modelling functions must be bounded. One step toward
achieving this is to limit the amount of information which layer � will have
to reason about. This, as described in Section 6.3, is the main purpose of the
Focus of Attention Mechanism.
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The Explanation Module is responsible for generating plausible or inferred
explanations about any entity behaviours which have recently been observed.
More specifically, the Explanation Module is responsible for building and
maintaining models of all observed entities (including itself) which are used in
detecting discrepancies between these entities’ current behaviours and those
which had been anticipated or predicted to occur from previous encounters
(see below). If any such behavioural discrepancies are detected, the task of
the Explanation Module will then be to infer plausible explanations for their
occurrence.

Once all model discrepancies have been identified and their causes inferred,
the Prediction Module will then be responsible for constructing space-time
projections or simulations for each of the entities being modelled. These
are used by the agent to detect any potential interference or conflicts among
the modelled entities’ anticipated (or, in the case of its own model, desired)
actions. Should any conflicts — intra- or inter-agent — be identified, the
task of the Prediction Module will then be to determine how such conflicts
might best be resolved, and also which entities will be responsible for carrying
out these resolutions. Finally, in order for the agent to be able to make
future comparisons between observed and anticipated entity behaviours, the
Prediction Module will construct appropriate expectations for subsequent use
by the Explanation Module, as mentioned above.

The potential gain in having the kind of explanatory and predictive powers
which layer � provides, is that by having a better understanding of the causes
behind the various entity behaviours which might be observed and by being
able to make successful predictions about these entities’ ensuing courses of
action, a TouringMachine should be able to detect, and often resolve, potential
goal conflicts early on — before they become irreversible. This, then, should
enable a TouringMachine to make changes to its own plans in a more effective
manner than if it were to wait for these conflicts to materialise. Before going
any further into the operational details of layer � ’s explanation and prediction
functions, however, a description of this layer’s attention focussing capabilities
will prove useful.

6.3 Focus of Attention

The purpose and general operational characteristics of layer � ’s Focus of
Attention Mechanism are more or less identical to those of its layer � coun-
terpart (see Section 5.3). The aim of the Focus of Attention Mechanism is to
filter layer � ’s perceptual intake by reducing the set of all perceived world
events to the set containing only those events which the agent (or the agent’s
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Figure 6.2: Layer � ’s Focus of Attention Mechanism

designer) considers relevant to its task-related needs. This is carried out to
ensure that layer � , which, like layer � is computationally resource-bounded,
is capable of timely responses under a variety of real-time, changing world
conditions.

Like layer � ’s attentional mechanism, layer � ’s (see Figure 6.2) consists
of a set of user-specified, if-then Prioritised Focussing Rules which heuris-
tically and selectively filter information from the agent’s Perception Buffer,
and which produce output in the form of a Current Focus Set: a collection of
“relevant” perceptual information records — see Figure 3.3 (b), for example —
for subsequent use by the layer’s Explanation Module. Applied from the point
of view of the agent doing the focussing and always relative to the current
world time, the focussing rules are used to express domain-specific relations
about or between different entities which must be satisfied if these entities are
to form part of the agent’s Current Focus Set. The complete set of focussing
rule predicates used in the TouringWorld domain is given in Figure 5.3. As
entities alter their behaviours or move about in space or time, the relation-
ships between the focussing agent and other world entities will change. When
relationships change, different focussing rules will be satisfied and so differ-
ent entities will be focussed upon as time progresses. The precise number of
entities focussed on at any one time is established, as in layer � , by “charging”
from the Mechanism’s per-timeslice, bounded, computational resource pool for
each entity that is brought into the Current Focus Set.
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Although the focussing rules used by layer � are selected by the agent’s
designer in advance, one mechanism exists for automatically altering the
contents of this rule set at run-time. By allowing the agent’s layer � to inform
its layer � about the various entities it has been reacting to, this mechanism
(which was alluded to in Chapter 4) enables layer � to take into account —
that is, to include in its model set — types of entities which it might hitherto
not have chosen to focus on. The implicit assumption being made here is that
if the agent has just reacted to some entity it might well be that the agent’s
modelling layer does not possess a model of this entity (and that perhaps
it should if it is to deal with this entity in a more reasoned and competent
manner).

The presence of this rule-changing mechanism provides the main reason
for maintaining two separate attentional mechanisms: one for layer � and
one for layer � . Since the individual focussing requirements of the agent’s
Planner and its Explanation Module are very likely to differ — each of the
control layers � and � maintains a different model of the agent’s world — it
is important to ensure that the Current Focus Set which is used by one layer
not be “biased” by the run-time focussing alterations that are made by the
other. By providing each layer with its own Focus of Attention Mechanism
this requirement is easily satisfied.

6.4 Explanation

6.4.1 Introduction

The Explanation Module comprises four main components: a Message Han-
dler, a Model Building Mechanism, a Model Discrepancy Handler, and a The-
ory Formation and Selection Mechanism (see Figure 6.3). The Message Han-
dler receives and processes messages which convey information about the
status of other agent components. In particular, messages are received from
the agent’s effectors and from the agent’s planning control layer � . From the
former it receives information describing which layer had been responsible for
the agent’s most recent action (this, as explained below, is useful for informing
layer � that some unplanned — layer � — action has just taken place which,
possibly, might work against layer � ’s longer term interests); from the agent’s
planning layer it receives an up-to-date statement of the agent’s own current
intentions — as described below, this is required as part of the agent’s mental
model of itself.

The Model Building Mechanism constructs and maintains mental or causal
models of any entity whose corresponding information record presently resides
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Figure 6.3: The Explanation Module

in the agent’s modelling layer’s Current Focus Set. In fact, in any given time-
slice, only a subset of the entities which have been focussed upon are likely to
be selected for modelling — the precise number being established through a
process, not unlike that used by the Focus of Attention Mechanism, of “charg-
ing” from a per-timeslice resource pool for each entity under consideration. �
Note that since the choice of which entities to model is being made on the
basis of both the contents of and, more importantly, the specific ordering of
entities within the agent’s Current Focus Set, the Model Building Mechanism
is effectively being driven by the same heuristic selection rules as the Focus
of Attention Mechanism.

A model, as will be described more fully in Section 6.4.2, is a structure
which is used by an agent for representing and reasoning about the physical
and logical behaviour of any observed world entity. For the purpose of control
and coordination, agents, as mentioned in Chapter 2, must be able to reason
about their own and other entities’ activities. In other words, agents must
have the capacity to objectify particular aspects of their environment — that
is, they must be able to construct and deploy internal models of themselves
and other entities. Reasoning with models, then, is intended to allow agents
to make meaningful interpretations of other entities’ behaviours within the

�
As described more fully in Chapter 7, the per-timeslice resource totals which are sepa-

rately available for focussing on and modelling entities are defined by appropriate Touring-
World Testbed parameters.
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situational context in which these behaviours are observed. The idea here is
that by making correct interpretations, an agent will be provided with useful
insights into other entities’ future behaviours or likely changes in behaviour.

To an agent � , a model of entity � is a data structure which it can use
for both posing and answering certain questions about � : for example, “What
are are � ’s current intentions?”, “Which one of � ’s goals is most threatened
in the current conflict situation?”, “How will � resolve its most pressing goal
conflict”, or “What will � be doing � units of time from now?” A model, thus,
can be regarded as a source of knowledge which contains references to and
assumptions about those aspects of an entity which the modelling agent deems
important for explaining the entity’s behaviour.

The common abstract model structure which is used by all TouringMa-
chines is a time-indexed 4-tuple of the form

�����
	��
��
���
where

�
is the entity’s Configuration, namely, ��� ����� -location, speed, accelera-

tion, orientation, and signalled communications;
	

is the set of Beliefs ascribed
to the entity;

�
is its ascribed list of prioritised goals or Desires; and

�
is its

ascribed plan or Intentions structure.
�

,
	

,
�

, and
�

are referred to as the
variables or components of the model; it is from the specific values taken on by
such components, as well as the specific connections which causally link such
components together, that any inferences about entity behaviour are made
(see below). Models, it should also be noted, are permanent structures which
an agent will store and maintain throughout the duration of its operation.
Thus, unless an agent deliberately chooses to discard its model of some world
entity — this would typically be done if the agent had failed to observe the
given entity for some considerable period of time � — all models held by an
agent will persist from one timeslice to the next, being used and becoming
updated as and when required. More on this in the following sections.

In the process of constructing a model of another entity, two cases need to
be considered: the first case occurs when the entity to be modelled has just
been observed by the agent for the first time; the second case arises when
there exists a record of the entity having already been observed some time in
the recent past. When an entity has just been observed for the first time, an
initial model is built for it by retrieving a suitable model template from the
Model Library (see Figure 6.3). Model templates are partially-instantiated
data structures which serve as the basis for constructing models of individual
world entities of various types (for example, TouringMachines , traffic lights,�

The precise length of time is established via a Testbed parameter called ModelDis-
cardAfterTime (see Chapter 7).
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obstacles). Discussed in more detail in the following section, model templates
provide a number of default values for one or more of the four components � , � ,�

, and � , which together constitute the entity model. For example, the model
template for a TouringMachine entity might contain, among other things, the
default desire ���	��
������������
���
������ . Now, once a model has been retrieved for this
new entity, two operations will take place. The first involves time-stamping
the model with the current value, � , of the agent’s internal clock (it will become
clearer later why this is necessary). The second operation will be to update the
retrieved model with any up-to-date information which might be held about
the given entity. Among other things, the model will be updated with relevant
information on the entity’s current physical configuration: namely, its ����� ��! -
location, speed, acceleration, orientation, and its set of communicated signals;
this information is extracted directly from the appropriate information record
in the agent’s Current Focus Set. In the second case, when the entity under
consideration has previously been observed and, more importantly, previously
been modelled by the agent, no library template retrieval takes place. Instead,
the agent’s existing model of the entity (which will have a time-stamp of �#"%$ if
the agent’s internal clock is currently at time � ) will simply be updated using,
as in the former case, appropriate configurational information obtained from
the agent’s Current Focus Set.

Thus far, the descriptions of how an agent’s per-timeslice collection of mod-
els is determined and of how each model’s configurational information gets
filled in have purposely omitted a number of operational details. The first
of these concerns the fact that, at times, layer & ’s Current Focus Set could
be empty. ' When this situation arises, the Model Building Mechanism will
decide which entities to model by considering those entity models which it
has stored from previous timeslices and then selecting from these whichever
entities would have been selected had the entity names been obtained from
the Current Focus Set. This is done simply by applying the Focus of Atten-
tion Mechanisms’ heuristic prioritising focussing rules on the set of stored
modelled entities. The second operational detail concerns situations in which,
after selecting appropriate entity names from the Current Focus Set (assum-
ing it is non-empty to start with), the Model Building Mechanism is left with
extra resources for modelling other entities. In these situations, the procedure

(
It is possible (although admittedly not very useful or common) to configure a Touring-

Machine so that is does not sense the world each and every timeslice — the agent’s precise
rate of sensing is established via the Testbed parameter SensingRate (see Section 7.4.3 and
Appendix A) — but which nevertheless models and reflects about its surroundings at all times
(a TouringMachine’s rate of modelling is similarly established with a Testbed parameter, as
described in Chapter 7). Now, when an agent does not sense during a given timeslice, it also,
understandably, will not focus its attention on anything; to reflect this occurrence, the agent’s
Current Focus Set will be flushed empty whenever sensing is not performed.
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is to consider selecting (resources permitting) any additional entities which
do not appear in the Current Focus Set but which have nevertheless been
modelled by the agent in the past. This also ties in with the third and final op-
erational detail on retrieving and updating models: namely, how to update the
configuration component of some entity’s model — its location, speed, orienta-
tion, etc. — when the required information is not available from the Current
Focus Set. Here, the solution is straightforward: the modelling agent will
have to assume that the entity’s current configuration is that which had been
anticipated or projected by the agent’s Prediction Module the last time this
particular entity was modelled (more on this below). This information may
well be incorrect but, given that the agent has no other means of knowing
what each of the other entities is presently up to, this should serve as a viable
default — certainly until the agent next senses and updates its Current Focus
Set.

Now, once an agent’s entire collection of stored entity models has been up-
dated with the relevant configurational — model component � — information,
the agent will then be in a position to exploit these models for the remain-
ing processing stages in the Explanation Module: reasoning about entities’
observed behavioural discrepancies and forming theories which explain the
causes behind such discrepancies. However, before proceeding to give more
detail on these two processing stages, it is worth mentioning one or two points
about the role of resource monitoring in the modelling layer.

Just as the Focus of Attention Mechanism’s operational costs were mon-
itored to guarantee an upper-bound on its computational latency, so too are
those of the Explanation Module (see Figure 6.3). In particular, the costs of
such operations as message handling and model building/updating are contin-
uously tallied and deducted from layer � ’s per-timeslice resource allowance.
When resources run out, the Model Building Mechanism ceases to select any
further items from the Focus of Attention Mechanism’s Current Focus Set,
effectively limiting, for the present timeslice, the set of entities to be handled
by the remaining processing stages of the modelling layer: namely, model
discrepancy handling, theory formation and selection, goal conflict detection
and resolution, and model expectation generation (the latter two pertaining
to the Prediction Module, as discussed in section 6.5). By limiting thus the
number of entities to be processed, and by further ensuring that this precise
number of entities will always be able to be processed within the time con-
straints imposed by the agent’s constant-sized processing cycle — this can be
done by ensuring that the (worst-case) time demands of each of the remaining
layer � processing stages be taken into account by the resource tallying and
deduction functions just referred to — the time-bounded responsiveness of the
Explanation Module, in particular, and therefore of layer � as a whole, can
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be guaranteed.

6.4.2 Reasoning with Models

Model-based Reasoning (MBR) is an AI methodology for reasoning about —
and more often than not, diagnosing — complex physical artifacts such as
hydraulic or mechanical controllers or electronic circuits. More generally,
MBR, or reasoning from first principles or commonsense reasoning as it is also
known, is an umbrella term for studies covering many different aspects of
advanced knowledge representation and reasoning [Lee89]. In particular, it
concerns such concepts as causality and intention in order to reason about the
way artifacts, systems, or indeed agents, perform.

The basic paradigm for model-based reasoning for diagnosis can best be
understood as the “interaction of observation and prediction” [DH88, page
298]: given an artifact and a model of the artifact from which one can make
predictions about the artifact’s desired or expected behaviour, an observation
will indicate what the artifact is actually doing, whereas a prediction will
indicate what it is supposed to do. The most interesting event in this context,
surely, will be any difference or discrepancy which occurs between the two.

Given a model of some artifact, diagnostic reasoning can be seen as the
process of assigning credit or blame to parts or components of the model based
on any behavioural discrepancies which have been observed. In situations
where the model is presumed to be correct and where any model-artifact dis-
crepancies can be regarded as indicating component malfunctions within the
artifact, the diagnostic reasoning task is typically referred to as troubleshoot-
ing. Where, on the other hand, the artifact must be presumed correct and,
conversely therefore, any model-artifact discrepancies are to be regarded as
indications of “malfunctions” or required changes in the model of the artifact,
the reasoning task is then known as theory formation [dKW86]. It is this latter
task, the formation of theories about artifacts’ or entities’ behaviours, which
is of concern in the modelling layer of a TouringMachine and which will be
elaborated on shortly. Before that, however, it would be useful to provide some
more detail on the structure and use of TouringMachines ’ model templates.

The abstract 4-tuple definition of a model template given above was pur-
posely simplified to give a preliminary, high-level description of their basic
structure and purpose. In fact, the models used by TouringMachines have a
number of other components which should now be described. Model templates,
as alluded to above, are frame-like structures which are defined, much like
a TouringMachine’s plan schemata, by a set of (component, �������	� ) pairs, as
shown in Figure 6.4. Model retrieval is performed by searching the Model Li-
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brary (see Figure 6.3) for any template whose type component value matches
the type of the entity which is currently under investigation by the agent. � En-
tity types found in the TouringWorld domain include mobile agents ( �������
	������
����� 	���� ), environment agents ( ��� ����� 	 � ����	� � � , � � 	�� , � �� ), as well as various
objects (for example, ���
��� ��� ��� , � � ��� , and ������� ); other types will be described in
Chapter 7. The process by which TouringMachines model other TouringWorld
entities which are not of type ������� 	����� ������� 	���� — that is, entities which are
either or both non-mobile and non-intentional — can be considered a special,
and admittedly, less interesting case to describe. Although some such cases
will be discussed below in Section 6.6, the remaining discussion will focus on
the process by which TouringMachines model other TouringMachines (which
includes, of course, the case of a TouringMachine modelling itself).

When a suitable type match is found, a resource check is carried out to
determine whether the template that has been identified can be “afforded”
by the agent. The value associated with the template’s cost component is
thus used to inform the Model Building Mechanism of the minimum number
of per-timeslice resources it must have before this particular template can be
processed (the purpose of resource charging was explained in the previous
section). If this particular constraint cannot be satisfied, the Model Building
Mechanism will continue to search for another suitable (cheaper) template of
the same type. If one cannot be found, the Mechanism will then simply cease
to model any more entities during the current timeslice. If, on the other hand,
the cost constraint can be satisfied, the given model template will be selected
and a number of its variables unified with appropriate data values supplied
by the agent: in particular, the name component with the name of the entity
which is being described with this model, and the timestamp component with
the current value of the agent’s internal clock.

The four most interesting components of any model have already been
introduced above. These are the configuration, beliefs, desires, and in-
tentions components. The configuration component of a model is used for
storing information about the modelled entity’s recently observed physical
configuration: its last known !#"%$'&)( -location, speed, acceleration, orientation,
and set of communicated signals (the latter is used to record, for example,
whether the entity was last observed braking, honking its horn, or perhaps
indicating to turn). Up-to-date configuration information, as mentioned above,
is obtained from the modelling agent’s Current Focus Set.

The beliefs component is used for storing what the agent considers to be
the entity’s own set of beliefs — in other words, the agent’s beliefs about
*
As with plan schema attributes, model template components and values are matched at

retrieval time using standard Prolog unification [CM81].
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type: �������	��
�����	�����	��
��
cost: �
name: ��
������������	�
timestamp: ������ �!�"����	�
configuration: #$ �����������
&%('*)&%,+�-�./%
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Figure 6.4: The �������	��
�������������
A� model template.
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the entity’s beliefs. � Each belief in the beliefs component is realised as
a simple grounded (attribute, value) pair. In the template of Figure 6.4,
for example, the pair �������
	��
�����	��������������������	������ would represent the mod-
elled entity’s presumed belief that the recommended safety distance between
agents (in motion) is 3 spatial units. Similarly, in the same template, the
pair �! �"�#$��������%������ ���&$��%����$��	��'�� �"�#$��������%������ ���&$��%(�)�*��	��,+-��	�%�.
/�� would repre-
sent
the agent’s belief that the entity’s physical capabilities (for example, its max-
imum speed, acceleration rate, etc.) are the same as those which the agent
itself possesses (the argument ��	�%�. , in other words, refers to the agent doing
the modelling and not to the entity which is being modelled).

The desires component of a model consists of a prioritised list of desires
or goals which the modelled entity is considered to possess. As mentioned in
the previous chapter, a TouringMachine may have a number of maintenance
or homeostatic goals (for example, ��0�1(���2���1�%�%�������1��$� , 1�&
	�#����	���3�%����$��1��$� ) and
also a single achievement goal; in the TouringWorld domain this will always
be ��	�����"
���	����$�)�����$��1�� . The intentions component of a model is used for
storing the entity’s presumed intention structure: in other words, the time-
indexed hierarchical plan structure which the agent believes the entity will,
in the past, once have generated and, in the present, be processing in order to
accomplish its sole ��	�����"
���	(���
�������$��1�� achievement goal. In fact, to simplify
matters somewhat — and since all entities will be considered to have the same
initial intention,  �%����
������1�3���	 , as well as identical Schema Libraries for use
in decomposing this initial intention — a modelled entity’s intention structure
will be represented solely in terms of the entity’s presumed current intention;
that is, in terms of the hierarchical plan structure node which the entity’s
Planner is currently presumed to be processing. More on this below.

While it has been mentioned already that a common model template is
used by TouringMachines for modelling other TouringMachines — and also,
therefore, for modelling themselves — it is worth mentioning that the only
concrete difference between self and non-self models will reside in the level
of uncertainty of the information which they store. This arises from the fact
that when a TouringMachine models another entity, it will never know with
certainty what the entity’s precise desires and intentions might be. Thus,
even though entities are assumed to have a common set of prioritised desires
and also the same initial  �%����
������1�3���	 intention, the precise arguments taken
on by these model components — defining, among other things, each entity’s
particular target destination and task deadline — will remain unknown to

4
When the entity being modelling is the agent itself, these beliefs can be regarded simply

as the agent’s beliefs (rather than its beliefs about its beliefs).
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observers, typically throughout the duration of the task scenario. One distin-
guishing feature, then, between a TouringMachine’s model of another entity
and the typically complete and detailed model it holds of itself, will be the
presence, in its non-self models, of many unbound component member values
— see for example, �������	��
��������
 and ������������
�� in the (non-self) model template
of Figure 6.4.

The process, then, of associating an initial, partially-instantiated model
template to some entity, is essentially one of ascribing to the entity a default
causal description or explanation of its behaviour. The very nature of Touring-
Machines as computationally and informationally resource-bounded agents
would suggest, therefore, that much of what they might ascribe to other enti-
ties is unlikely to be completely correct. Indeed, apart from the information
they possess about (and ascribe to their own models of) themselves — in other
words, about their own physical configurations, their own beliefs, desires, and
intentions — plus the physical configuration information which they can ac-
quire about other entities from their sensory and focussing mechanisms, the
rest — that which TouringMachines cannot observe in other entities directly
— may well be incorrect. For models to be useful, then, it would appear that
any agent which makes use of them must, at times, be willing to revise them
whenever they disagree with the agent’s current observations of the world.

When undertaking the revision of a model, any number of the model’s
components might be considered “culprits” behind the observed model-entity
discrepancies and therefore as being potentially worth revising. Also, dif-
ferent orders of such component revisions might also be worth considering.
This is precisely the sort of information which is stored in the defeasible
components attribute of a model (see Figure 6.4): namely, the ordered list
of model components which, upon the detection of any model-entity discrep-
ancies, the agent should consider revising. Now, in general, when attempting
to explain some complex entity’s behaviour, the question of what assumptions
might need to be revised and what assumptions should not, is by no means
straightforward to answer. While some aspects of this question are addressed
again in Chapter 9, it is beyond the scope of this dissertation to provide a
general theory for modelling complex intentional behaviour in autonomous
agents. To simplify matters in this respect, therefore, this dissertation is
concerned solely with modelling agents which can be best be described as
being mentally and structurally homogeneous; in the TouringWorld domain,
this means that agents — TouringMachines — will be assumed to have uni-
versally similar physical configurations, beliefs, and desires. In other words,
TouringMachines will be assumed to differ only with respect to their inten-
tions. How one might deal with heterogeneous agents — those which may or
may not share the same goals and beliefs as every other entity in the environ-
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ment — is raised as an avenue for future work in Chapter 9. The next two
subsections will develop further the notions of model-entity discrepancy and
intention ascription as theory formation.

6.4.3 Handling Model Discrepancies

The philosophy behind ascribing default models to other world entities is
similar to that which lies behind the use of the default ascriptional rule in the
ViewGen system of Wilks and Ballim [WB87, page 119]: namely assume that
one’s view of another entity’s view is the same as one’s own “except [when]
there is explicit evidence to the contrary.” To an agent which is modelling its
environment, the evidence that some entity is not behaving as expected will
manifest itself in the form of a model-entity difference or discrepancy. This,
of course, raises the questions of where, when, and how such behavioural
expectations get formed. As discussed briefly at the start of this chapter,
expectations about other entities’ behaviours are generated by the agent’s
Prediction Module. The precise mechanism behind the generation of these
expectations will be given below in Section 6.5. For now, it is sufficient to note
three things about behavioural expectations: (i) any expectations held by an
agent at time � will have been made using stored model information from
time ����� : in other words, information obtained from appropriate models
displaying a timestamp component of ����� ; (ii) although framed within the
context of the entity’s presumed beliefs, desires, and intentions, expectations
about any given entity will refer solely to that entity’s projected physical
configuration: its expected �
	����� -location, speed, acceleration, orientation,
and communicated signals; and (iii) such projected physical configurations
will be stored as models’ expectations components (see Figure 6.4).

Discrepancies in a given entity’s behaviour are detected through direct
comparison of the values in the (current) configuration with the values in the
(projected) expectations components of that entity’s model. In particular, a
discrepancy will exist if any of the entity’s current location, speed, acceleration,
or orientation parameter values differ from those previously projected and/or if
the entity’s current set of communicated signals is not identical to its previous
set. Thus, much like envelopes in the Phoenix agent [HHC90] or monitors
in the Dynamic Reaction architecture [SH88] (see Section 2.4), expectations
act as constraints on the outcomes of actions: outcomes which, in the case
of an agent modelling itself, were desired by the agent to occur; or which, in
the case of the agent modelling some other entity, were predicted to occur.
In this respect, then, a model discrepancy can be regarded as an indication
that the model of the entity under consideration is in some sense “faulty” and
so should somehow be revised. Note, though, that when an agent detects
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discrepancies in the model it holds of itself, there is not so much a need for it
to revise this self model — after all, the agent knows its own beliefs, desires,
and intentions with absolute certainty — as there is for checking whether
the discrepancy, which is likely the result of one of the agent’s actions not
executing as intended, might be an indication that one or more of the agent’s
own goals are now under threat. More on this below.

It should be pointed out at this stage that detecting a discrepancy be-
tween actual and predicted (or desired) behaviours need not on every occa-
sion force the agent into a wholesale revision of its faulty model. This is
because associated with each of the parameters of a model’s expectations
component are upper- and lower-bounds on the deviations which are permit-
ted before a model revision becomes necessary. These deviation or tolerance
bounds — ModelLocationBounds, ModelSpeedBounds, ModelAcceler-
ationBounds, and ModelOrientationBounds — are implemented as Test-
bed parameters and so can be set to any size by the user (more on this in
Chapter 7). Different settings for these tolerance bounds are likely to affect
both the amount of environmental change that the agent will perceive and the
amount of time the agent will need to spend revising its models. This issue of
“environmental sensitivity” is an important one and will be investigated more
closely in Chapter 8.

After checking each one of its models for any discrepancies, an agent will be
in one of two situations: either it will have found one or more discrepancies in
one or more of its models, or it will have found none. To cope with the fact that
TouringMachines are resource-bounded and that, in a dynamic multi-agent
world, it is probably more important that they respond to potential conflicts
with other entities than make minor adjustments to their own travel speeds so
that they can satisfy their pre-imposed deadlines, the TouringMachine agent
architecture is designed to favour dealing with discrepancies found in the
models of other entities over those which might have arisen in the agent’s self
model. In other words, TouringMachines are designed to favour re-explaining
other entities’ behaviours over checking whether their own goals are under
threat. These two types of situations will now be considered in more detail,
starting with the situation where the agent finds no discrepancies.

In situations where no model discrepancies have been found, the agent,
in effect, takes the opportunity to check whether any of its own prioritised
goals or desires are under threat — whether in the present or in the longer
term. Now, since the agent did not detect any self model discrepancies —
in other words, since the agent appears to be moving along as it predicted
it would — it might seem redundant for the agent to check whether any
of its goals are in danger of not being met. There are, however, situations
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Figure 6.5: With reasonably wide tolerance bounds on its expected orientation — for

example, +/-45 � — and with self model goal checking disabled, it is possible, so long as

no individual deviation causes the agent to move off its original heading by +/-45 � , that

the agent will fail to notice any orientation discrepancies and eventually end up seriously

off course (see left-hand frame). If, on the other hand, the agent is able to carry out

self goal checking (one assumes also that the agent’s �������
	���������������
������� goal has a

suitably constraining ������	��������������������� argument attached to it — see Figure 6.4), then

the agent will be less likely to stray off course to the same extent (see right-hand frame).

where such goal checks could prove crucial to the agent’s long-term success.
Consider, for example, an agent which has reasonably wide tolerance bounds
placed on its expected orientation, say ModelOrientationBounds = +/-45 � .
Parametrised thus, the agent, upon reacting for example to the presence of
some obstacle in its path, could easily end up heading away from its goal
— terminally, without ever noticing any long-term problem — so long as no
individual reaction causes an orientation swing greater than 45 � either side
of its original heading (see Figure 6.5). Goal conflicts of this type can only
be detected by considering, in turn, each of the agent’s prioritised goals —
that is, each set member in the desires component of the agent’s self model
(see Figure 6.4) — and running it through appropriate conflict resolution rules
residing in the agent’s Conflict Library (see Figure 6.3). The purpose of these
rules is to enable the agent to project any of its goals in space-time and to
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determine whether there exist any potential conflicts — either in the short-
or long-term — vis-à-vis their eventual achievement. A detailed description
of these rules and an explanation of how they are used will be deferred until
Section 6.5.4 where the agent’s Goal Conflict Detector will be discussed. For
present purposes, it is sufficient to point out that if, upon application of its
various conflict resolution rules, any of the agent’s goals are considered to be
under threat, a record will be made of this fact so that the agent’s Goal Conflict
Detector can subsequently take some appropriate action. More on this later.

Now, in situations where the agent has detected one or more model discrep-
ancies, three cases must be further distinguished. The first involves a very
special type of discrepancy which occurs exactly once — namely, when the
agent first decides to model itself. This discrepancy will arise by virtue of the
fact that the expectations component of the agent’s self model is empty (this
model has yet to be processed by the Prediction Module so no expectations will
have been generated thus far). This discrepancy, in fact, will be interpreted
as a flag instructing the Explanation Module to send a message to the agent’s
layer � setting out the initial task to be taken on by the Planner; the task,��������	
��	��������� plus associated arguments, is obtained from the intentions
component of the agent’s self model (this messaging procedure was described
earlier in Section 5.4.2). The second discrepancy detection case, like the first
one, also involves the detection of a self model discrepancy, although this time
it arises not because the agent’s model is new but because there is some devi-
ation between its own configuration and expectations components. As far
as attempting to explain such self model discrepancies, little is done at this
stage except to make a record of the discrepancies which have occurred and to
defer treatment of them until the Goal Conflict Detector is invoked (see below
in Section 6.5.4). The final case involves the detection of a discrepancy in the
model of some other entity. This will require that the agent revise its model
of the particular “errant” entity in an attempt to explain this entity’s new and
unexpected behaviour. This model revision process will be the subject of the
next subsection.

6.4.4 Theory Formation and Selection

An agent, upon deciding to revise its model of some world entity, will first
have to consider which of the model’s components need to be changed. As
mentioned in Section 6.4.2, this problem has been simplified somewhat in this
dissertation by restricting the defeasible components of an entity’s model
to consist solely of the entity’s presumed intentions — in other words, the
plan structure which the modelling agent believes the entity to be processing
in order to accomplish its single achievement goal ���
������	��������������������� . Now,
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in this context, the process of revising a model can usefully be viewed as
one of diagnostic reasoning or theory formation: namely, the identification of
model “malfunctions” from observations of the modelled entity. It turns out
that a suitable and practical system with which to carry out such diagnostic
reasoning already exists and is called Theorist.

Theorist [PGA86] is a logic programming system for constructing scientific
theories — that is, for constructing explanations of observations in terms of
various facts and hypotheses. Theorist is a system for both representation
and reasoning. A Theorist knowledge base consists of a collection of first
order clausal form logic formulae which can be classified as: (i) a closed set of
consistent formulae or facts, � , which are known to be true in the world; (ii)
the possible hypotheses, � , which can be accepted as part of an explanation;
and (iii) the set of observations, � , which have to be explained. Given these,
the Theorist reasoning strategy attempts to accumulate consistent sets of facts
and instances of hypotheses as explanations for which the observations are
logical consequences. An explanation or theory is then a subset of the possible
hypotheses which are consistent and which imply the observations. More
formally, � is said to be explainable if there is some subset � of � such that

�����	� 
�� and����� is consistent.

� is said to be a theory that explains � . � should then be seen as a “scientific
theory” [PGA86, page 4].

Theorist has been described as both a theory and an implementation for
default and abductive reasoning [Poo88]. One of the several ways in which
Theorist can been used, then, is for performing abductive diagnosis; namely,
finding a set of causes (for example, diseases) which can imply the observed
effects (for example, patients’ symptoms). Now, by taking the system or arti-
fact that is being diagnosed as the entity that our agent is modelling, and by
re-interpreting “symptoms” as the entity’s observed actions, then the causes
behind this entity’s actions — be they physical or communicative — can be
regarded as the entity’s intentions. (To emphasise, once more, TouringMa-
chines ’ beliefs and desires are accepted as being common and so will not be
considered in the theory formation process.) Note, then, that, in the context
of TouringMachines, the process of finding the intentions which are the cause
of some other entity’s actions is effectively one of performing plan inference or
recognition [Car90b]. � A brief description of how Theorist has been applied
to intention ascription or plan recognition in the TouringWorld domain now
follows.

Davis also refers to the task of inferring an agent’s goals and plans from its actions as
“motivation analysis” [Dav90, page 395].
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Theorist is invoked once for every one of the agent’s entity models that dis-
plays a model-entity (or expectation-observation) discrepancy. In particular,
Theorist is called by supplying it with the name of the agent that is doing the
modelling, the name of entity that is being modelled, the agent’s observations
of that entity (that is, all relevant details of the entity’s current configuration
as modelled by the agent), and the current value of the agent’s internal clock.
Theorist’s reasoning strategy then tries to accumulate consistent sets of facts
and instances of hypotheses, or defaults, as explanations for which the obser-
vations are logical consequences. The facts and defaults reside in the Theorist
KBase (see Figure 6.3), a knowledge base containing a domain model of the
TouringWorld expressed in terms of the various “faults” that can be used to
explain entities’ “errant” behaviours. In the present context, faults can be
viewed as the causes for — or the intentions behind — why certain events —
or certain observed actions of some entity — might have occurred in the world.

Causal knowledge of the TouringWorld domain, then, is represented in the
Theorist KBase as implications of the form intention ��� observations. Fig-
ure 6.6 gives a selection of those used by TouringMachines in the TouringWorld
domain. The syntax used here for representing facts and defaults differs only
slightly from that given by Poole et al. [PGA86] and is the following:

�����
	�������������������
���
���! �"!	#�$&%'��()���*����������������

where ����������!�+� is a first order clausal form logic formula. The first of these
statements means that the clause is a member of the set of facts , (defined
above); the second means that for every instance of the name, the clause is
a member of the set of possible hypotheses or defaults - . The name, which
exists primarily as a way of referring to the default, can be used in a theory
to explain the observations . . /

After the observations of a given entity have been processed by Theorist,
the modelling agent will find itself in one of three possible states vis-à-vis
being able to explain the modelled entity’s intentions. The first comes about
when the agent fails to produce any explanation at all for the entity’s behav-
iour — in other words, when Theorist fails to generate any theory which can
account for the entity’s observed actions. This might occur, for instance, if
the domain model described by the Theorist KBase were incomplete. The
approach adopted in this case is to have the agent ascribe the “intention”���
0213	�4��
576�"8�:9�0 to the observed entity. An entity which has been ascribed this

;
Names like

��<�"7"�<!=�4
6���	�>
and ? 	��!@�	�4�<
A���@�	���B�� in Figure 6.6 are exactly the names

of the schemas which reside in each TouringMachine’s Schema Library (as described in the
previous chapter). The full list of these names is given in Appendix A, page 194.
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0�0� , and ����S�SAJ��?
������5
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Figure 6.6: A selection of Theorist KBase entries used in the TouringWorld domain.

intention will be treated by the agent with special care; specifically, in subse-
quent timeslices, the agent will treat the presence of a �����72C�����T������A
,� value in
the intentions slot of its model of some entity as a “reminder” that no theory
had previously been found which explained this entity’s behaviour and that,
as a result, theory formation should be attempted again in the hope that the
entity’s behaviour might have since become recognisable. This procedure, in
fact, will be repeated until the entity’s behaviour can be properly explained.
The second state comes about when Theorist has found exactly one theory —
that is, one intention name — which adequately explains the entity’s behavi-
our. In this case, the intention name is copied into the intentions slot of the
agent’s model of the entity, this model then being ready for use by the agent’s
Prediction Module (see next section).

The third state an agent can find itself in occurs when it has found sev-
eral (two or more) plausible and consistent theories which explain the given
entity’s observed behaviour. This might occur, for instance, if there existed
insufficient sensory information (observations) to disambiguate the potential
causes behind the modelled entity’s actions. For example, if an agent, with the
domain model of Figure 6.6, observed some stationary or decelerating entity
with its brake lights currently on, it would be hard pressed, certainly without
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while sufficient resources exist do process pending input messages�������	�
while sufficient resources exist and

current focus set 
�	�
do

� � ����� ��
next entity from current focus set

while sufficient resources exist
do

� � ����� ��
next entity from

� �����
discard any out of date models for entities remaining in

� �����
foreach ������������� ���

do begin
if ����� �!� �"�# � �����

and
model library has appropriate template

then retrieve template and create model for �����������
if sensing performed during current timeslice $
then update ����� �!� � ’s modelled configuration with observations
else update �%������� � ’s modelled configuration using expectations from $'&'(
identify any discrepancies between observations and expectations
foreach discrepancy identified do explain discrepancy

end
if no discrepancies identified then check self goals

Figure 6.7: Algorithm to perform model-based explanations of entity behaviour (pseu-

docode).
� �

is the agent’s collection of stored entity models at time $ .

further information, to know whether the entity’s intention is )+*�,.-�/�0.*�/�1325476�*
or )5*�,8-�/�08*�/798:�;�<+*=27,+; or perhaps even something else. In the current imple-
mentation of the TouringMachine Explanation Module, little account is taken
of this fact, a single and final theory being chosen randomly in cases where
more than one have been generated. With such a strategy, an agent will often
ascribe an entity the wrong intention, possibly leading the agent into new
— and also increasingly threatening — conflict situations until the entity’s
behaviour can be unambiguously explained. Now, while in many of these situ-
ations a TouringMachine’s reactive capabilities will, at the very least, probably
save the agent from terminal damage, in general, an agent would be expected
to benefit greatly from being able to ascribe intentions correctly the first time
around. There are a number of specific enhancements one could make in this
respect: for instance, an improved theory selection mechanism could be de-
signed which could take account of entities’ previous actions and intentions,
which could differentially represent and reason about the disparate sources
of evidence used in deriving explanatory theories (for example, observed ac-
tions, communicated intentions, default assumptions about rights-of-way and
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other traffic regulations), or which could be made to consider the expected
utility of each entity’s different possible outcome states and then calculate
the probabilities with which each ascribable intention enables the entity to
achieve such states. In fact, a number of possible solutions to this problem
have been reported elsewhere in the AI literature and include, among others,
uncertainty reasoning via symbolic endorsements [SC85], Dempster-Shafer
evidential reasoning [Car90a], probability theory [GN87, pages 177–186], and
decision theory [DW91, pages 265–279]. Further consideration of these tech-
niques must at present, however, remain as a possible avenue for future work. �

To conclude this subsection, the full pseudocode algorithm implementing
the various processes of the Explanation Module is given in Figure 6.7.

6.5 Prediction

6.5.1 Introduction

Prediction is the process of reasoning about the anticipated relations between
a system and its environment in order to determine the course of action the
system should follow. Thus, unlike feedback processes which monitor behav-
ioural discrepancies in order to refine a system’s actions (a TouringMachine’s
Explanation Module, for example, is a feedback process), the process of making
predictions is one of feedforward: prediction involves monitoring the system’s
environment directly and applying appropriate compensatory signals to the
system before waiting to receive feedback on how the system’s performance
has been affected by particular disturbances or changes in the environment.
One advantage of feedforward Gregory [Gre87, page 260] argues, is speed: en-
vironmental changes can be compensated for before they have any noticeable
effect on the controlled system’s behaviour. The price paid for this, however, is
in added controller complexity: the controller must have reasonably accurate
models of the various effects such environmental changes and events can have
on the system. The models needed by a TouringMachine for making predic-

�
In fact, in addition to researching issues on theory selection, there are a number of

issues concerning theory formation or plan recognition which have also been ignored in this
dissertation but which are worthy of further study: for example, how to deal with an entity
which has multiple intentions or which is executing sequences of (possibly simultaneous)
actions which are interleaved with actions from its other plans, how to recognise flaws in the
plans of observed entities, how to deal with entities whose plan spaces differ from those of
others, or how to deal with an entity whose knowledge of others’ plans is partial or whose
beliefs of others’ plans differ from those held by other entities. A number of these issues have
been or are currently being addressed by other researchers in the field; Carberry [Car90b]
provides an excellent review and analysis of much of this research.
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tions about its world are precisely the kinds of entity models which have been
described above.

Making predictions in a dynamic multi-agent world, Dawkins
[Daw76, pages 59–64] argues, is a chancy endeavour and any decisions an
agent — or “survival machine” — might make as a result of its predictions
will always, to a degree, prove something of a “gamble”. Short of possessing
the capacity to learn from past behaviours and thereby to associate current
situational contexts with expected outcomes, a TouringMachine , through its
set of stored causal models of the different entities inhabiting its world, is
able nevertheless to make predictions through a process of event simulation.
A TouringMachine’s Prediction Module is designed to realise such a process
and will now be described.

6.5.2 Overview

An agent’s Prediction Module comprises three main components: a Message
Handler, a Goal Conflict Detector, and a Model Expectation Generator (see
Figure 6.8). The Message Handler receives and processes messages which
convey information about the potential conflict status of other agent compo-
nents. In particular, messages are received from the agent’s effectors and
from the agent’s planning control layer � . From the former it receives warn-
ings that the agent has attempted to execute some action which has caused
some physical capability conflict to occur: for example, the agent might have
attempted to execute a �������
	��
���������� action which, if carried out in full, would
cause the agent to exceed its maximum speed capability. From layer � it
receives warnings that the Planner has failed in one of its operations: for ex-
ample, in decomposing a composite schema, the Planner may have attempted
to process a child schema for which no match can be found in layer � ’s Schema
Library. Such warnings will be treated as indicators that one or more of the
agent’s goals could be threatened or be in a state of possible conflict: for ex-
ample, failing to carry out a �������
	���������
��� action in full or failing to retrieve
a required schema may have a subsequent impact on the agent’s ability to
reach its target destination on time. These warning messages will thus be
forwarded to the Goal Conflict Detector for further consideration.

A TouringMachine agent, ultimately, is motivated to act by the need to
accomplish or satisfy each and every one of the goals which resides in the
desires component of its self model. Whether the agent’s goals are of the
homeostatic type — those which are achieved continuously throughout the
agent’s operational existence — or of the achievement type — those which
are explicitly planned for and (if all goes well) eventually terminated upon
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Figure 6.8: The Prediction Module

their successful completion — the Goal Conflict Detector’s task will be to
ensure their protection against any exceptional events which have either just
recently taken place or which the agent, after a process of generating model-
based projections of future world events, has predicted will take place. These
exceptional events or conflicts which the Goal Conflict Detector must deal with
can originate from a number of sources, both from within the agent itself and
as a result of certain unexpected interactions between the other entities in the
world. Resolving such intra- and inter-agent conflicts will often require some
form of action or change of plans on the part of the agent and/or the other
entities. More on this below.

Once all existing and predicted goal conflicts — within and without the
agent — have been identified, the Model Expectation Generator, taking into
account any actions or change of plans which might have been proposed as
possible resolutions to the identified conflicts, will be responsible for gener-
ating a description of the agent’s — and all other world entities’ — future
expected trajectories. As described in Section 6.4, descriptions of entities’ pre-
dicted physical configurations will be used by the agent’s Explanation Module
to detect discrepancies between the models it possesses of the entities and the
corresponding observations it subsequently makes of these. Model expecta-
tions are generated using the same basic model projection techniques which
are employed by the Goal Conflict Detector when looking for potential goal con-
flicts. A description of these techniques should prove useful before discussing
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the handling of goal conflicts and generation of model expectations.

6.5.3 Projecting Models

A TouringMachine constructs spatio-temporal projections of another agent’s
behaviour by performing a “cognitive” or knowledge level simulation of the
agent’s mental state and consequent action sequences: in other words, by tak-
ing to itself “the role of the other (i.e. the agent), assuming the agent’s goals
and attending to the common external environment, [such that] the actions
it determines for itself will be those that the agent should take.” [New82,
page 109]. The purpose of a TouringMachine making these projections, is to
determine, in the light of the present state of the world, whether any agent —
and, indeed, whether the TouringMachine itself — is destined for some future
conflict with any of the other entities in the world. The conflicts in ques-
tion here, are those which affect the successful completion and/or continued
satisfaction of the TouringMachine agent’s various goals: ���������
	������
���������� ,
��������	���������������������� , and ���������	�� ���!���"����������� .

A spatio-temporal projection of some entity is a projection of this entity’s
expected movements through space over a given period of time. TouringMa-
chines, as we know, construct models of other entities which, among other
things, can be used for storing descriptions of these entities’ current physi-
cal configurations. With such models at its disposal, it would be relatively
easy for a TouringMachine to construct projections of each of the entities in
its model set: since entities are assumed — see Chapter 7 — to move with
uniform acceleration, following trajectories appropriately constrained by the
quadratic motion equations #%$'&)(+*-,/.0!1 * 0 and &2$'&!(3, 1 * , a simple way for
the agent to project another entity’s movements between the present time, 45( ,
and some future time 4 . , say, would be to take the modelled entity’s present
( 4 ( ) configuration values, feed these into the appropriate kinematic equations
above (setting *-$64 .87 4�( ), and then computing the entity’s new configuration
— namely, its 9;:8<>=
? -location, speed, acceleration, orientation, and communi-
cated signals at time 4 . . This is what might be called making the inertial
assumption.

As argued above, making predictions of future activity based on present
information alone is a potentially risky endeavour, especially in a dynamic
domain like the TouringWorld . So much so, in fact, that even where it might
be possible to make predictions with some degree of certainty, it is unlikely
that these predictions could be relied upon over extended periods of time. . (
@BA

Besides the length of predictions, other issues such as the degree or speed of environmen-
tal change are also likely to affect the long-term reliability of any predictions an agent might
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It would seem, then, that to ensure that predictions prove as useful as possi-
ble, the agent making them should use as much (relevant) information about
the world — and, in particular, about its set of modelled world entities —
as it possibly can. In the TouringWorld domain, it turns out, a number of
information sources readily suggest themselves: the modelled entity’s current
configuration; the entity’s ascribed beliefs, desires, and intentions; and, also,
information on any relevant environmental constraints which might impact
on the entity’s possible behaviours (for example, the presence of information
signs, path junctions, kerbs, walls, and, most importantly, other mobile inten-
tional agents). How these various information sources come into play when
projecting entities’ actions and also when detecting and resolving potential
goal conflicts will now be elaborated on.

In projecting the potential actions of some modelled entity, a TouringMa-
chine , in addition to considering this entity’s current physical configuration,
also takes into account the entity’s ascribed intention. Now, whereas pro-
jections based on the inertial assumption could be readily computed via a
simple application of the appropriate kinematic equations, consideration of
an entity’s intention will require slightly more sophisticated spatio-temporal
projection capabilities. To assist in this process, a TouringMachine , through
its Space-Time Library (see Figure 6.8), is given access to a number of domain-
dependent spatio-temporal projection functions. Functions are of the form:

���������
	����������������������������� �"!#�����
��������� �%$&��'(��)*�
�+����,.-0/1)2�������
	��������
where ������������������������� , a vector of the form 3 546�%78-%��9��;:9.��<1��	"��'='=>@? , describes the
projected entity’s current location, speed, acceleration, orientation, and com-
municated signals set, respectively; !#�����
��������� , the projected entity’s ascribed
intention; $A��'(��)*�+������, , the period of time over which the projection is to be
made; BCB and )D�E�����
	�������� , the computed path which the entity will be expected
to follow over the given time period.

The path followed by an entity which is moving inertially could, as ex-
plained above, be determined by simply computing, for the given period of
projection, a single quadratic motion trajectory starting from the entity’s ini-
tial location. Computing the path followed by an entity with a “complex” in-
tention will be slightly more involved. In particular, to project an entity whose
currently ascribed intention can be expected to cause this entity to take some
action(s) within the time period over which the projection is being made, the

make. The issue of trading off reliability for efficiency in predictions will be considered more
closely in Chapter 8.F5F

The length of time over which projections are made is defined via the Testbed parameter
ConflictDetectionHorizon — see Chapter 7.
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paths computed by a TouringMachine — in other words, the �������	��
������� re-
sults generated by the TouringMachine’s spatio-temporal projection functions
— will in fact be handled as composite trajectories: specifically, lists made up
of any number of “distinctive” temporally bounded sub-trajectories which the
modelled entity might be expected to follow. This is best illustrated with an
example.

Consider an entity which has been ascribed, by some agent, the intention�������������������! �"#� . What this means from the point of view of the agent is that,
in order to protect one or more of its goals (in this case, ��$�%�&���'(%� �)	�#�����*��+,�
— see below), the entity will have adopted (at some stage in the past) the
intention to stop at the set of traffic lights which it is currently approaching.
Assume the agent constructs entity model projections which cover a period of
time � beyond the agent’s current clock time of, say, -/. . Now, if the agent, in
projecting the entity’s movements, anticipates that the entity will come to stop
near the identified traffic lights at some time -10 which is contained within the
time interval � , the agent, if it is to build an accurate prediction of the entity’s
behaviour beyond time -20 , will need to view the entity as following a new
and separate motion (sub-)trajectory from the one that it was following before
reaching the traffic lights; thus for example, the agent might, after time -10 ,
predict that the entity will remain stationary until the end of the projection
period — that is, up to time -,.435� .

A path computed by an agent for some entity, then, is the set of sub-
trajectories which the agent expects the modelled entity to follow, with each
sub-trajectory having a specific duration (and implicit start and end times)
and corresponding to some change — typically resulting from the entity hav-
ing taken some action — in the physical configuration of the entity being mod-
elled. It should be noted that the precision and complexity of TouringMachines’
space-time projection functions can be chosen by the agents’ designer at will:
functions are provided by the user through suitable SpaceTimeProjection
declarations when creating the particular TouringWorld environment to be in-
vestigated (see Chapter 7). It is worth stressing also that the point of providing
these functions is not so much to endow TouringMachines with fully accurate
temporal reasoning capabilities, but rather, to allow them to take into account
some extra information — entities’ intentions — when constructing projec-
tions. The belief here is that this extra information could potentially make
them more predictive than if they were to rely on inertial projections alone. 076
Now, once in possession of the projected paths for each modelled entity, the
agent can proceed to search for a number of different intra- and inter-agent
8:9

Indeed, the experiment reported in Section 8.3.1 certainly lends some weight this to
supposition.
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goal conflicts which might yet occur during the projected time period.

6.5.4 Handling Goal Conflicts

Motivated, as mentioned above, by the need to satisfy each one of its goals, a
TouringMachine , through its Goal Conflict Detector, will attempt to identify
any events which might threaten or conflict with its goals and, where neces-
sary, will take action to resolve these conflicts by carrying out suitable action
recovery procedures. To identify goal conflicts, a TouringMachine makes use
of the contents of its Conflict Library (see Figure 6.8). The Conflict Library
contains a collection of domain-dependent conflict resolution triples or rules of
the form: �������	��
��������������
�����������
��� �!���#"
each of which permits the agent to associate any specific instance of a threat
or

�$�����	
%�!�&�
with a particular desire or

�'���(

that it threatens, and with a rec-

ommended recovery procedure or
��������
���)�����

which should be followed if the
agent’s goal is to be protected. For instance, in the TouringWorld domain, a
rule exists which associates a collision-type conflict (which might occur, for ex-
ample, when two agents simultaneously approach an uncontrolled junction),
with the particular goal affected (in this case, *,+.-0/,132�4(-�5�5�/(67/7-98:6 ), and with a
specific recovery procedure which should be followed (for example, adopting
the intention 6�;:-9<:2(*,;:27=9>�8.4�;	/9-,8 ). These rules are supplied to the Library by
the user through suitable ConflictResolutionRule declarations (see Chap-
ter 7 and Appendix A). More on this below.

Several different types of conflict can be identified by an agent’s Goal Con-
flict Detector in the TouringWorld domain, a number of which have already
been referred to above. In particular, conflicts are identified: (i) when the
agent attempts to execute some action that causes some physical capability
conflict (for example, when trying to exceed its maximum speed or when the
agent’s Planner attempts to retrieve a schema which does not reside in the
Schema Library) — the Goal Conflict Detector is made aware of these con-
flicts through reception of appropriate warning messages from the Prediction
Module’s Message Handler (see Section 6.5.2); (ii) when the agent detects
discrepancies in its self model between its actual and expected physical con-
figuration — the Goal Conflict Detector is made aware of these upon accessing
appropriate records which were earlier created by the Explanation Module’s
Model Discrepancy Handler (see Section 6.4.3); and (iii) when, after having
taken the opportunity in the Explanation stage to check whether any of its own
goals were under threat, the agent identified a possible problem — the Goal
Conflict Detector is made aware of these upon accessing appropriate records
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which, also, were created by the Explanation Module’s Model Discrepancy
Handler (see Section 6.4.3).

A fourth type of conflict which has yet to be described is that which can
result when the projected paths of two or more entities are seen to inter-
sect in space-time. In the TouringWorld domain such conflicts are called
collisions. Having computed, as described above, a projected path for ev-
ery modelled world entity (including one for itself), the agent’s Goal Conflict
Detector can identify any potential collisions by performing pair-wise inter-
sections of all of these space-time trajectories and then selecting any “valid”
collision points which are seen to occur. Valid collision points are those which
occur at some point inside the time period established by the agent’s com-
puted spatio-temporal projections. ��� It is important to note here that since
an agent’s Goal Conflict Detector can intersect the projected paths of any two
entities which are currently being modelled, it becomes possible for the agent
to detect potential conflicts in other entities’ goal sets, as well as in its own.

Now, in any given timeslice, an entity’s goals may be — and, more often
than not, will be — involved in a number of identified conflicts. For example,
in addition to noticing a decrease in its desired travel speed, an agent might
also have projected that it will shortly hit some obstacle if it continues along
its present trajectory; here, two goals of the agent are likely being threatened:�����
	������������������������� (assuming it has a suitably constraining �
���������
���� ��� ar-
gument) and �����!����
	����
�!�"�
������� , respectively. In cases where multiple goal
conflicts are identified, the particular one that the agent will choose to resolve
will ultimately depend on a number of factors. First and foremost will be the
priority of each goal under threat: the goals in an agent’s desires set are pri-
oritised in some domain-specific manner and this ordering should be observed
when choosing among multiple conflicts. The goal ordering used in all exam-
ples in this dissertation is, from highest to lowest priority, �����!�����	
���"�����"�"����� ,��#���$������%
&��"����������� , and �����
	������������������������� . A second factor to consider will be
the space-time urgency of the conflict: if both a low and a high priority goal
are being threatened and the conflict involving the low priority goal occurs
earlier in space-time, it will often be advisable for the agent to resolve the
lower priority one first. An example illustrating this case will be given below.

A third factor to consider will be the environmental constraints affecting
the agent’s possible behaviours: in particular, the presence of other obstacles
')(

The Goal Conflict Detector uses precisely the same quadratic motion projection and col-
lision detection functions which are employed by WorldUpdater, the TouringWorld Testbed
process responsible for creating plausible simulations of TouringMachines ’ physical actions.
Details of these functions will be deferred until Section 7.4.2. Note also that since entities’ pro-
jected paths are represented as lists of (possibly) multiple sub-trajectories, path intersections
will have to be performed one spatio-temporal sub-trajectory at a time.
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or entities may constrain the possible actions that the agent can take to resolve
its goal conflicts. For example, when an agent travelling along a two-lane path
approaches, in the same lane, a slower moving agent from behind, it will even-
tually (upon projecting the two motion trajectories involved) detect a threat to
its �������	��
����������������� goal. In deciding how to resolve this conflict, the agent
will likely be faced with a choice: overtake the slower agent in front of it or
slow down to match the other agent’s speed. Typically, the former choice would
be preferable since the latter, while adequate for resolving the agent’s original
����������
���������	����� goal conflict, will, if the agent is operating under any tem-
poral constraints, almost certainly trigger a subsequent ���������
������������������	�	�
conflict. On the other hand, while overtaking may be preferable, it may not
always be possible: for instance, the passing lane into which the agent must
move may presently be blocked by some obstruction.

A fourth factor to consider will be the set of conventions or rights-of-way
which are in force and are accepted as common knowledge or beliefs in the
agent’s domain. In a world where agents have similar goals and beliefs,
predicting how other agents will resolve particular goal conflicts can often
lead to an infinite regress as each agent considers the effect it might be having
on other agents’ decisions about how any other agents currently affect their
conflict resolution choices. Rights-of-way are necessary to ensure that such
predictions eventually “bottom out”. In addition, they can also have the effect
of “cancelling” certain other goal conflicts: in the overtaking example above,
the slower moving agent will also detect its own ����������
���������	����� conflict
(both agents would be affected by the crash), but, upon consideration of the
rights-of-way that are in force in the domain, it would simply choose not to
take any action.

Similar in aim to the contextual analysis of behaviour performed by Wood’s
Plan Recogniser [Woo90], consideration of all of the above factors, combined,
enables an agent to decide which, among all possible behavioural outcomes
identified for each entity in its model set, are the most likely responses that
can be expected given the particular set of intra- and inter-agent goal con-
flicts which have been identified. � � The same factors, it should be noted, are
involved when an agent, having detected one or more conflicts in the goal
set of another entity, is faced with deciding which of the identified conflicts
the entity itself will choose to resolve. Here, the agent must make certain
assumptions of similitude: in particular, that the entity has similar goals

!#"
Wood [Woo90], in fact, concentrates primarily on the analysis of environmental constraints

such as physical (agent-object, agent-agent) situational constraints and legal driving speeds;
her Plan Recogniser appears to pay less attention to either the motivational force or the
constraining influence that an agent’s (prioritised) goals can exercise on the agent’s own —
and, for that matter, other entities’ — choices of action.
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and goal priorities, that the entity will have identified the same set of goal
conflicts and environmental constraints, that the entity has the same beliefs
regarding rights-of-way, and that the entity is rationally committed, just as
the agent itself would be, to resolving any conflicts which it knew might affect
it. In terms of simulating other entities at the knowledge level (this notion
was introduced at the start of Section 6.5.3), Newell [New82, pages 101–105]
refers to this as applying an extended principle of rationality. This states that,
given certain requisite initial and boundary conditions of some entity — its
goals, intentions, and initial and acquired knowledge or beliefs — together
with knowledge regarding the entity’s goal preferences and the physical plau-
sibility of its different action choices, an agent, under certain conditions, will
be able to calculate the trajectory of the modelled entity.

Having performed, by now, all necessary projections of the entities in its
model set and having subsequently performed, via application of its prioritised
conflict resolution rules, an appropriate contextual analysis of these entities’
current and predicted behaviours, the agent will be in a position to determine,
for each entity, which goal conflict among all those identified is the most
pressing and, in response to each conflict, which specific resolution method
will be adopted to counter it. Conflict resolution methods can solicit one of two
response types from the entity concerned: either the entity will need to adopt
a new intention — for example, ���������
	������������������ or ����	����������������	���� — or, it
will need to effect some primitive physical action — for example, ����	������
����������
or ����	��������
������������	������� .

The agent will consider adopting a new intention in situations where it
decides that its own current intention (or the intention it currently ascribes to
some other entity) is causing itself (or the other entity) to behave in a manner
which gives rise to a conflict: for example, going through a junction without
having right of way, going through a red light without stopping, or hitting
another slower moving agent from behind. In the case where it is the agent
itself which must adopt a new intention, the agent’s Goal Conflict Detector
will send an appropriate task (intention) command message to the agent’s
Planner in layer  (more on this below). Where it turns out to be some other
entity which is expected to adopt a new intention, the agent will simply make
a suitable alteration to the intentions component of its model of the entity,
thereby reflecting the new task that the entity can now be expected to plan
for. This type of conflict resolution procedure, incidentally, can be regarded
as a very simple form of plan modification or replanning. More sophisticated
implementations of this sort of procedure have been proposed by a number of
researchers, including Wilkins [Wil85], Ambros-Ingerson and Steel [AIS90],
and Wood [Woo90].
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Unlike intention changes, primitive physical action responses will only be
considered when the modelling agent itself has become involved in a conflict of
the type identified by a self model discrepancy (for example, as a result of a loss
of speed or directional deviation from its intended target). Described earlier in
this section, and also in Section 6.4.3, these conflicts come about, not because
the agent’s current intention is at fault, but because a simple discrepancy
has occurred between the agent’s desired and actual configurations. For such
conflicts, then, simple “self-tuning” actions can be considered appropriate.

Before giving examples illustrating the various prediction processes that
have been detailed above, it is necessary at this point to describe one remain-
ing and very important operational characteristic of the Prediction Module.
The description thus far has ignored the fact that TouringMachines, when
making predictions about entities’ future trajectories and conflict resolution
behaviours, are capable, at the same time, of carrying out a simple but also
very powerful form of hypothetical or counterfactual reasoning. In particu-
lar, TouringMachines are able, for a given number of counterfactual levels
— this number is set for the agent by the user via the Testbed parameter
ConflictResolutionDepth (see Chapter 7) — to project and reason about
any modelled entities’ behaviours while also, at each level of reasoning, tak-
ing into account any actions resulting from the entities’ earlier attempts to
resolve their goal conflicts. In other words, when constructing entity model
projections at some counterfactual reasoning level � , say, the agent will be
able to take into account any conflicts plus any actions resulting from the an-
ticipated resolutions to these conflicts which it had previously detected at level
����� . Thus, by setting the parameter ConflictResolutionDepth to any
value greater than 1, an agent will have the ability to take into account (up
to the given number of nested levels of modelling) any entity’s responses to
any other entity’s responses to any predicted conflicts. The potential impact
that this kind of reasoning can have on an agent’s ability to perform timely
and effective predictions will be analysed more closely in an experiment in
Chapter 8. Examples of agents’ general modelling capabilities now follow.

A TouringMachine, as mentioned in the previous chapter, initially sets out
to achieve its goals without any prior knowledge of other agents whereabouts
— indeed, without even knowing whether other agents exist. As such, when
approaching an uncontrolled junction at which, it has been established, it
will have to alter direction, a TouringMachine will not plan — in advance
— to give way to other agents. Rather, it will simply plan to stop in the
middle of the junction, turn to the appropriate direction, and then proceed
toward its destination. In the scenario of Figure 6.9, two agents, a round
one ( ���
	����� ) and a chevron-shaped one ( ����	���
� ), can be seen approaching an
uncontrolled junction at time � = 9.0 (upper left-hand frame). At time � = 11.0
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(upper right-hand frame), the two agents sense and construct models of each
other for the first time ( �������	��
 ’s sensing arc is displayed here for illustrative
purposes only). When the agents subsequently project each other’s expected
trajectories, they each will notice an impending ����������	��	�	�	���	������ conflict.
However, because of their common beliefs about rights-of-way, �������	��� will
predict that �������	��
 will resolve the conflict by subsequently taking on the
intention ��������	���������	� �������� . Conversely, �������	��
 will predict, correctly, that
�������	��� will continue on its present trajectory through the intersection (see
lower left-hand frame of Figure 6.9). Only when ���������!� leaves the junction
will �������	��
 (which has been polling �������	�!� ’s progress through the junction
ever since it had to stop around " = 15.0) drop its adopted conflict resolution
intention and proceed into the junction and on with its original task (lower
right-hand frame).

A slightly different conflict situation is illustrated in Figure 6.10. In this
scenario, two agents, a chevron-shaped one ( �������	��� ) and a round one ( ����������
 ),
can be seen approaching a light-controlled junction at time " = 6.0 (upper left-
hand frame). At time " = 8.0 (upper right-hand frame), when the two agents
sense and construct models of each other for the first time, a number of events
take place. Like the agents in the previous example, these, upon projection
of their respective trajectories, will predict an impending collision involving
each other; in other words, a mutual ���� ��� ���	��#���	�#��$��� conflict. However, at
the same time, another event occurs which triggers an additional conflict in
�������	��� ’s goal set: the traffic light which ���������!� is approaching has turned
from green to amber. %'& Here, it is �������	�!� ’s �(���)���*����	���#���������� goal which is
under threat since running through red or amber lights is not permitted in
the TouringWorld domain. Now, although �(���)���*����	���	�$�+�#$��� will generally be
considered — certainly when viewed in terms of a TouringMachine’s static
goal preferences in its desires model component — to be of lower priority
than ����������	��	�#�����#�#���� ( �������	��� ’s other goal currently under threat), ���������!� ,
and ����������
 for that matter, will, upon application of their respective con-
flict resolution rules, ultimately identify the conflict involving �������	��� and the
traffic light to be more constraining in the current situational context. As a
result, �������	��� will proceed, as required and predicted, to carry out a suitable
resolution procedure which protects its �(���)���*����	���	�$�+�#$��� goal: in this case,
through adopting the intention �$������������	�����#,	� (Figure 6.10, lower left-hand
frame). Only when �������	��� ’s light changes to green (lower right-hand frame)
-/.

A traffic light agent is represented graphically in the TouringWorld as a rectangle divided
into two squares: when a black circle appears only in the bottom of the two squares, the light
is communicating the colour ��*������ ; when a circle appears only in the top square, the light is
at *��#� ; when both squares display black circles, the light is at �$0�(���* . The terms “bottom”
(closest) and “top” (farthest) are relative to the agent to which the light applies.
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process pending input messages
foreach ���������
	����� do �����������������! #"$�%�'&
foreach ���������
	����� do begin(  )"$��*+�%,%&��'-.����/�01*+&�23�
�'*+�%45/763��8

for ��*+29���
/1:+,%;<-.�
29;=&�>?/1@=/1&A #" ( downto B do begin
project anticipated space-time trajectory by considering �����C���1�������
determine intersections with other entities’ trajectories
if ���9�
���
	 involved in any type(s) of goal conflict(s)
then D determine most pressing goal conflict,

���������1�E�F�E�! #" most contextually appropriate conflict resolution method G
else ����� �����������  #"H�I�J&

end
end
foreach ���������
	����� do begin

project anticipated space-time trajectory by considering �����C���1�E�F�E�
create and store expectations in  � for use later in timeslice KMLNB

end
if �������O��	P"N01/�&�, and ����� ���1�E�F�E�RQ"N�%�'&
then submit for processing the action or intention �����M�S�1�������

Figure 6.11: Algorithm to perform model-based predictions of entity behaviour (pseu-

docode). T� is the agent’s collection of stored entity models at time K .

will it proceed toward its original target destination. Note, also, that as a
result of its unplanned stop, U=V�W=X9Y[Z might subsequently detect a conflict with
its (presumably) time-constrained \SW9U9]=^�_3`%WIabY�cdXSUdYec=f<X goal. Were such a con-
flict to arise, U<VSW<X9YgZ would likely take to resolving this with a suitably gauged
]<^�U=X9VSW9_Iabh�W3W3` action.

6.5.5 Generating Expectations and Closing the Loop

Once all future conflicts have been detected and their respective resolutions
duly identified, two operations remain to be carried out by the Prediction Mod-
ule. The first of these is to generate the expected configuration of each entity
in the agent’s model set. This is carried out by making one last projection of
each entity’s anticipated trajectory, taking into account any final conflict res-
olution action or intention change which the agent expects the entity to carry
out. By considering the projection time period to be the interval between the



TouringMachines – Modelling Layer � 124

agent’s successive model updating operations, ��� each entity’s expected config-
uration will be computed and then stored in the expectations component of
the agent’s respective entity model.

The expectations of a modelled entity, it should be noted, only reflect the
entity’s expected physical configuration. An implicit assumption being made
in this model updating process, then, is that the entity’s other modelled men-
tal states (its beliefs, desires, and intentions) will, at least at this stage of
processing, be assumed correct and so will persist from one timeslice to the
next — until there is explicit evidence that these mental states of the entity
have changed. (How and when modelled intentions get revised has already
been addressed above.) In the TouringWorld domain and, more specifically,
in TouringWorld environments populated with homogeneous agents such as
those considered in this dissertation, this assumption is a reasonable one to
make. On the other hand, in richer, less constrained environments, agents
might be required to represent substantially more complex beliefs about their
changing surroundings, necessitating as a result, suitably powerful belief
maintenance or revision capabilities. This and related issues (for example,
agents’ commitment to their goals) are re-visited in Chapter 9.

The last step taken by the Prediction Module will be to process any conflict
resolution proposal which has been determined by the Goal Conflict Detector
and which applies to the agent itself. In particular, where the proposed conflict
resolution is a primitive action, an appropriate action command will be sent
to the agent’s effectors for subsequent consideration. Where the proposed
resolution is a suggested intention change, an appropriate command message
will be sent to the agent’s Planner in layer � — the process of handling such
messages was described in Section 5.4.2. With this, then, a full cycle of
a TouringMachine’s modelling functions comes to an end. To conclude this
subsection, the full pseudocode algorithm implementing the various processes
of the Prediction Module is given in Figure 6.11.

6.6 Modelling in the TouringWorld

A TouringMachine’s modelling layer, � , is charged with constructing causal
models of agent behaviour. Models are used by a TouringMachine in order to
monitor, explain, and predict the behaviours exhibited by the different agents
which appear in its model set. Through the use of a Library of model templates,
the TouringMachine is able to assign, resources permitting, default models to
any agents which it has encountered in the environment. As subsequent

���
This is established with the Testbed parameter ModellingRate — see Chapter 7.
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observations of these agents are made and discrepancies in their respective
models detected, an abductive reasoning process is invoked in order to explain
these discrepancies. Having settled on suitable theories which explain the
observed behaviours, the models can then be used for generating predictions
of potential intra- and inter-agent goal conflicts and for creating expectations
of future agent behaviours.

In addition to modelling itself and other mobile agents like itself, a Tour-
ingMachine agent can build models of other TouringWorld entity types —
agents and objects alike — so long as suitable templates are made available
in the agent’s Model Library. The purpose and usefulness of modelling non-
TouringMachine entities can be illustrated, for instance, by considering the
scenario described above in Figure 6.10. In this scenario, an agent is able to
detect and reason about such conflicts as running through red traffic lights
only if it possesses models of the traffic lights in its environment. In particu-
lar, the agent will be able to detect pertinent ���������
	��
���������������� goal conflicts
(like the one which takes place in this scenario) by projecting the configura-
tion of whichever entity it is currently modelling and then intersecting the
resulting space-time trajectory with the projected configuration of the appro-
priate traffic light. ��� Here, two types of possible collision-type conflicts must
be distinguished. In addition to the physical collision which would occur if the
modelled entity were projected to hit the traffic light concerned (in this case,
the entity’s goal under threat would be �������
����������� � �
��� ), there is also the
possibility of a virtual collision which would occur if the entity were projected
to pass over the traffic light’s stop line (these lines are not graphically illus-
trated in any of the figures in this dissertation) at the same time that the light
is communicating the colours 	�� � or �"!�����	 . Unless traffic lights are modelled
by the agents concerned, such conflicts will go undetected.

Besides modelling immobile agents like traffic lights, a TouringMachine
can also, if necessary, maintain models of immobile objects such as obstacles,
kerbs, walls, and even lane markings (other static entity types will be de-
scribed in the next chapter). Being inert and lacking “interesting” mental
states of any sort, these objects can be modelled and reasoned about fairly
trivially (and, not surprisingly, with a very high degree of predictive accu-
racy). As described in Chapter 4, a TouringMachine can already respond to
unexpected interactions with such immobile objects by making use of various
hardwired situation-action rules which reside in its reactive layer # . Because
of their (extremely) simple behaviour, objects, it would seem, are probably able
to be handled more than adequately by the agent’s reactive layer. The only
$&%

A traffic light’s configuration is calculated as if the light were a (permanently) stationary
TouringMachine .
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obvious advantage of allowing a TouringMachine to model such static entities
is that it could enable the agent to construct earlier and, therefore, possibly
more reasoned accounts of the conflicts to which these entities give rise. This
conjecture, however, has not been explored in this dissertation.
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Figure 6.9: Resolving goal conflicts at an uncontrolled junction.
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Figure 6.10: Resolving goal conflicts at a light-controlled junction.



7

The TouringWorld Testbed

Control — that’s the proof of civilization. Anyone can do something once,
but repeating it and maintaining it — that’s the true test.

Paul Theroux, The Mosquito Coast

7.1 Introduction

In contrast with much of the early work on AI planning systems, there has
been a growing belief amongst researchers involved in agent architecture
design that the appropriateness of different agent designs or configurations
(that is, their particular skills and capabilities) very much depends on the
characteristics of the environments within which the agents are intended to
operate [CGHH89, DM89, HHC90, PR90, KG91].

TouringMachines are intended for use in fairly complex domains. In par-
ticular, domains that are dynamic (events occur which are beyond the con-
trol of individual agents), unpredictable (agents are neither omniscient nor
prescient), real-time (the pace of world change is a reality and agents must
respond to it within bounded time limits), and ongoing (there is no single,
well-defined problem to be solved). Because TouringMachines are capable of
integrating a diverse range of reactive and deliberative behaviours, one would
expect, at least in principle, that TouringMachines should be able to carry out
with success the types of tasks for which they are intended.

TouringMachines, however, are fairly complex and sophisticated machines,
rich with different skills and capabilities. And since they operate in rather
complex environments, the precise relationship between a TouringMachine’s
particular configuration, the behaviours it exhibits, and the environmental

126
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conditions that might influence these behaviours is not, at least at the out-
set, entirely clear. If a TouringMachine’s performance is to be robust and,
ultimately, predictable across a range of different task-domains, a sound un-
derstanding of the agent’s behavioural ecology — the relationship between
the agent’s structure or configuration, its environment, and its resulting be-
haviours — would seem crucial. Attempting to define an agent’s behavioural
ecology — a term borrowed from Cohen et al. [CGHH89] — is that of building
an abstract causal model which describes the relationship between the agent’s
performance and its environment. The function of such a model, then, would
be to enable, through empirical investigation, both explanation of an agent’s
observed behaviours, as well as testing or prediction of its hypothesised be-
haviours.

In order to gain a fuller understanding of the behavioural ecology of Tour-
ingMachines, a feature-rich multi-agent testbed — the TouringWorld Testbed
— has been designed and implemented for use with TouringMachines. The
Testbed provides a platform for performing empirical investigations of agent
behaviour under a wide range of user-controlled environmental conditions.
One area of particular interest, for instance, is understanding the influence
different environmental conditions might have on a TouringMachine’s ability
to coordinate its activity with other agents while at the same time trying to
accomplish whichever initial tasks were assigned to it. The results of some
preliminary investigations using the TouringWorld Testbed are presented in
the next chapter.

7.2 Overview of the TouringWorld Testbed

The Testbed (see Figure 7.1) is an instrumented system for building and
analysing simulated environments inhabited by one or more task-achieving
TouringMachines. The Testbed is centred around a deterministic, discrete
event simulator which realistically mimics the environmental dynamics of
the TouringWorld — the particular multi-agent domain chosen for studying
TouringMachines. While not based on any specific real-world application, the
TouringWorld can be regarded as a reasonably faithful approximation of a par-
ticular class of domains: those which are partially-structured and comprise a
number of agents acting in real time (for example, an automated factory floor
or traffic environment). � It is important to remember, however, that since the

�
The choice of domain was arrived at through participation in the discussions on Motorway

Vehicle Rationality held at SRI Cambridge during April and May, 1989. I am particularly
indebted to Ben Macı́as, Ann Copestake, John Levine, Steve Pulman, and Julia Galliers for
their input and assistance on this matter.
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Figure 7.1: Top-level view of the TouringWorld Multi-agent Testbed.

focus of interest here in on issues pertaining to agent-level performance and
on how agents can coordinate their tasks in the presence of other agents, cer-
tain aspects of such real-world domains have been appropriately abstracted,
primarily to minimise the processing complexity of simulation, but also to
reduce the knowledge engineering effort involved in describing the domains.
The TouringWorld domain will be described in more detail below.

Along with a multi-agent simulator, the Testbed also comprises a series of
user-level tools with which to define, view, control, record, alter, and analyse
the behaviours or characteristics of the TouringMachines under study. Besides
allowing the user to change various features or capabilities within the agents
themselves — for example, their assigned tasks or their per-timeslice resource
limits — the tools also facilitate altering various characteristics of the agents’
environment — for example, the density and type of obstacles or the rate
of passing of time — and thus enable the user to study a range of agent
configurations under a wide range of different environmental conditions.

A user can interact with the Testbed via a range of different I/O facilities,
including window- and line-oriented textual displays of selected scenario in-
formation, a graphical display of changing scenario events, plotted graphs of
various agent and environmental statistics, an interactive function for “driv-
ing” a user-controlled agent, as well as file and window output of tracing
information chronicling the events that took place during the running of the
scenario.

In order to permit extensive experimentation, TouringWorld agents and en-
vironments have, from the earliest stages of their design, been implemented
so as to be customisable by the user by means of a rich collection of entity- and
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environment-level parameters. A parametrized Testbed facilitates investiga-
tions aimed at understanding the behavioural ecology of TouringMachines by
making it relatively fast and easy for the user to experiment with different
agent and environment descriptions. This decision to parametrize the Test-
bed also reflects the opinion shared with a growing number of researchers
in DAI and Distributed Problem Solving (DPS) that extensive experimenta-
tion, if not initially conceived and developed as a primary goal of the sys-
tem design, will be very difficult to carry out once the system is complete
[LC83, GBH87, DM89].

The user supplies specific values for entity- (agent/object) and environment-
level parameters via a Scenario Specification file (see Figure 7.1). Parameter
definitions are expressed in a declarative language called the TouringWorld
Scenario Specification Language, or SSL (a complete extended BNF grammar
is given in Appendix A). Besides containing all of the initial data (parameter
values) describing the particular TouringWorld environment and entity set
to be studied, the Scenario Specification also contains a number of scenario-
level SSL statements which define, among other things, how many times the
scenario should be iterated, which parameter values should be automatically
changed between iterations, and where on the user’s terminal screen each
of the various I/O windows should appear. Each of the various scenario-,
environment-, and entity-level TouringWorld parameters will be described in
Section 7.4 below.

Before proceeding to give more details about the TouringWorld domain
and Testbed, it is worth mentioning why an empirical approach to studying
TouringMachines was favoured over a formal analytical one. Essentially, it
is the author’s opinion that despite the fairly recent proliferation of different
proposals for integrated agent architectures, this new AI subfield is very much
in its infancy and as such does not lend itself easily to formal analysis. What
pertinent theoretical work there is — for example, that of Cohen and Levesque
on formalising the role of intentions in agents [CL87] or that of Bratman et
al. examining the trade-off between reaction and deliberation [BIP88] — is,
as Kinny and Georgeff have rightly argued [KG91], very general and says
little about specific real-time reasoning strategies and their effect on agent
behaviour. This is also true of other theoretical work, including that of Dean
and Boddy on time-dependent planning [DB86] and that of Russell and Wefald
on utility-based deliberation [RW89].

In the absence of a comprehensive theory explaining the behaviour of real-
time computational agents, use of a controlled environment — a parametrized
artificial world — is, at present, the only practical avenue for measuring and
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studying agent performance. � Emphasizing the relatively immature state of
present research in their respective subfields, similar arguments have been
made by researchers in DPS systems [LC83, DM89], DAI systems [GBH87],
planning systems [LD90], and also machine learning systems [Lan88].

It is also interesting that many researchers, having noticing the rather
urgent need for a set of common benchmark tasks and environments with
which to compare different agent architectures, have increasingly started
to promote the use of simulators which, by providing precise computational
descriptions of different task environments, facilitate the direct comparison
of different architectures [CGHH89, DK90, PR90] and favour the possibility
of transfer of techniques between different applications [GBH87, DM89].

7.3 The TouringWorld Domain

The TouringWorld is a dynamic, ongoing real-time domain populated by any
number of entities. An entity can either be of type object or of type agent. Ob-
jects are static structures which are either collidable (for example, obstacle,
wall, kerb, information-sign) or non-collidable (for example, entry, exit, lane
marking). Agents, on the other hand, are dynamic, task-achieving entities
which are either mobile (that is, TouringMachines) or of type environment (for
example, traffic-light, rain, fog). A number of these entity types are illustrated
in Figure 7.2. While objects always remain at fixed initial locations through-
out an entire scenario, agents, through the execution of assigned tasks, are
able to change either their location (TouringMachines ) or their state (Tour-
ingMachines and environment agents) or both. In order to standardise the
treatment of all agents, both agent types — mobile and environment — are
assigned initial tasks which they carry out by building and executing plans.
Traffic lights, for example, are assigned the task �������
	 which causes them to
repeatedly change their colour ( ���� , �
���
��� , or ��������� ) at a given rate. � Likewise,
if the fog agent is present in the scenario, it is “assigned” the task ����� which
causes it to change, for a specified time period, the value of a scenario pa-
rameter which is used by the simulator to determine a TouringMachine’s field
and range of vision. The rain agent has a similar effect on another scenario

�
Since the emphasis of this thesis is on the design of cognitive-level agent processes rather

than on such functions as low-level navigation, real-world testing was ruled out as a viable
platform for studying TouringMachines. Simulations are not a perfect substitute for the real
thing and should ideally be done in conjunction with real-world testing. For the time being,
however, this must remain a potential avenue for future research.�

The precise argument lists used in the specification of environment agents’ tasks are
defined in Appendix A, page 191, under the syntax rule for planner-task.
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Figure 7.2: A snapshot of a particular TouringWorld scenario showing various types of

(labelled) objects and agents.

parameter which is used by the simulator to calculate a TouringMachine’s
braking distance (see below).

Mobile agents are TouringMachines: in other words, autonomous route-
planning vehicles which attempt, within some given deadline, to relocate
to one location or another as specified by the arguments to their respective���������	����
������ tasks. In addition to this single achievement goal, each Tour-
ingMachine also has homeostatic goals to avoid colliding with other entities
and to obey various traffic regulations.

Each TouringMachine starts out with some geographical knowledge of the
world — its Topological Database contains locations of paths, path junctions,
and certain landmarks associated with these junctions — but has no prior
knowledge of the whereabouts of other agents or of any obstacles. Because
TouringMachines move around independently from one another in real time,
with no specific knowledge regarding each other’s ultimate destinations, their
paths will invariably cross: that is, TouringMachines will invariably enter
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into states of conflict with one another. Additionally, because each agent is
resource-bounded and has only limited capabilities with which to sense and
monitor the world, TouringMachines will only ever have a limited time to take
actions and so may well, from time to time, make errors of judgement, some
resulting in terminal collisions.

Many aspects of the TouringWorld pose considerable challenges to agents:
in particular, TouringMachines have limited computational resources, limited
physical and reasoning capabilities, upper bounds on their speed, acceler-
ation and steering rate, and limited knowledge of other entities’ tasks or
whereabouts. While it would be fair, then, to describe the TouringWorld as a
reasonably faithful approximation to certain types of real-world, multi-agent
domains (for example, highly automated factory floors or traffic environments)
a number of simplifications were nevertheless made, both to reduce the pro-
cessing complexity of the Testbed and to minimise the knowledge engineering
effort involved in simulating realistic task-domains. Specifically, the major
simplifications made in the TouringWorld Testbed include:

� The environment is represented as a ���� -dimensional grid with a para-
metrized spatial resolution whose value is chosen by the user. (The extra
�� dimension comes from the fact that certain entities such as walls, ob-
stacles, and agents have a nominal height component and so can — from
the point of view of an agent sensing the environment — occlude some
other smaller or more distant entity.)

� To simplify both the calculation of agents’ simulated perception fields and
the computation of contact points when entities collide with each other,
TouringMachines and certain other entity types — obstacles, information
signs, and environment agents — are modelled as circles. Additionally,
collidable entities such as TouringMachines and obstacles are modelled
as being solid but massless. This means that if two such entities collide
they will come to a complete halt at the first point of contact. Also with
the aim of simplifying the simulator’s computational load, all remaining
TouringWorld entity types — traffic lights, kerbs, walls, paths, path
entries and exits, and lane markings — must be rectilinear and placed
orthogonally with respect to the simulated world’s global orientation
system (right-hand side of screen window � 0 � , top � 90 � , left-hand side
� 180 � , and bottom � 270 � ).

� Collisions always occur whenever two or more collidable entities attempt
to occupy the same physical space at the same time. In particular, then,
the Testbed does not implement other forms of collision handling which
might possibly be of some use in certain predator-prey environments (for
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example, entities becoming linked together or entities bouncing off one
another — see Durfee and Montgomery [DM89]).

� A TouringMachine is a car-like mobile robot which moves with three
degrees of freedom: translational displacement across the two major di-
mensions of space, � and � , plus rotation � about its centroid. Being
“car-like”, a TouringMachine is subject to so-called nonholonomic kine-
matic constraints: it cannot move sideways and its turning radius is
lower-bounded [Lat91]. To simplify the calculations that agents need to
perform when planning motion trajectories, all paths and path junctions
have been made rectilinear. To turn at junctions, agents must come to
a complete stop before changing orientation. Path surfaces are assumed
to be smooth so issues such as wheel slippage have been ignored.

� TouringMachines sense and act on the environment at discrete time
intervals. In particular, if a TouringMachine effects an action during a
particular interval or timeslice, the action — or some suitable portion
of it — is assumed to occur instantaneously at the end of the timeslice. �
Timeslice size is defined as a scenario parameter whose value is chosen
by the user (see below).

� Through sensing of their environment, TouringMachines are able to iden-
tify (without any ambiguity or error) other entities’ physical properties:
that is, their Cartesian locations, speeds, acceleration rates, orientations,
and communicated information (for example, brake lights or indicators).
Agents always believe what they see — more precisely, they believe what
their sensors and Focus of Attention mechanisms happen to have reg-
istered at the start of a given timeslice. An entity becomes visible to
another agent if any point on that entity’s contour happens to fall inside
the agent’s forward or rear sensing range. � TouringMachines are also
assumed to be able to distinguish entity uniqueness. Unlike its physi-
cal properties, however, an entity’s internal properties (for example, its
beliefs, desires, or intentions) are not immediately recognisable to other
agents and so can only be inferred through abduction. All the same,
despite any differences in the values of these internal properties, every
mobile agent is assumed to be a TouringMachine — with the same basic
three-layered control architecture described in Chapters 3 through 6.

�
As described in Chapter 5, page 81, actions that take more than one timeslice to complete

are iterated between the agent’s effectors and its Planner.�
In fact, if the entity is completely occluded by something like a large obstacle, the agent

will only “see” this entity if its sensors are programmed to detect occluded entities. Touring-
Machines’ sensors are “programmed” via the parameter SensingAlgorithm, as described in
Section 7.4.3 below.
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� In terms of resource limitations, TouringMachines are bounded compu-
tationally (that is, they can perform up to some parametrized maximum
number of processing steps per timeslice) but are assumed to have un-
limited consumable resources (for example, fuel).

� TouringMachines communicate using a common, error-free protocol: left
and right indicators to turn or overtake, brake lights when braking,
and horn, fog lights and flashing headlights to convey specific warnings.
Explicit communication plays a very minor role as far as inter-agent
coordination is considered, agents relying principally on self-built models
for explaining and predicting other agents’ behaviours. Were this not the
case, the need to consider inter-agent communication errors or delays
(as done, for example, in the DVMT [LC83] and MICE [DM89] testbeds)
would be more pressing. Note, however, that from the point of view of an
agent sensing the world, there is still room for ambiguous interpretation
of certain communications. In particular, if one agent observes another
agent signalling right it might be that this second agent is about to
overtake some third one ahead of it or it might simply be that the second
agent is about to turn right onto another path.

� Right-of-way protocols for dealing with most junction scenarios and over-
taking situations are assumed common knowledge and are embedded in
agents’ model template default belief sets. Thus, unlike agents belonging
to what could perhaps be described as more general open systems (for ex-
ample, hierarchical organisations), TouringMachines do not have to deal
with reconciling disparate viewpoints or with negotiations to resolve con-
flict situations [Gas91]. Also, agents do not belong to different levels of
organisational authority: in MACE terminology, each TouringMachine
could be described as an equal co-worker [GBH87].

While it is true that TouringMachines are not exercised with tasks that
require particularly deep knowledge or detailed domain-specific expertise, the
TouringWorld is nevertheless an interesting domain because it challenges
a number of commonsense skills in TouringMachines: in particular, their
ability to sense and move around in a complex world and carry out time-
constrained tasks — always with a degree of uncertainty about what might
happen next. Also, since the abilities to perceive and explore the environment
are generally regarded as prerequisites for agent autonomy [Mor88, CL91],
the TouringWorld domain should prove a suitable domain for evaluating a
number of important issues concerning rational autonomous agency.
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Figure 7.3: The Process Scheduler Queue. The TouringWorld Multi-agent Testbed is

implemented as a series of scenario-, environment-, and entity-level processes which

are scheduled on a central processing queue and executed in a round-robin fashion.

7.4 The TouringWorld Testbed

As mentioned above and illustrated in Figure 7.1, the main components of the
TouringWorld Testbed include a multi-agent simulator and a series of user
interface tools for recording, analysing, viewing, and controlling the behaviour
of a group of TouringMachines . The aim in this section is to describe some of
the details relating to the design and implementation of these two components.

In fact, the various simulator and tool functions are implemented in Prolog �
as a set of system program modules, or processes, which are scheduled on a
central processing queue, the Process Scheduler Queue, and executed in a
round-robin fashion. There are three types of system processes, each im-

�
SICStus Prolog 0.7 running under SunOS � 4.1. � SunOS is a Registered Trademark of

SUN Microsystems, Inc.
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plementing a mixture of some simulation and some user-interface functions.
The first type (see Figure 7.3) are called scenario-level processes, and these
are responsible for such functions as initialising the Testbed, reading in and
processing the Scenario Specification file, figuring out which entities are in-
volved in the scenario, collecting and computing various statistics about the
behaviour and performance of agents, as well as administering most of the
user-level textual and graphical I/O facilities. � The second type comprises the
environment-level process, which is responsible for providing most of the cen-
tral simulation functions: collating and processing agents’ actions and state
changes according to various kinematic and dynamic constraints, updating
the simulated world clock, and maintaining an up-to-date World State fact
base describing entities’ most current physical configurations. The third type
of processes are called entity processes. These, as might be expected, imple-
ment the activities performed by the various instances of environment and
mobile agents that are present in a TouringWorld scenario.

These different system processes, which collectively implement the Tour-
ingWorld Testbed, have been parametrized to enable a high degree of customi-
sation by the user. The parameters used to customise these processes are
precisely those which are supplied by the user in Scenario Specification file
(see Figure 7.1). As mentioned above, these Testbed parameters are specified
by the user in a declarative language called the TouringWorld Scenario Speci-
fication Language, or SSL, for which a full extended BNF grammar appears in
Appendix A. In order to describe the various parameters, interface tools, and
scenario-, environment- and agent-level processes that combine to implement
the TouringWorld Testbed, repeated references will be made to this grammar
throughout the remaining sections of this chapter.

7.4.1 Scenario-level Processes

7.4.1.1 SessionHandler

The SessionHandler process provides the first level of interface between the
user and the Testbed. Upon invocation of the TouringWorld Testbed by the
user, this process is charged with loading and initialising all of the Prolog
program files which collectively implement the Testbed. Having done this,
the SessionHandler then prompts the user to select from a menu of stored
scenarios the name of the particular scenario to be run.

Each name in the scenario menu is associated with a stored Scenario Spec-
�
Window and graphics capabilities are provided through the use of XWIP, an interface to

the � Window System for Prolog [Kim90].
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ification file which has been created by the user at some earlier date. � A Sce-
nario Specification file contains all of the SSL parameter declarations which
are used to customise the various scenario-, environment-, and entity-level
processes that make up the TouringWorld Testbed. Once the user has selected
a scenario name, the SessionHandler reads in the corresponding file, trans-
lates its SSL declarations into appropriate Prolog facts and rules, and then
loads these alongside the system code as executable Prolog statements.

The SessionHandler is responsible for setting up any I/O channels which
may be required by the various scenario-level processes and interface tools. In
particular, I/O channels may be needed for displaying certain items of text, for
drawing graphics and displaying statistical graph plots, as well as for receiving
the user’s commands to suspend, restart, or terminate the Testbed’s operation.
Associated with each of these scenario-level processes is an optional window-
definition (see Appendix A, page 184 for details of the relevant declarations)
which defines, among other things, the dimensions and location of the partic-
ular screen window to be used for displaying and receiving each process’ I/O.
If a scenario process has no associated window definition its I/O will simply
be routed to the default screen, ensuring, therefore, that the TouringWorld
Testbed remains usable on both line-oriented and window-based terminals.
A number of scenario-level windows ( �������
	������������� , ������������ , ������������ , �������� ! ����� , ��"��
	����$# , %�"��������
	&� ! �����('
��������# , and ��)��*��������
#+)
	(�� ,������-�-
	&"/.
	(� ��
# )
can be seen in Figure 7.4.

To enable the study of, among other things, the behaviour of a Touring-
Machine under a range of differing environmental conditions, the Touring-
World Testbed provides a built-in facility for iteratively running a scenario
(the number of iterations is specified by the ScenarioIterations parameter)
and for automatically effecting, between iterations, changes to a number of
the entity- and environment-level parameter values that appear in the initial
Scenario Specification. Parameters to be automatically altered between it-
erations are specified via AlterableParameter declarations which state the
name of the parameter to be changed (for example, )������������
	0'
����	(��"����1'
���&� ,
'
��2������3#&������"��3#$45���&���&������6 , -�����)��������3#�����#�	��&��� �����	�7���� ), the scope of the change
(which agents the changes should apply to), whether the change should in-
crement or decrement the parameter value, as well as the amount by which
the parameter value should be changed. The full set of alterable parame-
ter declarations are defined under alterable-tmw-parameter in Appendix A,
page 187.

Other parameter declarations pertaining to the SessionHandler process
include ScenarioSuspension and TerminationCriterion. The former is
8
Scenario Specification files are simply ASCII files created with any text editor.
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used to indicate how often the Testbed’s operation should be suspended so
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Figure 7.4: Testbed user interface showing various types of input/output windows: tex-

tual trace ( �������	��
����������� , �����
����� , and ������
������ ), plotted graph ( ��������� �!���� ), user-

driven agent control ( ��"��	����
	# ), scenario parameter display ( $!"��
����%���&�!�����('%�������	# ),
and graphics ( ��)��*������
��	#+)	����,������-�-	��"/.%�(����%# ).
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that, for instance, the user can take stock of what is being displayed on the
screen; the Testbed will resume operation once the user clicks the mouse in
an appropriate window (titled �������	��
����������� — see Figure 7.4). The Termi-
nationCriterion declaration allows the user to specify the condition under
which the current scenario iteration should be automatically ended. Termi-
nation can be specified to take place upon the first collision occurring, upon a
given agent terminating (either by colliding or by arriving at its goal), upon all
agents terminating, or upon the passing of a given length of simulated world
time.

7.4.1.2 RunWorld

The main function of the RunWorld process is to initialise and administer
the various entity processes that are present in the scenario. In particular,
RunWorld keeps a constant check on the simulated world clock to determine
whether there are any agents listed in the initial Scenario Specification which
have yet to have had their corresponding entity processes activated and placed
on the Testbed’s process scheduler queue (see Figure 7.3). An entity process
is activated if the starting time in the corresponding entity specification (see
Section 7.4.3 below) matches the current simulated world time. Likewise,
RunWorld is also charged with monitoring for entity processes which are
to be terminated: at the beginning of each simulation cycle, RunWorld will
determine if any agents have recently terminated and then remove their cor-
responding entity processes from the process scheduler queue.

One of the main administrative duties performed by RunWorld includes
the setting up of appropriate I/O channels for each entity process. Specifically,
RunWorld will be called upon to set up textual output windows for some of
these processes (see, for example, windows ������
������ and ������
������ in Figure 7.4).
Additionally, if one of the scenario agents is identified as being a user-driven-
agent (see Section 7.4.3 below), it will need to set up a suitably defined ����������
��
input window (see Figure 7.4, for example) and then regularly poll this window
for the user’s mouse-clicked agent control commands. Finally, if there is
any scenario agent whose process type is defined as being �� �������
�!�� (in other
words, the entity process is to be executed as a forked UNIX " process running a
separate Prolog session — see below), RunWorld will be responsible for setting
up the necessary collection of semaphored I/O files to “link” such external
processes with each of the various (centralised) scenario- and environment-
level processes.

Being the process charged with the administration of user-driven agents,
#
UNIX is a Trademark of Bell Laboratories.
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RunWorld is also responsible for providing a facility with which the user can
automatically record (that is, save to a file) descriptions of all of the actions
effected by the user-driven agent during the current Testbed session. Addi-
tionally, because each of the saved action descriptions is time-stamped with
the precise value that the simulated world clock (see Section 7.4.2) displayed
when the action was originally effected, the saved file can, in any future sce-
narios, be “played back” by the user so that the user-agent executes precisely
the same actions that it had in the past. This facility is controlled via the
UserPlayback parameter whose arguments specify whether the facility is
currently being used and if so, whether it is recording current or playing back
previous user-agent actions.

Other parameter declarations that fall within the scope of the RunWorld
process include: a set of optional TraceParameter declarations which in-
struct RunWorld to output certain items of program trace to appropriate
scenario- and entity-level windows (the full list of traceable items is defined
under trace-parameter in Appendix A, page 188); zero or more ParmsWin-
dowEntry declarations which indicate those Testbed (parameter name, value)
pairs which should be displayed in the �������	��
��������
	���������
�� window (see Fig-
ure 7.4, for example); and SaveScript which indicates whether the program
trace information — that which was generated by the presence of particular
TraceParameter declarations — should also be saved to a file for future
reference by the user.

7.4.1.3 HandleStats

The HandleStats process provides a facility for collecting and computing
statistics about certain aspects of the scenario that the user currently happens
to be running. In particular, HandleStats enables the automatic gathering of a
number of important statistics regarding the environment (for example, how
many agents have collided or how many agents have successfully achieved
their tasks) as well as about each individual agent (for example, the util-
isation of resources by a particular control layer, the total number of goal
conflicts detected or resolved, the total number of reactive rule firings, the
agent’s average speed of travel).

As illustrated in Figure 7.3, HandleStats is invoked only after the vari-
ous entity- and environment-level processes have finished running. Which
statistics get collected and how they are to be computed is determined by the
(optional) presence of one or more RecordableParameter declarations in the
Scenario Specification file. Each declaration specifies the name of a particular
Testbed statistic to be computed (the full list is defined under recordable-tmw-
parameter in Appendix A, page 187), its scope (which scenario agents the
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collection of statistics applies to), and its style. The style specification indi-
cates whether the statistic is �������	��
�����	��� (its value will be re-computed every
timeslice) or ������������������
���������� (its value will be computed once at the end of
each scenario iteration).

In addition, HandleStats also provides a facility for displaying a graphical
plot of any collected statistics. In particular, the user can define, through a
set of SSL declarations, a number of attributes pertaining to a window-based
graphical plot: the � and � variables (Testbed parameters) to be plotted;
whether the graph should be updated every timeslice or at the end of each
scenario iteration; the origin, range, and unit increment size for each coordi-
nate axis; as well as textual labels for the two axes and the graph curve. In
Figure 7.4, for example, the ���	������������ window is being used to show how,
throughout the course of a particular scenario iteration, one agent’s plan-
ner’s computational resource usage varies during each timeslice. The full
set of declarations for defining a graphical plot are defined under graph-plot-
declarations in Appendix A, page 184.

7.4.1.4 DrawGraphics

The DrawGraphics process is responsible for maintaining an up-to-date graph-
ical image of any entity-level activities which take place during the running
of the scenario. The facility is particularly useful for testing and debugging
different agent configurations as it provides the user with immediate visual
feedback concerning the various actions and state changes which are taking
place in the environment.

DrawGraphics associates with each entity type a particular graphical im-
age: object types have associated built-in images (for example, obstacles ap-
pear as solid circles, lane markings appear as dashed lines) whereas the shape
of each agent — �����	����� , ��� �����!	��� , or �����	������ ��"#� (chevron-shaped) — can be
defined via an AgentGraphicsShape declaration. At the end of each sim-
ulation cycle — that is, after all other Testbed processes have been run —
DrawGraphics outputs an appropriate image for each entity present in the
scenario. Output is written to a dedicated graphics window (see Figure 7.2,
for example) which is set up by the SessionHandler process at the beginning
of the session. $&%

The initial set of entities to be displayed is determined through inspection
of the various object and agent definitions that appear in the Scenario Spec-
ification file. Once the scenario is under way, however, DrawGraphics must
make use of the World State fact base produced by the WorldUpdater process
')(

DrawGraphics output is ignored when the Testbed is being run on a line-oriented terminal.
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(see below) as this contains the most up-to-date description of the current
environmental layout, including agents’ new whereabouts and state descrip-
tions. State descriptions indicate, for instance, whether an agent has collided
or whether it has somehow left the scenario.

Other Testbed parameters that fall within the scope of the DrawGraphics
process include: GraphicsWindowCoordinates, which specifies the initial
two-dimensional area of the environment to be displayed; ScrollGraphics,
which specifies the frequency and the (possibly zero) amount by which the
graphics window should be vertically scrolled; as well as a set of zero or more
DrawForwardSensingArc and DrawRearSensingArc declarations that
are used to specify which named agents, if any, should have their sensing arcs
visibly displayed in the graphics window (see, for example, the chevron-shaped
agent which appears in the graphics window of Figure 7.4).

7.4.2 Environment-level Processes

7.4.2.1 WorldUpdater

WorldUpdater, the only environment-level process, can be considered the main
simulator process since, included among its responsibilities, are the creation
and maintenance of the World State — a fact base containing up-to-date de-
scriptions of each TouringWorld entity’s changing state and physical configu-
ration. The World State fact base is created at the beginning of the Testbed
session by taking copies of certain pieces of information from the definitions
of entities appearing in the Scenario Specification file. In particular, World
State fact base records are created for each scenario entity and contain such
information as the entity’s name, physical dimensions, and initial Cartesian
location. In addition, if the entity is a mobile agent, a record is also made of
its initial speed, acceleration, and orientation, plus any communicated infor-
mation that might initially be associated with it (for example, whether the
agent is signalling or honking its horn).

Once the scenario gets under way, the WorldUpdater’s main function be-
comes that of plausibly simulating each of the scenario agent’s different ac-
tions. Implemented as entity-level processes (see below), agents send mes-
sages to the WorldUpdater process whenever they have opted to effect some
physical or communicative action. Once every timeslice, after the entire col-
lection of entity processes has been suspended from executing, WorldUpdater
proceeds to deal with the various agent action messages in one single batch.
Simulation of these actions is achieved by making appropriate updates to the
World State fact base. In particular, by taking into account agents’ most recent
configurations (as recorded in the current World State) plus any actions which
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they might have submitted during the present timeslice, WorldUpdater will
compute their respective quadratic motion trajectories (agents move with uni-
form acceleration according to the standard equations of motion �������	��
���� � �
and ��������
 � � ) and then use these space-time trajectories to determine and
record agents’ new configurations for consideration during the next timeslice.

Although environmental concurrency is readily mimicked through the
round-robin scheduling of processes and through the implementation of agents
as processes that are regularly suspended at the end of every timeslice (see
below), there is also a need to ensure that any actions taken by the scenario
agents are physically plausible. In the TouringWorld Testbed this is achieved
by taking into account each of the agent-agent and agent-object collisions that
would occur if each agent were to move along the particular motion trajectory
that WorldUpdater had recently calculated for it. Collisions are detected by
performing pair-wise intersections of all of the agent space-time trajectories
and then selecting the “valid” intersection or collision points. A collision point
is valid if it occurs during the simulator’s present timeslice; if it occurs after
the present timeslice, it will be ignored until some future timeslice. Also,
if several such collision points involving the same agent are found, then the
one that occurs earliest in time is the one selected: an agent’s trajectory may
intersect the trajectories of several agents at a number of different points,
but, since agents always come to a halt after any collision, only the earliest
among these should be considered valid. Eventually, once all of the trajectory
intersections have been performed and appropriate collision participants de-
termined, WorldUpdater will make all necessary updates to the World State
fact base. In addition, it will inform the RunWorld process about any ter-
minated agents so that their corresponding entity processes can be removed
from the process scheduler queue.

Parameters pertaining to the WorldUpdater process include: Initial-
WorldTime, the starting value for the simulated world clock; WorldTimeIn-
crement, the discrete time quanta through which the world clock should be
advanced at the end of each process scheduler cycle; FogFactor, a real num-
ber between 0.0 and 1.0 which is altered by the fog agent (as described in Sec-
tion 7.3) and which is used by WorldUpdater to increase or reduce the sensing
range of any agent that happens to fall within the fog agent’s zone of appli-
cation (see Figure 7.2); RainFactor, a similar parameter, this one altered by
the rain agent and used by WorldUpdater to increase or reduce the effective
braking distance of any agent which happens to be braking within the rain
agent’s zone of application. A number of other parameters also exist which
enable the user to specify the granularity or precision with which certain Test-
bed calculations should be performed. In particular, DistanceTruncation,
SpeedTruncation, AccelerationTruncation, and AngleTruncation dec-
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larations are used to specify the precision with which the WorldUpdater pro-
cess should compute new values for agents’ Cartesian location coordinates,
speeds, accelerations, and orientations, respectively. Thus, if required, the 2-
dimensional space of the TouringWorld could be made “chessboard-like” if the
DistanceTruncation factor was chosen such that it rounded all distance cal-
culations to a whole number of units of distance and if the AngleTruncation
factor was chosen so that it forced each angle calculation to one of the four
normal angles 0 � , 90 � , 180 � , or 270 � . This would then facilitate comparisons
with other grid-based agent testbeds (for example, DVMT [LC83] and MICE
[DM89]).

7.4.3 Entity-level Processes

Entities are the various objects and agents that “inhabit” the TouringWorld
environment. Each object is specified via an object-definition (see Appendix A,
page 189) which comprises the following parameter declarations: Object-
Name, ObjectType (for example, �������
	����� , ��	�� , ������� ), ObjectLocation
(Cartesian coordinates in the TouringWorld environment), EntitySize (ra-
dius size if an obstacle, linear length if a wall, kerb, or lane marking), and a
number of optional ObjectAttributes (for example, ������������	� or ���������������
	�
if the object is a wall, ��	������ � or �������� if it is a lane marking). Because objects
remain inactive throughout the duration of a scenario, they are not, unlike
agents, implemented as separate system processes. Rather, their physical
presence is simply noted in the World State fact base for subsequent use by
the various entity and WorldUpdater processes (for example, to perform sim-
ulated sensing or to handle collisions).

Entity processes, then, implement TouringWorld agents. As noted in Sec-
tion 7.3, these agents can be mobile (standard or user-driven TouringMa-
chines) or environmental (traffic lights, fog, and rain). !"! Each agent type has a
slightly different set of defining parameters. The simplest among these are the
environment agents, which, although task-achieving, are devoid of such com-
ponents as sensors, focussing mechanisms, and reactive or modelling control
layers. The parameters used for specifying environment agents are defined in
Appendix A, page 189, and include EnvironmentAgentName, AgentPro-
cessType ( �����������
	� or ��#���������	� — see below), EnvironmentAgentVector
(stating its start time, end time, and Cartesian location), optional Environ-
mentAgentAttributes (for example, size and orientation if it is a traffic
light), EntitySize (radius size if the agent is fog or rain), plus various plan-
ning layer declarations which are common to both environment and mobile
$%$

At present, TouringWorld scenarios may contain at most one fog agent and one rain agent.
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agent types (see below).
The parameters used for describing standard mobile agents are divided

into groups corresponding to the various “physical” components that go into
making TouringMachines. Thus, in addition to several top-level entity param-
eters such as AgentName, AgentProcessType (see below), AgentVector,
and EntitySize, a host of other parameters (see Appendix A, pages 189–191)
are provided for describing TouringMachines , including:

� various physical, kinematic, and mediatory control parameters: Max-
Speed, MaxAcceleration, MinAcceleration, MaxTurningRate
(maximum rate at which the agent’s steering wheel can be turned),
CommsDeviceStatus (specifying whether or not the agent’s indicators,
brake lights, etc. are operational), and a set of CensorControlRule and
SuppressorControlRule declarations (control rules implementing the
agent’s mediatory control framework);

� sensor definitions: SensingAlgorithm (one of eight different algorithms
simulating some form of restricted — see Figure 7.5 — or unrestricted
“sensing” on the World State fact base), ForwardSensingRange, For-
wardSensingArc, RearSensingRange, RearSensingArc, and Sens-
ingRate (how frequently the World State fact base is sensed);

� focus of attention definitions (common to layers � and � ): Focussin-
gRules (initial set of focussing rules used), FocussingResources, Fo-
cussingEntityCost (computational resource cost to focus on any single
entity), and FocussingFlagCost (extra resource cost to handle dynamic
focussing requests from layers � or � );

� layer � definitions: a set of initial reactive control rules, together with
value declarations for the different parameters referred to in these rules
(for example, KerbAvoidanceAngle, ObstacleAvoidanceAngle, plus
various others described in Section 4.3);

� layer � definitions: PlannerAlgorithm (a pointer to the code imple-
menting the agent’s layer � functions), ��� PlannerResources, Planner-
Task (a specification of the task to be carried out), SchemaRetriev-
alCost (resource cost to retrieve a single schema from the Schema Li-
brary), SchemaPlacingCost (resource cost to place a retrieved schema

�
	
Code hooks have been provided at various points in the Scenario Specification in order to

make it easier in the future to experiment with different implementations of certain Touring-
Machine components (for example, the Planner) or to make it simpler to add new instances
of some existing components (for example, sensing algorithms, focussing predicates, reactive
rules).
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Figure 7.5: Illustration of an agent’s sensory field (shaded grey area) when its sensors

are programmed with the algorithm ������������	
��������������� . Specifically, this means that

the agent will be able to sense entities both to its rear and to its front, but that it will

not be able to detect entities that are occluded. (Other Testbed sensing algorithms

are listed in Appendix A, page 194.) Also illustrated are some of the agent’s other

sensor parameters: ForwardSensingRange (FSR), ForwardSensingArc (FSA),
RearSensingRange (RSR), and RearSensingArc (RSA).

in the Planner’s plan structure), HasSchemas (the set of schemas con-
tained in the agent’s Schema Library), and a Topological World Map
made up of a number of TouringWorldPath and TouringWorldJunc-
tion declarations);

� layer � definitions: ModellerAlgorithm (a pointer to the code imple-
menting the agent’s layer � functions), ModellerResources, Model-
RetrievalCost (resource cost to retrieve a model from the Model Li-
brary), ModellerFlagCost (resource cost to process conflict detection
flags from the agent’s effectors or layer � ), ConflictDetectionHorizon
(temporal range, expressed in number of whole timeslices, over which
to look for potential goal conflicts), ConflictResolutionDepth (number
of levels of counterfactual reasoning agent should undertake when look-
ing for such goal conflicts), ModellingRate (frequency with which the
agent’s models should be updated with fresh sensory input), ModelDis-
cardAfterTime (length of time to maintain a model for an entity which
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is no longer registered by the agent’s sensors), ModelLocationBounds
( ����� value bounds placed on the expected future location of some other
agent), ModelSpeedBounds (ditto for an agent’s expected speed), Mod-
elAccelerationBounds (ditto for an agent’s expected rate of accelera-
tion, ModelOrientationBounds (ditto for an agent’s expected orien-
tation), HasModelTemplates (the set of model templates contained
in the agent’s Model Library), a set of TheoristKBaseEntry declara-
tions (causal rules the agent can use when ascribing intentions to other
world entities), a set of SpaceTimeProjection declarations (functions
the agent can use when projecting other entities’ movements through
space-time), and a set of ConflictResolutionRule declarations (rules
the agent can use when identifying and resolving different intra- and
inter-agent goal conflicts).

A TouringMachine can also be user-driven. As mentioned above, the user
controls such an agent by clicking the mouse in a particular Testbed window
titled ���
	���
��� (see Figure 7.6). The ���
	���
��� window is divided into four quad-
rants, each acting as an “active button” which, when selected with the mouse,
will send a specific physical action command to the user-driven agent’s Action
Buffer. At present, the available actions include accelerate, decelerate, turn
left (counterclockwise), and turn right (clockwise); also associated with these
actions are a series of parameters which are used in defining their specific
scalar values: UserAccelerationIncrement, UserDecelerationIncrem-
ent, UserTurnLeftIncrement, and UserTurnRightIncrement, respect-
ively. User-driven agents (see Appendix A, page 189) are completely controlled
by the user and therefore lack such capabilities as focussing of attention, plan-
ning, and modelling. As described above, user-driven agents can alternatively
be controlled by “playing back” a file of time-stamped action descriptions which
the user has opted to record during an earlier Testbed session.

As mentioned above in the description of the RunWorld process, there are
two types of entity processes: internal and external (these are defined via the
parameter AgentProcessType). An internal entity process is implemented
as a Prolog program module which is part of the same main testbed pro-
cess (a UNIX process running a Prolog session) as the various scenario- and
environment-level processes. An external process, on the other hand, is a
separate UNIX process, forked from the main testbed process, which runs
independently but which communicates with the main process (the one that
is running the scenario-, environment-, and internal entity-level processes)
via a set of semaphored I/O files. Via these files, each external entity both
receives its necessary input — a complete copy of the current World State fact
base so that it can determine the whereabouts and physical extent of other
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Figure 7.6: The Testbed user can control a specified TouringMachine’s acceleration and

orientation by clicking the mouse in appropriate sections of the �������	��
�� window. In

addition, the precise sequence of control commands can be automatically recorded and

then played back verbatim in subsequent scenarios.

scenario entities — and sends its corresponding output, including effected
actions (sent to WorldUpdater), tracing information (sent to RunWorld), plus
any relevant statistical information (sent to HandleStats). The advantage of
using external processes to implement TouringWorld entities is that they can
help speed up operations in the Testbed by increasing throughput: external
processes are sent their input before any internal processes are considered
and have their output collected only after each one of the internal processes
has been executed. On the other hand, because of the overhead associated
with file I/O between external entity processes and the main testbed process,
entity processes are best defined to be internal if the number of entities in the
scenario is small.

Since the entity processes representing TouringMachines are executed on
a sequential machine running a sequential language (Prolog), a couple of
design features are included to ensure that the Testbed provides a plausible
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simulation of the TouringMachine’s ’ concurrent activities. The first feature is
aimed at providing a plausible simulation of the concurrent flow of messages
between control layers that regularly takes place within a TouringMachine. To
achieve this effect — in other words, to ensure that any messages sent during
one timeslice are not processed by the receiver until at least the next timeslice
— messages are always time-stamped before being sent to another layer.
These time-stamps are then used by receiving layers to test whether the input
message currently being considered was sent prior to the present timeslice or
not. If it was, then the message is removed from the message input queue and
duly processed; if it was not, the message is left on the queue so that it will
be re-considered in some future timeslice. The second design feature aims to
ensure that each entity process gets a fair share of CPU ownership during
each timeslice: that is, during each and every cycle of the process scheduler
queue. This is the same as guaranteeing an upper-bound on each entity’s
per-timeslice inter-operation latency which, as described above, is achieved
through the explicit use of computational resource units for monitoring the
costs of each of the operations performed by TouringMachines . In particular,
an entity process representing a TouringMachine will be forced to relinquish
CPU control (that is, become suspended until the next timeslice or scheduler
cycle) either when it has used up its limited per-timeslice resources (these
are applied to each of the process’ sensing, focussing, planning, and modelling
operations) or when the entity has submitted some physical or communicative
action to the WorldUpdater process.

Unlike scenario- and environment-level processes which are statically de-
fined before runtime, entity-level processes are created (and terminated) dy-
namically — once the scenario has started. Specifically, processes represent-
ing the various entities defined in the Scenario Specification file are created
whenever an entity’s start time (one of the arguments to its AgentVector or
EnvironmentAgentVector parameter declaration) coincides with the time
displayed by the simulated world clock. As described above, the RunWorld
process is responsible for both initialising the entity process (in particular,
adding it to the process scheduler queue) and for terminating the entity pro-
cess (removing it from the queue) whenever the corresponding entity collides
or successfully achieves whatever task it was assigned.

One of the principles applied throughout the design and implementation
of the Testbed was to promote and maintain a reasonably clean interface be-
tween the TouringWorld entities and their environment so that, if necessary,
the Testbed could be used for running and testing alternative implementa-
tions of agents without too much effort on the part of the programmer. In
fact, providing such a clean I/O interface was needed anyway in order to be
able to support the external entity process facility described above. All the
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same, while in terms of its range and richness of both simulator and user-
level features the TouringWorld Testbed can be compared quite favourably
with other DAI or integrated agent testbeds — for example, DVMT [LC83],
Phoenix [CGHH89], MICE [DM89], SeaWorld [VB90], and Tileworld [PR90]
— it should be clear that it is not intended as a fully general agent program-
ming environment. Rather, the TouringWorld Testbed should be regarded,
primarily, as a vehicle for evaluating TouringMachines. Describing several
such evaluations will be the focus of the next chapter.



8

Evaluating TouringMachines

Ordinarily a computer user would construct a problem, feed it in, and
wait for the machine to calculate its solution — one problem, one solution
... [The] chaos researchers ... needed more. They needed to do what Lorenz
had done, to create miniature universes and observe their evolution. Then
they could change this feature or that and observe the changed paths that
would result. They were armed with the new conviction, after all, that tiny
changes in certain features could lead to remarkable changes in overall
behavior.

James Gleick, Chaos

8.1 Purpose of Experimentation

There has, in recent years, been a proliferation of intelligent agent archi-
tectures, each one offering a different perspective on the problem of how to
integrate a variety of intelligent control functions in a single autonomous,
computational system. The ways in which one agent architecture might be
considered better than another, Drummond [DK90] argues, are not always
very clear. As a result, there has been a growing realisation that many of
the characteristics, both positive and negative, of any particular agent ar-
chitecture, only become evident when experimental evaluation is performed.
Indeed, it could be argued — as it has been already by a number of researchers
in the agent design and related AI subfields [DK90, LD90, Coh91] — that to
progress as a science, we must develop more rigorous experimental methods.

Unfortunately, AI, according to Cohen [Coh91, page 35], is “unlike exper-
imental sciences that provide editorial guidance and university courses in
experiment design and analysis.” Indeed, at present, there is no common

151
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language or frame of reference for describing and assessing different agent
architecture designs and their performances. Much like the AI subfield of
planning, agent architecture design is, as an experimental science, entering
the initial stages of its evolution. As such, Langley [LD90, page 113] would
argue, researchers should be satisfied at present with identifying “qualitative
regularities that show one method as better than another under certain condi-
tions, or that show one environmental factor as more devastating [on system
performance] than another.” Only in the later stages of this evolution should
researchers focus their experiments to determine the quantitative laws that
can actually predict agent architecture performance.

The primary aim behind experimenting with the TouringMachine agent
architecture, then, will be to test and substantiate the main hypothesis or
thesis stated at the beginning of this dissertation: namely, that is it both
desirable and feasible to combine non-deliberative and suitably designed and
integrated deliberative control functions in a single — hybrid — architecture
in order to obtain effective, robust, and flexible behaviours from rational,
autonomous, resource-bounded agents which are to carry out their tasks in
complex domains. Another aim behind such experimentation will be to in-
vestigate a secondary hypothesis which is that establishing an appropriate
balance between reasoning (deliberative control) and acting (non-deliberative
control) depends heavily on characteristics of the task environments in which
the agents are intended to operate. To investigate this latter claim, it is ar-
gued, one must seek to obtain an improved understanding of TouringMachine
behavioural ecology.

8.1.1 Behavioural Ecology of TouringMachines

One useful approach toward understanding the reasons for the behaviours
exhibited by the TouringMachine agent design — and, more specifically, for
identifying the conditions under which one configuration of the architecture
performs better than another — is to vary the environment in which it oper-
ates. The simplest approach to this issue, Langley [LD90] argues, involves
designing a set of benchmark problems, of which some, for the purposes of sci-
entific comparison (that is, for the purposes of enabling independent variation
of different task environment attributes), should involve artificial domains.
The TouringWorld environment is one such domain (other examples, as men-
tioned in previous chapters, include the Phoenix environment [CGHH89], the
Tileworld [PR90], and MICE [DM90]).

The power of the TouringWorld Testbed domain, and of artificial domains
in general, arises from the insights it can provide toward the improved un-
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derstanding of agent — in this case, TouringMachine — behavioural ecology:
in other words, the understanding of the functional relationships that ex-
ist between the designs of agents (their internal structures and processes),
their behaviours (the tasks they solve and the ways in which they solve these
tasks), and the environments in which they are ultimately intended to operate
[CGHH89].

The characterisation of TouringMachines as a study of agent behavioural
ecology exemplifies a research methodology which emphasises complete, au-
tonomous agents and complex, dynamic task environments. Within this meth-
odological context, the focus of the present evaluation has been centred on two
particular research tasks. Cohen et al. [CGHH89] refer to these as environ-
mental analysis, in other words, understanding what characteristics of the
environment most significantly constrain agent design; and the design task,
in other words, understanding which agent design or configuration produces
the desired behaviours under the expected range of environmental conditions.

These two tasks, in fact, are the first two stages of a more complete re-
search methodology which Cohen [Coh91] refers to as the MAD methodology,
for modelling, analysis, and design. � This methodology aims to justify sys-
tem design (and re-design) decisions with the use of predictive models of a
system’s behaviours and of the environmental factors that affect these system
behaviours. Like IRMA agents in the Tileworld domain [PR90], Touring-
Machine agents can be viewed as having been developed via an incremental
version of MAD, in which the (causal) model of TouringMachine behaviour
is developed incrementally, at the same time as the agent design. In other
words, the agent design (or some part of its design) is implemented as early
as possible, in order to provide empirical data (or feedback) which flesh out
the model, which then become the basis for subsequent redesign [Coh91]. The
implications of adopting such a design method, as well as the roles played in
this method by the environmental and behavioural analyses referred to above,
will be considered in more detail in Section 8.4.

8.1.2 Some Methodological Issues

The present evaluation of TouringMachines will be realised through a series
of interesting task scenarios involving zero or more agents and/or zero or
more obstacles or traffic lights. The scenarios have been selected with the

�
The remaining design activities — predicting how the system (agent) will behave in

particular situations, explaining why the agent behaves as it does, and generalising agent
designs to different classes of systems, environments, and behaviours — are beyond the scope
of this dissertation. See Cohen [Coh91, pages 29–32] for details.
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aim of evaluating some of the different capabilities and behaviours which
TouringMachines will require if they are to complete their tasks in a com-
petent and effective manner — for example, reacting to unexpected events,
effecting of goal-directed actions, reflective and predictive goal monitoring,
spatio-temporal reasoning, plan repair, coping with limited computational
and informational resources, as well as dealing with real-time environmental
change. The scenarios can be considered interesting because they succinctly
exercise agents’ abilities to carry out time-constrained tasks in complex —
partially-structured, dynamic, real-time, multi-agent — environments. Al-
though the chosen scenarios are simplified to deal only with mentally and
structurally homogeneous agents possessing noiseless sensors, perfect actua-
tors, and approximately similar non-shared relocation tasks (such simplifying
assumptions are discussed in full in Section 7.3), these still present a number
of non-trivial challenges to TouringMachine agents.

It is not the aim of the present evaluation to show that the TouringMachine
architecture is in any sense “optimal”. As argued in Section 3.5, optimal ratio-
nal behaviour will in general be impossible if the agent is resource-bounded,
has several goals, and is to operate in a real-time multi-agent environment in
which events are able to take place at several levels of space-time granularity.
As such, one should more realistically expect a TouringMachine to behave
satisficingly, but at times — for example, when under extreme real-time pres-
sure — to fail to satisfy every one of its outstanding goals. What is really of
interest here is understanding how the different configurations of agents and
the different environmental characteristics to which such configurations are
subjected affect, positively or negatively, the ability of agents to satisfy their
goals.

It is also not the aim of the present evaluation to show that TouringMa-
chines are “better” than other integrated agent architectures at performing
their various tasks. Rarely is it the case that the actual and/or intended task
domains of different agent architectures are described in sufficient detail so
as to permit direct comparisons of agent performance. The lack, at present,
of any common benchmark tasks or of any universally agreed upon criteria
for assessing agent performance — previous evaluations have relied either on
a single performance criterion (for example, the total point score earned for
filling holes in specific single-agent Tileworld environments [PR90, KG91]),
or on a small number of performance criteria which can only be interpreted
with respect to the particular architecture being measured (for example, the
total number of behaviours communicated between agents in selected MICE
environments [DM90]) — combine to make detailed quantitative comparisons
with other architectures extremely difficult if not altogether impossible.
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Due to the relatively large number of parameters which the TouringWorld
Testbed provides for specifying different agent configurations, performance
evaluation criteria (for example, task completion time, resource utilisation),
and agent task and environmental characteristics (see Appendix A), the pres-
ent evaluation will necessarily be partial, the main focus being placed on
studying selected qualitative aspects of TouringMachine behavioural ecology
— namely, some of the effects on agent behaviour which, in a given task envi-
ronment, can occur through varying individual agent configuration parame-
ters; and the effects on agent behaviour which, for a given agent configuration,
can occur through varying certain aspects of the agent’s environment. Like
with the Tileworld experiments described by Pollack and Ringuette [PR90,
page 187], a number of TouringWorld “knobs” (for example, world clock time-
slice size, total per-timeslice resources available to each agent, agent size,
agent speed and acceleration/deceleration rate limits, agent sensing algo-
rithm, initial attention focussing heuristics, reactive rule thresholds, plan
schema and model template library entries) have been set to provide “baseline”
environments which are dynamic, somewhat unpredictable, and moderately
paced. In such environments, a competent (suitably configured) agent should
be able to complete all of its goals, more or less according to schedule; how-
ever, under certain environmental conditions and/or agent parametrizations
— a number of which will be analysed below — this will not always be the
case. In order to simplify the analysis of agents’ behaviours in multi-agent set-
tings, TouringMachine configurations — both mental and physical — should
be presumed identical unless otherwise stated.

8.2 Single-agent Scenarios

8.2.1 Reflective Goal Monitoring: sensitivity to model dis-
crepancies

In monitoring its own state, and in particular, in determining whether the
model it maintains of its own current physical configuration (its location,
speed, orientation, etc.) is as it should be — that is, satisfies the expectations
which were computed when it last projected its own self model in space-time
— a TouringMachine makes use of various tolerance bounds to decide whether
any model discrepancies in fact exist. Identification of a self model discrep-
ancy typically requires further investigation to determine its possible cause.
Often, this reasoning process will result in the agent’s layer � flexibly resolv-
ing the conflict by submitting an appropriate “corrective” action command to
the agent’s effectors. For example, a discrepancy between the agent’s current
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Figure 8.1: Sensitivity to self model orientation discrepancies can be varied through the

layer � parameter ModelOrientationBounds.

and expected speeds might be indicative of an unforeseen stoppage or slow-
down (perhaps due to the presence of some other agent or obstacle) which,
potentially, might threaten any of the agent’s time-constrained goals unless
some suitable and contextually appropriate action is taken.

In Figure 8.1 we can see the effect on the agent’s behaviour — that is, on its
ability to carry out its relocation task �������
	���������������
�����
� in an effective and ro-
bust manner — of modifying the value of one of its self model tolerance bounds,
ModelOrientationBounds, which is used to constrain the allowable devia-
tions between the agent’s current heading and its erstwhile desired heading.
With fairly wide bounds (for example, ModelOrientationBounds = +/- 40 � ),
the agent fails to notice any changes in its current orientation — in this sce-
nario caused by the agent’s layer � reacting to obstacles, kerbs, and lane
markings — and so does not take any corrective re-orientation actions (Fig-
ure 8.1, left-hand frame). As a result, and compared to the situation when the
agent is configured with ModelOrientationBounds = +/-0 � , and therefore
extremely sensitive to any orientation discrepancies (Figure 8.1, right-hand
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frame), the agent with wide orientation bounds covers more distance and so
arrives at the target destination ����� slightly later (specifically, after a total of
33 seconds instead of 32).

This in itself, of course, does not suggest that agents should always be
configured with tight orientation bounds. Other factors might need to be
considered here such as the importance of the agent’s deadline (for example, it
could be that a small delay is tolerable), the number of resources that are being
spent each time a corrective action is taken, and, perhaps not so obviously,
the physical structure of the environment in which the agent is operating
(for example, when navigating along narrow paths, very little wandering is
possible regardless of which orientation tolerance bounds are in use; however,
if these paths were very wide it might become more important to prevent or
minimise wandering).

8.2.2 Predicting Possible Goal Conflicts: efficiency versus
reliability

To construct, at time ��� , expectations of its own physical configuration for
some future time ��	 , a TouringMachine projects its own self model (together
with any models which it currently maintains for any other world entities) up
to some point in time, ��
��� ( ��
��������	 ), to determine if any goal conflicts are
likely to occur. Predicted conflicts, for instance, might include a physical col-
lision with another world entity (the agent’s goal in conflict in this case would
be ���������������� � ���!����#"�! ) or a virtual collision which might occur, for example,
if the agent were to run through a red traffic light (the goal in conflict here
would be �#$�%�&���'�%#(�)� ���*����#"�! ). The length of time + ��
����,-����+ over which the
agent will make such predictions is controlled by the layer . parameter Con-
flictDetectionHorizon. (In fact, the value of this parameter is expressed as
the integer number of processing cycles or timeslices equivalent in length to
+ ��
���/,0����+ .)

In Figure 8.2 we can see the effect on an agent’s behaviour — that is,
on its ability to respond flexibly to a change in colour by a traffic light — of
modifying the value of its ConflictDetectionHorizon parameter. 1 The two
upper frames of Figure 8.2 show two snapshots — the left-hand one at time
� = 8.5 seconds, the right-hand one at � = 10.5 seconds — when the agent is
configured with ConflictDetectionHorizon = 1. The two lower frames show
2
Since traffic lights are agents with plans (albeit very simple ones), this example must

really be seen as a multi-agent scenario and so should therefore be discussed in Section 8.3.
However, since the emphasis of the present analysis will be on the behavioural characteristics
of the sole TouringMachine, the scenario can more usefully be viewed as being single-agent.
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two snapshots — the left-hand one at time � = 7.5 seconds, the right-hand one
at � = 10.5 seconds — when the agent is configured with ConflictDetection-

Horizon = 3. In each case, the traffic light — the rectangular entity, one half
of which contains a black circle — changes from red (circle in upper half of
rectangle) to green (circle in lower half) at time � = 8.0.

If the agent’s ConflictDetectionHorizon parameter is set to 1, it de-
tects a possible virtual conflict at time � = 8.5 — exactly one timeslice before
� = 9.0 which is when the agent will start to drive past the physical location
of the light; that is, when the conflict, if one is deemed to exist, will take place.
Now, since the light, as mentioned above, changes to green at � = 8.0, no con-
flict will in fact be predicted to occur, so the agent will simply proceed through
the light and on toward its ultimate destination (Figure 8.2, upper right-hand
frame). If, on the other hand, the agent is configured with ConflictDetec-
tionHorizon = 3, the agent will detect a definite virtual conflict at time � =
7.5, since, at that point in time, the traffic light will still be red (it will not turn
green for another 0.5 seconds). To resolve the impending �������	��
	����������	�������
conflict, the agent’s layer � will propose to the agent’s layer � to adopt the new
intention ������������������������� . The interesting thing in this situation, however, is
that by the time the agent actually comes to a halt at � = 10.5 (Figure 8.2,
lower right-hand frame), the traffic light will have already changed back to
green (it did so exactly one timeslice after the agent had committed itself to
stopping), making any actions taken by the agent to resolve the initial conflict
completely worthless. Thus, with this latter more predictive configuration
(ConflictDetectionHorizon = 3), the agent clearly behaves less effectively
than its former less predictive self (with ConflictDetectionHorizon = 1).

This scenario is illustrative of a more general problem confronted by pre-
dictive agents — Shoham and McDermott [SM90] refer to it as the extended
prediction problem — namely, that of choosing the length of time intervals
in the future to which predictions should refer. This is a problem because
it involves a tradeoff between efficiency and reliability: conservative predic-
tions (for example, when ConflictDetectionHorizon = 1) refer to relatively
short intervals of time which, by definition, will make it hard to reason about
lengthy time periods; on the other hand, more ambitious predictions (for ex-
ample, when ConflictDetectionHorizon = 3) can be unreliable because they
cover larger intervals of time during which the world is more likely to change
(potentially invalidating any predictions that might have been made in the
meantime). In the scenario of Figure 8.2, the ideal value for the agent’s Con-
flictDetectionHorizon parameter would appear to be 1 since, as described,
this does not cause the agent to take any unnecessary actions.
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Figure 8.3: Possible effects of varying an agent’s ConflictDetectionHorizon param-

eter — part 2.

In general, however, this value may not be the most effective for all en-
vironmental contexts. Figure 8.3, for example, depicts the same agent of
Figure 8.2, this time heading straight for a wall which is blocking its path. In
this case, it is the configuration with ConflictDetectionHorizon = 3 (left-
hand frame of Figure 8.3) rather than that with ConflictDetectionHorizon
= 1 (right-hand frame of Figure 8.3), that is best able to deal with the agent’s
impending �������	��
������������������ goal conflict; this will occur at around time � =
4.5 if no action is taken. Although the agent requires only one timeslice (0.5
seconds) to come to a halt, detecting the impending conflict at time � = 4.0,
which is what happens when the agent is configured with ConflictDetection-
Horizon = 1 — as opposed to at time � = 3.0, which is what happens when
ConflictDetectionHorizon = 3 — is simply too late to avoid the collision.
This would seem to indicate, therefore, that the effectiveness of a particular
agent configuration will depend, to some extent at least, on characteristics of
the environment in which the agent is operating.
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8.2.3 Emergent Behaviour: choosing the “right” configu-
ration

In the absence of any knowledge regarding the whereabouts of other agents or
static obstacles, a TouringMachine’s layer � will construct a shortest length
route to its target destination (or to the next junction to turn at if the agent’s
route comprises more than one path). If the agent encounters any obstructions
en route (for example, if it encounters an obstacle), it will, provided it has the
appropriate layer � reactive rule, avoid hitting such obstructions by effecting
suitably robust changes in orientation (the magnitude of such changes is set
by the agent parameter ObstacleAvoidanceAngle). In response to these
directional changes, however, and provided the agent’s layer � is suitably
sensitive to orientation discrepancies arising in its own self model (this, as
described above, is set by the parameter ModelOrientationBounds), the
agent will flexibly counteract with subsequent (re-)orientation actions in or-
der to adjust its heading back toward the direction of the target destination.
Whether an action command originating from the agent’s layer � is chosen
over an action command originating from its layer � , ultimately depends on
the programming of the agent’s mediatory suppressive control rules. In the
TouringWorld domain (and therefore in all of the scenarios presented in this
chapter) layer � reactions to nearby obstacles will always be favoured over any
corrective actions proposed by layer � ; in other words, short-term robustness
will be favoured over more longer term flexibility.

In Figure 8.4 we can observe the progress of an agent toward a target desti-
nation, marked by � , which happens to lie on the far side of a fairly big obstacle.
Two configurations are tested here: the first — see upper left-hand frame of
Figure 8.4 — with the physical capability parameter ForwardSensingArc
set to 30 � (an explanation of this parameter is given in Section 7.4.3), the
second — see upper right-hand frame of Figure 8.4 — with ForwardSensin-
gArc = 25 � . In the former case, the agent, through a combination of robust
reactions to the obstacle and corrective re-orientations toward the target � ,
ends up describing a more or less circular path, effectively following the con-
tour of the obstacle. In the latter case, with the narrower forward sensing
arc, the agent ends up following a more or less rectilinear path, eventually
colliding with the obstacle after only a few timeslices of motion.

This scenario demonstrates that particular combinations of “primitive” be-
haviours — for example, obstacle avoidance (effected by layer � ) and corrective
goal re-orientation (effected by layer � ) — can be used to exploit certain struc-
tural characteristics or regularities in the environment and, as a consequence,
to produce desirable and effective emergent behaviours such as the contour- or
wall-following one observed in the upper left-hand frame of Figure 8.4. How-
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ever, as seen from the upper right-hand frame of Figure 8.4, it would appear
that other aspects of the agent’s physical configuration (for example, its partic-
ular sensing capabilities) can affect how or whether such emergent behaviours
ultimately arise. This is more easily explained with the use of the lower two
frames of Figure 8.4 which show the same two agent configurations described

above only now displayed with their corresponding forward sensing arcs. With
the wider sensing arc (lower left-hand frame of Figure 8.4), the agent ends
up reacting away from the obstacle more often than it re-orients itself toward
its goal, for the simple reason that it senses the obstacle more often than
not. And since, as mentioned above, reactions are always favoured to goal
re-orientations, the agent will end up reacting more often and so, in this
environmental context, avoid colliding with the obstacle. With the narrower
sensing arc, however (see lower right-hand frame of Figure 8.4), the agent is
less likely to see the obstacle after a reaction away from it (the obstacle falls
outside the area described by its sensing arc) and so is more likely to re-orient
itself more often back toward its target goal. In fact, in the case where the
agent is configured with ForwardSensingArc = 25 � , the agent ends up re-
orienting itself toward it goal exactly as often as it reacts away from it, and
so, as illustrated, will follow a more or less rectilinear path in the direction of
the obstacle.

8.3 Multi-agent scenarios

8.3.1 Counterfactual Reasoning: why modelling other ag-
ents’ intentions can be useful

In constructing and projecting models of other world entities, a TouringMa-
chine must constrain its modelling activities along a number of dimensions.
Implemented as user-definable parameters, these layer � constraints have
been described in earlier chapters, and some, for example ModelOrienta-
tionBounds and ConflictDetectionHorizon, have also been addressed in
this chapter. One layer � parameter which has not been mentioned in this
chapter is ConflictResolutionDepth — the parameter which fixes the num-
ber of levels of counterfactual reasoning the agent should undertake when
projecting entities’ models to discover possible future goal conflicts. In gen-
eral, when constructing model projections at counterfactual reasoning level�

, an agent will take into account any conflicts plus any actions resulting from
the anticipated resolutions to these conflicts which it had previously detected
at level

�����
. Values of ConflictResolutionDepth which are greater than
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1, then, give agents the flexibility to take into account — up to some fixed
number of nested levels of modelling — any agent’s responses to any other
agent’s responses to any predicted conflict.

In the scenario of Figure 8.5, two TouringMachine agents can be seen
following independent routes to one destination or another. The interesting

agent to focus on here — the one whose configuration is to be varied — is�������	��
 (the round one). The upper left-hand frame of Figure 8.5 simply shows
the state of the world at time � = 15.5 seconds. Throughout the scenario,
each agent continually updates and projects the models they hold of each
other, checking to see if any conflicts might be “lurking” in the future. At � =
17.5 (upper right-hand frame of Figure 8.5), �������	��
 detects one such conflict:
an �� ���������������������  ��� conflict which will occur at � = 22.0 between �������	���
(chevron-shaped) and the traffic light (currently red). Now, assuming ����������

is just far enough away from the traffic light so that it does not, within its
parametrized conflict detection horizon, see any conflict between itself and the
traffic light, then, if ����������
 is configured with ConflictResolutionDepth = 1,
it will predict the impending conflict between �������	��� and the traffic light, as
well as the likely event of ����������� altering its intention to ��� �� �	�����	�����	 �� so
that it will come to a halt at or around � = 22.0. If, on the other hand, �������	��

is configured with ConflictResolutionDepth = 2, not only will it predict the
same conflict between �������	��� and the traffic light and the resolution to be re-
alised by this entity, but it will also, upon hypothesising about the world state
after this conflict resolution is realised, predict another impending conflict,
this second one involving itself and the soon to be stationary �������	��� .

The observable effects of this parameter difference are quite remarkable.
When �������	��
 is configured with ConflictResolutionDepth = 1, it will not
detect this second conflict — the one between itself and ����������� — until one
timeslice later; that is, at time � = 18.0 instead of at � = 17.5. Due to the
proximity of the two agents, the relatively high speed of �������	��
 , and the
inevitable delay associated with any change in intention or momentum, this
0.5 second delay proves to be sufficiently large to make ����������
 realise too
late that ����������� is going to stop; an inevitable rear-end collision therefore
occurs at � = 22.0 (Figure 8.5, lower left-hand frame). ! Configured with
ConflictResolutionDepth = 2 (Figure 8.5, lower right-hand frame), ����������

ends up having enough time — an extra 0.5 seconds — to adopt and realise
the appropriate intention ��� �� � � �� �����"����������	� , thereby avoiding the collision

#
In fact, this collision need not be “inevitable”: in this scenario both ����������
 and �����������

have been configured with fairly insensitive (not very robust) layer $ reactions, primarily
to emphasise the different behaviours that could result from different parametrizations of
agents’ modelling capabilities.
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that would otherwise have occurred.
Having the flexibility to reason about the interactions between other world

entities (for example, between �������	��
 and the traffic light) and to take into ac-
count the likely future intentions of these entities (for example, ����������������	������ )
can enable TouringMachines like �������	��� to make timely and effective predic-
tions about the changes that are taking place or that are likely to take place
in the world. In general, however, knowing how deeply agents should model
one another is not so clear: since the number of layer � resources required to
model world entities is proportional to both the number of entities modelled
and the (counterfactual reasoning) depth to which they are modelled, agents
will ultimately have to strike a balance between breadth of coverage (more en-
tities modelled, little detail) and depth of coverage (less entities, more detail).
This issue is re-visited later in Section 9.2.

8.3.2 Monitoring the Environment: sensitivity versus effi-
ciency

In monitoring the state of another world entity, and in particular, in determin-
ing whether the model it maintains of an entity’s current physical configura-
tion (its location, speed, orientation, etc.) is as it should be — that is, satisfies
the expectations which were computed when it last projected the entity’s model
in space-time — a TouringMachine makes use of various tolerance bounds to
decide whether any discrepancies in fact exist. As with any discrepancies
detected in the agent’s self model (see Section 8.2.1 above), identification of a
discrepancy in the model of another entity typically requires further investi-
gation to determine its cause. Often this reasoning process results in having
to re-explain the entity’s current behaviour by ascribing it a new intention.
For example, a discrepancy between the modelled entity’s current and ex-
pected speeds might be indicative of the entity’s change of intention from, say,��� �������	�	����������������� to ���������	�������! ���"�������� .

In Figure 8.6 (upper two frames) we can see, at two different time points,#
= 12.5 seconds and

#
= 15.5 seconds, several agents in pursuit of their respec-

tive goals: ���������$� (round), �������	��
 (chevron-shaped), and �������	�&% (triangular,
top-most). Furthermore, we can see the effect on �������	��� ’s behaviour — that is,
on its ability to carry out its homeostatic goal �����&� � �	"��	�����	������'� — of modify-
ing the value of ModelSpeedBounds, the parameter which, when modelling
another entity, is used to constrain the “allowable” deviations between this
entity’s currently observed speed and the speed it was predicted to have had
when the entity was last observed. In this scenario, �������	��� has to contend
with the numerous and unexpected speed changes effected by �������	��
 , a user-
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driven agent. With fairly tights bounds (for example ModelSpeedBounds
= +/-0.5 ms ��� ), �����
	��� detects any speed discrepancies in �����
	���� which are
greater than or equal to 0.5 ms ��� . Among such discrepancies detected by
�����
	��� are those which result from the �
���
	���� ’s deceleration just prior to its
coming to a halt at a junction at time � = 20.0 (Figure 8.6, lower left-hand

frame). As a result, and compared to the situation when �
����	��� is configured
with ModelSpeedBounds = +/-2.0 ms ��� , and therefore, in this particular sce-
nario, unable to detect or respond fast enough to ������	���� ’s actions at � = 20.0
(Figure 8.6, right-hand frame), the configuration with tighter speed bounds is
more robust, more able to detect “important” events (for example, the agent in
front coming to a halt) and also more able to carry out timely and effective in-
tention changes (for example, from ������������������	������������ to  ����
���
!������"	#�$��������	�� ).

This in itself, of course, does not suggest that agents should always be
configured with tight speed bounds. Sensitivity or robustness to environmen-
tal change can come at a price in terms of increased resource consumption:
each time an agent detects a model discrepancy it is forced by design to try to
explain the discrepancy through a (relatively expensive) process of abductive
intention ascription. Often, however, small changes in the physical configura-
tion of a modelled entity need not be the result of the entity having changed
intentions. In the scenario of Figure 8.6, for example, �
���
	���� ’s speed changes
are due entirely to actions effected by the user. Ignorant of this, however,
�����
	��� configured with ModelSpeedBounds = +/-0.5 ms ��� will continually
attempt to re-explain �����
	���� ’s changing behaviour — despite the fact that
this reasoning process will always, except in the case when ������	���� stops at
the junction, return the same explanation of �����������������
	������������ . It is also im-
portant to remember that a TouringMachine may only monitor the state of its
own layer % goals when there are exactly zero discrepancies to attend to in
it entire current model set. A less environmentally sensitive agent, therefore,
might well end up with more opportunities to monitor its own progress and
so, potentially, achieve its goals more effectively.

8.4 Discussion

A number of issues arise directly from the above evaluation of the Touring-
Machine agent architecture:

& The balance between goal-orientedness (effectiveness) and reactivity (ro-
bustness) in an agent can be affected by a number of factors, including
the length and depth (level of detail) of the predictions the agent makes
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(see Section 8.3.1); the size of the model discrepancy tolerance bounds it
is configured with (see Section 8.3.2); and also certain aspects of some of
its physical capabilities (for example, the scope of its sensing apparatus
— see Section 8.2.3). Other factors would include certain environmental
characteristics (for example, the rate of change of events or degree of
clutter), the sensitivity — or threshold bounds — of the agent’s reactive
rules, and the proportion of total resources made available for construct-
ing plans or building and maintaining mental models of other agents.

� Predicting future world states through the flexible modelling of agents’
mental states, can, in certain situations, prove useful for promoting
effective coordination between agents (see, for example, Section 8.3.1).
This especially appears to be the case when the particular entity being
modelled possesses complex intentions which subsequently cause the
entity to effect a series of complex actions in space-time (for example,
decelerating over a period of time before coming to a temporary halt
at a red traffic light). Without some consideration of entities’ likely
intentions — and of the causal relationship these intentions have with
their assumed goals — predictions of possible future events (for example,
impending collisions) will inevitably become shallower and thus prove
less useful in promoting effective behaviour.

� There is a trade off between the reliability and the efficiency of the
predictions an agent can make about the future. Knowing precisely
what to consider when making predictions (which entities to model, what
aspects of these entities to model, how deeply to model these aspects) or
how far into the future such predictions should be made, would appear
to depend, certainly to some extent, on selected aspects of the agent’s
environment (compare the two scenarios of Section 8.2.2).

� Distinguishing between contextually relevant and irrelevant events, and,
more generally, achieving the right balance between robustness to un-
expected events (for example, coping with the sudden appearance of
another entity or obstacle) and flexibility to environmental change (for
example, establishing that an observed agent is not behaving as pre-
dicted or that an effected action has not been carried out as intended)
would appear, in the TouringWorld , to depend on a number of factors;
these include, among others, the physical structure of the environment,
the (temporal) criticality of the agent’s task (see Section 8.2.1, for exam-
ple), and the availability of adequate computational resources for flexibly
reasoning about different world events (see Section 8.3.2). Identifying
the optimal level of “sensitivity” to environmental change has also been
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recognised as a critical issue in Sanborn and Hendler’s Traffic World
system [SH88] and, through the use plan-monitoring envelopes, in the
Phoenix agent project [CGHH89].

� New and possibly effective behavioural patterns (for example, wall-
following) can emerge when differing primitive behaviours (for exam-
ple, obstacle avoidance and corrective goal re-orientation) are allowed
to operate concurrently (see Section 8.2.3, for example). Their precise
manifestation, and more importantly, their ultimate usefulness vis-à-
vis the successful completion of an agent’s goals, would also appear to
depend on (structural) characteristics of the environment, as well as cer-
tain physical capabilities within the agent itself (for example, it sensing
properties).

� Under certain conditions, a TouringMachine can fail to accomplish one
or more of its goals. Failure may be outright (when resulting, for exam-
ple, from a collision) or partial (for example, when measured in terms of
the agent’s task effectiveness or timeliness). This, as seen above, might
be due to a number of factors, including under-sensitivity to environ-
mental change (see Section 8.3.2), short-term or limited predictiveness
(see Section 8.2.2, Figure 8.3 and Section 8.3.1), excessive predictiveness
(see Section 8.2.2, Figure 8.2), and also by possessing inadequate phys-
ical capabilities (see Section 8.4). It is also important to note that, no
matter how robust or finely tuned a TouringMachine’s reactive control
layer might be, it will always take a certain amount of time to respond
to particular threats. As Brooks [Bro86] suggests, no agent is invincible
and the presence of a sufficiently fast-moving entity or a very cluttered
environment may well result in the agent colliding.

Now, apart from matters arising directly from the evaluation presented
above, a number of experiential and implementational issues which bear on
the applicability and appropriateness of the TouringMachine architecture also
merit addressing at this point. As mentioned earlier in Section 8.1.1, the first
stage in designing the TouringMachine architecture involved an analysis of
the intended TouringMachine task environment: that is, a characterisation
of those aspects of the intended environment which would most significantly
constrain the TouringMachine agent design. As we shall now see, the main
purpose of this analysis was to differentiate between, and therefore establish,
what Cohen [Coh91] terms the system’s fixed and reviewable design decisions.

Fixed design decisions are those which “will not be reviewed anytime soon”
[Coh91, page 31]. In the TouringMachine architecture, these design deci-
sions were established upon close examination of the intended TouringWorld
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domain. � For instance, the decision to divide control among multiple, inde-
pendent concurrent layers was influenced by the fact that TouringMachines
would have to deal flexibly and robustly with any number of simultaneous
events, each occurring at a potentially different level of space-time granu-
larity. Such differences in event granularity, together with the need for car-
rying out both long-term, deadline-constrained tasks, as well as short-term
reactions to unexpected events, ultimately played a part in the decision to
combine both deliberative and non-deliberative control functions into a single
hybrid architecture. In turn, the need to ensure that any such (non-real-
time) deliberative functions be “suitable” for use in a real-time domain such
as the TouringWorld — in other words, that they be efficient and effective
on the one hand but flexible and robust on the other — suggested that such
deliberative functions be: (i) latency-bounded in order to provide guaranteed
system responsiveness (this in turn demands fairly strict control over inter-
nal computational resource use); (ii) that they operate incrementally (in other
words, that they be capable of suspending operation and state after regular
— and arbitrarily small — periods of processing time); and (iii) that they
serve merely as resources for action rather than as strict recipes for overall
agent control. This last requirement would also become the main motivat-
ing force behind the decision to employ a context-sensitive mediatory control
policy for establishing control layer priorities. Other design decisions worth
mentioning here include the incorporation of functions for reasoning about —
or modelling — other agents’ actions and mental states and for identifying
and flexibly resolving conflicts within and between agents (this is necessary
because the TouringWorld domain is populated by multiple intentional agents
with limited computational and informational resources); and mechanisms
for constantly sensing and monitoring the external world (which are needed
since the TouringWorld domain is both dynamic and unpredictable).

Identification and isolation of the second type of design decisions, review-
able decisions, are those which, as their name suggests, can be “reviewed
after they are implemented” [Coh91, page 31]. The purpose of differentiating
fixed and reviewable design decisions was to enable the basic (fixed) design
to be implemented and run as early as possible, and to provide an empir-
ical environment in which to develop iteratively this basic agent model, to
test hypotheses about how the model should behave, and then to review, sub-
sequently, particular design decisions in the light of observed performance.
Also, by providing — in addition to the TouringMachine agent architecture
— a highly parametrized and controllable testbed environment like the Tour-

�
Much of the justification for the basic TouringMachine design has already been presented

in Chapter 2 (Section 2.5) and Chapters 3 through 6. What is described here can be regarded
simply as a summary of some of the main design decisions that were made.
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ingWorld, a very effective and productive framework in which to carry out
such design activities was thus established. Examples of reviewable Tour-
ingMachine design decisions — established with empirical feedback gained
through use of the TouringWorld Testbed — include the particular set of re-
active rules initially made available to the agent, the contents of its various
domain-specific libraries (plan schemas, model templates, conflict-resolution
methods, and space-time projection functions), the initial set of heuristics used
to program the agent’s focus of attention mechanisms, and the precise set of
inhibitory and suppressive control rules which are used to mediate the actions
of the agent’s three control layers.

To summarise then, while more experimentation would certainly be re-
quired before any strong claims could be made concerning the general ap-
plicability and appropriateness of the TouringMachine design, there would
appear from the above evaluation to be sufficient, albeit tentative, evidence to
be reasonably confident about the validity of the claims of this dissertation.
In particular, the evaluation of TouringMachines appears to support the claim
that it is both desirable and feasible to combine non-deliberative and suit-
able designed and integrated deliberative control function in a single, hybrid,
autonomous agent architecture. As shown, the resulting architecture, when
suitably configured, is capable of effective, robust, and flexible behaviours in a
reasonably wide range of complex single- and multi-agent task scenarios. As
also seen above, the behavioural repertoire of TouringMachines is wide and
varied, including behaviours which are reactive, goal-oriented, reflective, and
also predictive. Furthermore, the evaluation suggests that establishing an
appropriate balance between reasoning and acting — that is, between appro-
priate degrees of deliberative and non-deliberative control — would appear
to depend on characteristics of the task environment in which the particular
TouringMachine is operating. More generally, and in line with the experi-
ences of both Maes [Mae90] and Pollack [PR90], there is evidence to suggest
that environmental factors invariably play an important role in determining
which agent configuration or parametrization is the most appropriate for any
given situational context. Finally, one cannot underestimate the importance
of deploying — from the earliest stages of design — concrete measures for
carrying out extensive experimentation. In this respect, the TouringWorld
Testbed domain has proved a viable and useful system for evaluating agent
performance.

As well as lending weight to the main claim concerning the desirability
and feasibility of using a hybrid agent design approach, the present evalu-
ation should also provide useful insights into some important aspects of the
behavioural ecology of mobile autonomous agents. In addition, this evaluation
should help to lay the foundations for future experimentation, not only with
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the TouringMachine architecture, but also, and perhaps more importantly,
with the architectures of other agent researchers. The recent, and one hopes
growing, interest and activity in establishing common benchmark tasks for
agents (see Drummond and Kaelbling [DK90], for example) and in defining
formal taxonomies of agent environments (see Wilson [Wil90]), provide the
reassuring belief that this will one day be possible.
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Figure 8.2: Possible effects of varying an agent’s ConflictDetectionHorizon param-

eter – part 1.
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Figure 8.4: Wall-following behaviour can emerge from an appropriate combination of

more primitive behaviours (obstacle avoidance and orientation discrepancy correcting),

provided the agent has other suitable physical capabilities (wide width of sensory field).
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Figure 8.5: Altering the value of an agent’s ConflictResolutionDepth parameter can

affect the timeliness and effectiveness of any predictions it might make.
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Figure 8.6: Varying the value of an agent’s ModelSpeedBounds parameter can affect

the agent’s level of sensitivity to environmental change.
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Summary and Conclusions

If a machine is expected to be infallible, it cannot also be intelligent.

Alan Turing

9.1 Summary

The research presented in this dissertation is aimed at the design and
implementation of an AI software architecture suitable for controlling and
coordinating the actions of a rational, resource-bounded autonomous agent
embedded in a complex world. The research involved three complementary
efforts:

� Understanding the functional and behavioural requirements of intelli-
gent, rational, autonomous, mobile agents for a particular class of dy-
namic, partially-structured, real-time, multi-agent domain.

� Realising a particular design and implementation of an integrated agent
architecture satisfying the requirements identified.

� Designing and implementing a highly instrumented and parametrized
multi-agent simulation testbed with which to observe and analyse vari-
ous aspects of agent-level problem solving, coordination, and behavioural
ecology.

The resulting architecture — the TouringMachine agent architecture — in-
tegrates in a novel way a set of deliberative and non-deliberative agent control
capabilities. These capabilities — which include situated action, attention fo-
cussing, planning, and causal reasoning via Belief/Desire/Intention modelling

173
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— are distributed among three independent, concurrent, task-achieving con-
trol layers, the combination of which enables an agent to produce a range of
reactive, goal-oriented, reflective, and predictive behaviours. Actions gener-
ated by the control layers are mediated through an enveloping subsumption-
like control framework which is designed to select only those actions which
are considered contextually appropriate. The combination of both fast non-
deliberative control functions with preemptible, resource-bounded delibera-
tive ones in such a layered control framework provides TouringMachines with
(i) a guaranteed level of responsiveness, (ii) a degree of robustness to cope
with a variety of exceptional events, (iii) the flexibility to adapt ongoing plans
as and when required by changing circumstances in the environment, (iv) the
ability to cope with events at several levels of spatio-temporal granularity,
and (v) the ability to carry out several resource-constrained goals while at the
same time coordinating their actions with other complex intentional agents.

9.2 Ideas for Future Work

Besides several potential weaknesses already pointed out earlier in the dis-
sertation — for example, the use in layers � and � of a Focus of Attention
Mechanism which relies on a relatively static focussing rule set (page 70), the
assumption of linearity in layer � ’s Planner (page 83), and the assumption
of noiseless sensory input (page 133) — there are a number of different ways
in which the TouringMachine architecture could be extended and hopefully
improved. Some of these are addressed below.

9.2.1 Explaining Behaviours

Through modelling of agent beliefs, desires, and intentions, TouringMachines
are capable of generating explanations and predictions about their own and
other agents’ behaviours. In the current study, however, such modelling has
been restricted to domains occupied by homogeneous agents: that is, agents
with identical physical capabilities and essentially identical beliefs and de-
sires — travel destination and deadline may differ but agents nevertheless
hold the same set of prioritised goals. In other words, behaviour explanation
in TouringMachines is centred on the recognition of agents’ intentions, the
assumption being that beliefs and desires are universally similar.

Clearly, in more complex environments populated by heterogeneous ag-
ents, TouringMachines ’ explanatory powers would have to be enhanced to
cope with a wider range of exceptional events. In particular, failure to explain
an agent’s behaviour solely through consideration of what its intentions might
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be may well be due to the fact that the observed agent possesses different be-
liefs, goals or perhaps even dissimilar physical capabilities or structure. � For
example, a more sophisticated observer might be able to explain a “delinquent”
agent’s behaviour of running through a red traffic light by inferring that the
agent does not possess ��������	�
������������������� as one of its homeostatic goals. Al-
ternatively, it might explain its behaviour by inferring that it does possess
said goal but that, from the observed agent’s point of view, ��������	�
�������������������
has a lower priority than its main achievement goal 
��������	���������� ����������� . More
sophisticated reasoning about agent behaviour would certainly benefit from a
more sophisticated treatment of agent beliefs — in particular, representation
[Kon83], default ascription [WB87], revision [DW90] — and agent desires —
for example, values and likes [KR92], hedonic states [Gre87, page 308], and
goal commitment [CL87].

As modelling capabilities are extended, however, agents will be faced with
many more choices when it comes to explaining other agents’ behaviour. Since
TouringMachines are resource-bounded and must operate in real time, care
will need to be taken if an appropriate level of responsiveness is still to be
guaranteed. The completeness of models of other agents is a complex issue:
more complete models of agents may be ineffective because they may require
that an agent duplicate the processing of another node [BG88, page 27]. If
an agent is to achieve any of its complex goals, its internal higher-level be-
havioural modules should not attempt to model every detail regarding its
lower-level modules [Min86, page 169]. Likewise, no agent should attempt to
model every detail of every other agent in order to explain or predict their be-
haviours. Knowing quite what to model, when to remodel, or how accurately
selected events or entities should be modelled is likely to be environment- and
task-related — as Hofstadter puts it:

The intuition which is required for knowing when it makes sense to
blur distinctions, to retry descriptions, to backtrack, to shift levels,
and so forth, is something which probably comes only with much
experience in thought in general. Thus it would be very hard to
define heuristics for these crucial aspects of the program. [Hof79,
page 661].

Further empirical evaluation of TouringMachines would likely help to shed
!
By modelling other agents abstractly — in other words, solely in terms of their inferred

propositional beliefs, desires, and intentions — TouringMachines could be said to be modelling
each other at the knowledge level [New82, GN87, pages 313–320]: that is, approximately,
without any reference to each other’s physical details or structure. While this is probably
appropriate for many domains, it may not be for those in which highly detailed predictions
are needed in order to coordinate agent activity.
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more light on these matters.

9.2.2 Controlling Inference

In order to guarantee an appropriate level of responsiveness in TouringMa-
chines, strict limits are placed on the amount of deliberation which they are
allowed to perform during any given execution cycle or timeslice. As described
in previous chapters, operations such as focussing, planning and modelling
are performed incrementally and have been designed in such a manner that
they can be preempted when appropriate: that is, at the end of each timeslice
or when the agent’s per-timeslice computational resources become exhausted,
whichever occurs first. However, since the distribution of computational re-
sources among each of these control operations is made on the basis of a static,
compile-time allocation scheme, TouringMachines will at times fail to make
the best use of their limited resources. In particular, TouringMachines have
no means of assessing, for a given situation, whether some further delibera-
tion (and subsequent consumption of resources) should be favoured over the
immediate execution of an action.

Of particular interest here are a number of decision-theoretic approaches
to dealing with the twin problems of trading off deliberation versus execution
and of characterising the quality of deliberatively inferred solutions vis-à-vis
the time and resources available for arriving at such solutions. Notable exam-
ples for possible future consideration include incremental anytime algorithms
as applied to deliberation scheduling and time-dependent planning schemes
[DB86, BD90, DW91, pages 343–390], and utility-based metareasoning as
a formal basis both for selecting among alternative action choices and for
reasoning about the expected value of performing deliberative computations
[RW89]. � Doyle and Wellman also propose an interesting approach to incre-
mental belief and plan revision which is rational, distributed, and which takes
into account the utilities of the different deliberative computations involved
[DW90].

�
Note, however, that Hanks and Firby [HF90] have argued that it may ultimately be

impossible at run-time and in a principled way to decide whether to act or deliberate further,
largely because of the problem of characterising — in a negligible amount of time — the costs
of the agent’s ensuing benefits and lost opportunities. In the same paper, the authors also
raise some interesting questions about the possibility of having deliberation and action take
place simultaneously within the agent — an option not considered in other decision-theoretic
architectures [HF90, page 67].
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9.2.3 Adaptive Behaviour

According to Hofstadter, the flexibility of intelligence comes from having an
enormous number of rules, and levels of rules. The reason for this, he sug-
gests, is that, in real life, agents will have to deal with countless situations of
completely different types. Depending on the type of situation an agent could
find itself in, he further suggests [Hof79, page 27], it might be the case that
stereotyped responses using “just plain” rules � would be appropriate. In other
situations — those which are mixtures or combinations of stereotyped situa-
tions — the agent would probably require rules for deciding which of the “just
plain” rules to apply. � In yet other situations — those which cannot be readily
classified or which are novel — there may need to exist rules for inventing or
learning new rules.

A key ingredient of intelligent behaviour in an agent must surely, then,
include the ability to adapt to novel situations and to learn new behaviours.
Learning requires that an agent be able to make changes to its internal struc-
ture so as to improve some metric on its long-term future performance ac-
cording to some fixed performance criterion [Rus89]. In this particular sense
TouringMachines can at present be considered pre-intelligent: in response
to environmental change, TouringMachines can, by changing their intentions,
dynamically alter their internal control structure; however, they do so without
regard to any metric on their long-term future performance.

A TouringMachine agent is currently programmed via a set of internal be-
havioural parameters. By virtue of being able to sense its environment and
monitor the effects of both its own and others’ actions, a TouringMachine ef-
fectively possesses a feedback loop between itself and its surroundings. For a
TouringMachine to be considered adaptive, it would require a secondary feed-
back loop, perhaps in the form of a fourth control layer � (see Figure 9.1), which
would enable the agent to analyse the performance exhibited by its three exist-
ing control layers and thus make appropriate parameter value changes which
optimise its performance according to some particular performance criterion.
Movement through the agent’s parameter space would likely be achieved via
a standard gradient-descent search [DW91, page 399]. Possible criteria for
assessing an agent’s performance include, among others, the temporal delay
in accomplishing its planned task, the utilisation of computational resources
throughout its various control layers, the frequency with which modelling
discrepancies arise, and the rate at which near-miss collisions involving the
agent occur. �

�
Compare with a TouringMachine’s reactive (layer � ) rules.�
Compare with a TouringMachine’s planning (layer � ) and modelling (layer 	 ) functions.

If several performance criteria were to be used simultaneously, they could be combined in
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Action
Subsystem

Perception
Subsystem

Clock
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Planning Layer (P)

Reactive Layer (R)
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Action
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Figure 9.1: The TouringMachine architecture would benefit from the addition of a fourth

control module for learning — layer � . This module would be charged with assessing

the agent’s performance (according to some pre-specified criterion) and fine-tuning the

other three layers’ internal parameters so that the agent’s performance might improve

over time.

In addition to learning by adjusting internal parameters — also known
as reinforcement learning [DW91, page 394] — TouringMachines would likely
benefit from a second style of learning, often referred to as performance learn-
ing. This can take the form of off-line knowledge compilation, for example from
plans to situation-action rules [DR91], or from symbolic goal-reduction rules
to executable condition-action pairs [Kae91]. Similarly, various approaches
at integrating explanation-based learning capabilities in agents can also be
classified as performance learning. For example, chunking to compile im-
passe resolution procedures in SOAR [LR90], derivational analogy to acquire
domain-specific control rules in PRODIGY [CEG � 91], as well as caching of
stimulus response rules in Theo [Mit90]. Russell [Rus89] also proposes a
decision-theoretic framework for knowledge compilation within which each
of the above approaches can be formally described. Besides the potential for
making agents more reactive — and thus more run-time efficient — perfor-
mance learning can help to overcome the restriction that all of the agent’s

a weighted vector sum.



Summary and Conclusions � 179

stimulus-response pairs be specified by the programmer in advance, which,
for example, is required in the architectures of Agre and Chapman [AC87]
and Schoppers [Sch87].

9.2.4 Social Agency

Most of the AI research carried out to date has been asocial — it has con-
cerned itself with issues about knowledge, reasoning, and acting in individual
systems or agents rather than in groups, organisations or societies of these.
TouringMachines are similarly asocial: the emphasis of the present research
has been on the architectural requirements of individual agents to carry out
tasks in domains where there are no group or shared tasks and where indi-
vidual cooperation, rationality, and common inter-agent semantics could be
assumed.

As the technology used to develop integrated agent architectures matures,
these intelligent systems will increasingly become embedded in complex or-
ganisations comprising humans as well as other intelligent computational
agents. Increasingly, thus, there will be a growing incentive to study more
closely some of the social and organisational dimensions of intelligent agency.
In particular, as Gasser [Gas91] points out, there will be a requirement to
treat the existence of multiple agents as a fundamental category, to address
the tension between local perspectives of knowledge and action and their so-
cial counterparts (for example, common knowledge [Dav90], ethics [Asi50]), to
assume agents employ multiple representations of knowledge and hold mul-
tiple, disparate perspectives of their shared tasks, and to account for joint
courses of action which are robust over time to failure and inconsistency.

Many important ideas concerning intelligent agency have begun to emerge
from such fields as economics, sociology, cognitive science, ecology, and ethol-
ogy, among others. Particularly interesting avenues for future research in-
clude the investigation of sophisticated behaviours which emerge from the in-
teractions of groups of relatively simple behaviours [AD90] or agents [Min86],
the role of joint intention and inter-agent communication in establishing joint
commitments toward common goals [LCN90], and the use of market-based
systems — for example, computational ecologies [HH88] or agoric open sys-
tems [MD88] — for enabling the robust integration of and flexible resource
allocation among asynchronous, heterogeneous, resource-bounded computa-
tional agents.
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9.3 Conclusions

The thesis of this dissertation is that it is both desirable and feasible to com-
bine deliberative and non-deliberative control functions in order to obtain ef-
fective, robust, and flexible behaviour from autonomous task-achieving agents
which are intended to operate in complex domains. A secondary hypothesis
which has been investigated in this dissertation is the claim that establishing
an appropriate balance between reasoning (deliberative control) and acting
(non-deliberative control) depends heavily on characteristics of the task envi-
ronments in which the agents are intended to operate.

The survey of existing intelligent agent architectures in Chapter 2 indi-
cates that many approaches have restrictively addressed isolated behavioural
requirements of agents — for example, the need to react to unforeseen events
or the need to plan complex tasks. Taking into consideration the fundamental
design trade-off between an agent’s representational power (the generality
and flexibility of its behaviour, the ease with which the designer can program,
test, and debug it) and its computational tractability (its run-time efficiency),
the analysis of the numerous functional and behavioural requirements for
autonomous agency in the chosen complex domain suggests that employing
a hybrid architecture — one combining a selection of both deliberative and
non-deliberative functions — is likely to prove the most promising approach.

The TouringMachine agent architecture, one possible solution to such a
hybrid control approach, is based on a number of existing traditional and non-
traditional AI techniques which have been suitably modified and integrated
in a novel manner. The architecture, thus, grows out of the modification and
extension — rather than the rejection — of classical AI techniques such as
planning and model-based reasoning. As such, this dissertation should help
to improve our understanding of some of the key functional and behavioural
requirements faced by planning agents which are to operate satisficingly in
complex environments.

The TouringMachine architecture is centred on a number of modular, in-
dependent, task-achieving control layers which, apart from ensuring a high
degree of operational concurrency, enable agents to handle multiple goals,
carry out resource-constrained tasks, coordinate their activities with other
rational agents in an effective manner, and cope with a range of events at
differing levels of granularity. Because of the real-time constraints typically
imposed on agents embedded in dynamic environments, an account is taken of
TouringMachines ’ limited computational resources in order to guarantee an
upper bound on the latency of such operations as sensing, attention focussing,
planning, and world modelling. The result is an architecture which can pro-
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duce a number of reactive, goal-directed, reflective, and predictive behaviours,
as and when dictated by the agent’s mental state and environmental context.

The inherent complexity of integrated agent architectures, combined with
the relative immaturity of the field, makes evaluation of different agent de-
signs a difficult and drawn out process. The approach taken in this disserta-
tion has been to construct as complete a prototype implementation as time and
resources would permit, and then to evaluate the feasibility of the architec-
ture in order to identify its various strengths and weaknesses. This was done
through a number of empirical evaluations using a purpose-built, feature-rich,
instrumented simulation testbed. A complete evaluation, and in particular,
the construction of a detailed causal model accounting for a TouringMachine’s
full behavioural ecology over a wide range of task domains, would take a far
greater amount of time than was available for the dissertation.

The results of the evaluations in Chapter 8 show that the TouringMachine
architecture is feasible and that, suitably configured, can endow rational au-
tonomous agents with appropriate levels of effective, robust, and flexible con-
trol for handling a number of pre-programmed, dynamic, and also hypothetical
events. While the TouringMachine architecture is inherently capable of pro-
ducing a range of deliberative and non-deliberative behaviours, the results
also show that establishing an ideal agent parametrization — one which is
intended to produce a particular type of desired behaviour — depends very
strongly on the agent’s particular task constraints and environmental circum-
stances. In addition, while the need to react quickly to unexpected events
is universally considered a desirable behaviour for autonomous agents, the
evaluation of TouringMachines also suggests that, at least in some circum-
stances, the ability to perform some amount of causal reasoning about other
agents’ intentions and desires can prove very useful in promoting effective
task coordination between agents.

Experience in designing, implementing, and testing the TouringMachine
architecture also shows that dividing control among several modular, task-
achieving layers can facilitate incremental testing and debugging of different
agent configurations. In particular, because TouringMachines’ control layers
are independently connected to their sensors and effectors, agents could be
tested very early on during the course of the research: indeed, as soon as
their reactive layers had been implemented. As the other control layers were
completed and put in place so it became possible to analyse and debug Tour-
ingMachines which, incrementally, were able to handle more complex tasks
and exhibit a wider range of behaviours.

The strengths of the TouringMachine architecture and implementation lie
in the ability to produce — by means of a carefully designed and integrated
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collection of deliberative and non-deliberative control techniques — a diverse
range of intelligent autonomous behaviours. Having given empirical evalua-
tion a high priority from the outset of their design, TouringMachines have been
extensively parametrized in order to facilitate detailed study via a purpose-
built simulation testbed. Enabling rapid and effective analysis of a range of
different agent and environment configurations, the combination of the Tour-
ingMachine architecture and testbed should prove a powerful platform for
studying a number of important issues concerning autonomous agency, par-
ticularly as research into integrated agent architecture matures and suitable
benchmark tests begin to emerge.

In its present form, the architecture also exhibits a number of weaknesses.
In particular, the inability to reason in any sophisticated way about the util-
isation and distribution of computational resources among their various con-
trol layers prevents TouringMachines from explicitly addressing at run-time
tradeoffs between needing to deliberate further and needing to act. Similarly,
the inability to reason explicitly about internal parameter settings and about
how different parameter settings might promote or hinder certain behaviours
in different environmental contexts prevents TouringMachines from learning
from their past mistakes and from intelligently adapting to changing world
conditions. These and several other limitations have been discussed in more
detail in previous sections.

The result is a novel architectural design which can successfully produce
a range of useful behaviours required of embedded, rational, autonomous ag-
ents operating in complex multi-agent domains. Implemented and evaluated
in a richly parametrized multi-agent testbed, TouringMachines should serve
to advance our understanding of many of the wider issues concerning the
practical construction of intelligent, autonomous, integrated systems — sys-
tems which, without a doubt, will necessarily play a vital role in the forging
of tomorrow’s large-scale, evolving computational networks and decentralised
information processing systems.



Appendix A

TouringWorld Scenario
Grammar

The syntax of the TouringWorld Scenario Specification Language, SSL, is
given below in Extended Backus-Naur Form. Non-terminals appear as itali-
cised terms (for example, scenario-level-declarations). Terminals include sce-
nario parameter names (for example, ScenarioName), base programming
lang-
uage types (for example, ���������	��
����������� ), as well as quoted strings. The
various syntax rules have been split into sections corresponding to the three
non-terminals appearing in the body of the top-most rule:

scenario-specification �����
scenario-level-declarations �������
environment-level-declarations �������
entity-level-declarations �����

A.1 Scenario-level Declarations

scenario-level-declarations �����
ScenarioName ����� scenario-name
ScenarioIterations ��� � scenario-iterations
ScenarioSuspension �!��� start-time ��"�� suspension-rate
TerminationCriterion �!��� termination-criterion
SaveScript ��� � save-script-status ��"�� save-script-file
UserPlayback �!��� playback-status ��"�� playback-file#

window-definitions $#
graph-plot-declarations $

183
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�
graphics-declarations ��
recordable-parameter-declarations ��
alterable-parameter-declarations ��
parameter-window-declarations ��
trace-declarations �

window-definitions �����
window-definition �	��
�� window-definition �

graph-plot-declarations ����
PlotMode ����� plot-mode
PlotStyle ����� plot-style
PlotCurveLabel ����� plot-label
PlotXAxis ����� plot-parameter ����� plot-label
PlotXOrigin ����� plot-origin
PlotXRange ����� plot-range
PlotXDisplayIncrement ����� plot-display-increment
PlotXAxisMarkerIncrement ����� plot-axis-marker-increment
PlotXAxisMarkerSize ����� plot-axis-marker-size
PlotYAxis ����� plot-parameter ����� plot-label
PlotYOrigin ����� plot-origin
PlotYRange ����� plot-range
PlotYDisplayIncrement ����� plot-display-increment
PlotYAxisMarkerIncrement ����� plot-axis-marker-increment
PlotYAxisMarkerSize ����� plot-axis-marker-size

graphics-declarations ����
GraphicsWindowCoordinates ����� graphics-window-coordinates
ScrollGraphics ����� scroll-graphics�

agent-shape-declarations ��
front-sensing-arc-declarations ��
rear-sensing-arc-declarations �

recordable-parameter-declarations �����
recordable-parameter-declaration �	��
�� recordable-parameter-declaration �

alterable-parameter-declarations ����
alterable-parameter-declaration �	��
�� alterable-parameter-declaration �

parameters-window-declarations ����
parameters-window-declaration �	��
�� parameters-window-declaration �

trace-declarations ����
trace-declaration �	��
�� trace-declaration �

window-definition ����
WindowName ����� window-name



TouringWorld Scenario Grammar � 185

WindowProcess ����� window-process
WindowScreenPosition ����� window-screen-x ���	� window-screen-y
WindowDimensions ����� window-height ���	� window-width
WindowMaxLines ����� window-max-lines
WindowContrast ����� window-contrast
WindowCursor ����� window-cursor

scroll-graphics 
�
�
������������� graphics-increment-rate �������������	��� � graphics-increment-amount

agent-shape-declarations 
!
�
agent-shape-declaration "#�	$�� agent-shape-declaration %

front-sensing-arc-declarations 
!
�
front-sensing-arc-declaration "&�	$	� front-sensing-arc-declaration %

rear-sensing-arc-declarations 
�
�
rear-sensing-arc-declaration "&�	$�� rear-sensing-arc-declaration %

recordable-parameter-declaration 
�
�
RecordableParameter ����� recordable-parameter �	�('*)	� +��,�*�
parameter-scope �	�-'.�	/�0	����� parameter-style

alterable-parameter-declaration 
!
1�
AlterableParameter ����� alterable-parameter �	�-'�)	� +������ parameter-scope
�	�2)�3�� �	4��,��� parameter-change �����.�5�����	�6�*� parameter-change-amount
�	�20879�:7.����� parameter-bound

parameters-window-declaration 
!
1�
ParmsWindowEntry ����� parms-window-entry

trace-declaration 
!
1�
TraceParameter ����� trace-parameter �	�	� parameter-scope

agent-shape-declaration 
!
1�
AgentGraphicsShape ����� agent-name �	��� agent-shape

front-sensing-arc-declaration 
�
�
DrawForwardSensingArc ����� agent-name �	��� start-time

rear-sensing-arc-declaration 
!
1�
DrawRearSensingArc ����� agent-name �	��� start-time

recordable-parameter 
�
�
recordable-tmw-parameter �	��� user-code-pointer

alterable-parameter 
!
1�
alterable-tmw-parameter �	��� user-code-pointer

scenario-name 
!
1�<;.=8>*?	@5;�A�; > B
scenario-iterations 
�
�C?�D	@�E	B	D�FC?�E	GIH	>�B
start-time 
�
� world-time
suspension-rate 
!
1�KJIL�M�;.@5;.NI>K;.?�@8>	O�>�B
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termination-criterion ��������	��
����������������������������������
! "����#��$��%'&!� agent-name �
�(%!)�
�#���!���*&!� +-,/.$0�10�24365!7�,�8�19�:�;#�����������
! "���<#�����%=�

save-script-status ����� �>���?�@�A�;�����'�
save-script-file �B��� 5�0�743C0�D43FE�10�5�0�3!G
playback-status ����� ��
$������
4%=�H�A��I���#�J�K$#���L����:�;�����'�
playback-file ����� 5$0�7<3C0�D43!E�1	0�5�0�3FG

window-name �B��� 0�D<3FE�10�5$0�3�G
window-process �B�M��;����N��
����F ���F�'�O�A��P�
$#�I�Q	�F�<�R�H�:��P�
�#�I�Q���I������?���

��)	�F��
$��#�P��������H�:��I$#�
$#� ������
��S��� agent-name
window-screen-x ����� +-,/.$0�10�243T0�E�1<3�U�3!G
window-screen-y ����� +-,/.$0�10�243T0�E�1<3�U�3!G
window-height ����� +-,/.�0�10�243V0�E�1<3�U�3FG
window-width ����� +-,/.�0�10�243V0�E�1<3�U�3FG
window-max-lines �B�M� E�8�1�W�G�8�7TE�W�X<Y�3!G
window-contrast �B�M� ��I��<�������N$�S�H�:���$��P$#����N��Z�
window-cursor �B���\[ 5-,�E�1^]FW�G<.<,�G$_
plot-mode �B�M� �`������
$�� 	���F��#��S�H�:���$���$�4���$��
$�a ���F�$#��S�
plot-style �B��� �(%-���?�@�A�;��
$�4���S�����>�4��
$�����b�
plot-label �B�M� � [ &F�:E�8�1�W�G�8�7cE�W�X4Y�3FGd��e�fg&F�:E�8�1�W�G�8�7\E�W�X4Y�3FGh��e;��#�K����i&F� .F1�G	0�E<U
plot-parameter ����� recordable-parameter
plot-origin �B�M� +<,/.$0�1	0�243c5F7$,�8�1
plot-range �B��� E�8�1�W�G�8�7cE�W�X4Y�3FG
plot-display-increment ����� E�8�1�W�G�8�7\E�W�X4Y�3FG
plot-axis-marker-increment �B��� E�8�1�W�G�8�7cE�W�X4Y�3FG
plot-axis-marker-size �B�M� E�8�1�W�G�8�7cE�W�X<Y�3!G

graphics-window-coordinates �B����;������� [ &!�jE�8�1�W�G�8�7\E�W�X4Y�3FG?e\��e�
��P�Q�� [ &!�kE�8�1�W�G�8�7cE�W�X4Y�3FG
��e�����I�f*&!�jE�8�1�W�G�8�7\E�W�X4Y�3FG?e\��e�K������$�� 4fg&��jE�8�1�W�G�8�7\E�W�X<Y�3FG

graphics-increment-rate �B�M� +<,F.�0�1	0�2<3\5!7�,�8�1
graphics-increment-amount ����� E�8�1�W�G�8�7\E�W�X4Y�3FG
agent-shape �B��� �;�<��
$�����Z�O�A����
�!#���P$���Z�O���>��������
�I�
	���F�S�

parameter-scope �B�M� �;����N��
����F ���F�'�O� agent-name
parameter-style ����� �l���$��
��� ���F��#��S���:���������<������
��a 	���F��#��S�
m
Available cursor shapes are listed in Appendix C of the XWIP Manual [Kim90, page 51].
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recordable-tmw-parameter ��������	��
��������������������������� �"!#������
�����$�	������������������� �"!%�&�('��$)�*�����������,+�-����$�,.��/�"!
�0��'���(*��(��������'�1�������2�2����������3�"!%�4����(�������������+�*(������2������ �"!
�&��1��������	�$��������1������5�6!7�42'���+��(�����8����1(����������9�"!
�02�'���+����(��1�:���)���������������$�	��+������ �"!#�&��1(���������������'�����*(*���� �"!
�0���$��'�+������$�	����)���1��5;<�	��1��(�,1�:=9�>!%�0�����'�+���(�$�����,)��1�� ;?2�'(��+�������1�:=/�"!
�0���$��'�+������$�	����)���1��5;?)�*���1(1����=9�>!%�0�����'�+���(�$�����,)��1�� ;0�'��(��*�*�����=@�6!
�&�('�1�2�*$�	�����	����������������5�A!#�&�('�1(2*$�	������������	'�*������3�"!%�4�'�����*(����:���1���/�"!
�0��'���(*��('�-$B8�������@�"!%�&*(��C�������+�)�)(���$�(����'�1�/�"!%�&*(��C�����(����1���'�����1�:��@�6!
�0���$��.����8��*���C3�A!#�02��$�	*����8��������.��@�>!%����+����(�$����2�+�*(�����$�,.��9�"!
�&���������:����$��)������5�"!%�&��:��1(��(��'�*�*������	'�1��9�>!7�42���1���*(����(������1��������'���������:���3�"!
�&���������:�����������'�+�����$�D;�����1���,1�:�=@�A!#�&��������:��������$��'�+(�������;?2'���+����(��1�:�=@�6!
�&���������:�����������'�+�����$�D;0)*(��1�1�����=@�A!#�&��������:��������$��'�+(�������;0��'��8��*�*(���=9�>!
�&���������:�����+(���*����������	'�13;,����1����1�:�=/�"!7�E���������:�(��+���	*$���	������'�1 ;?2�'(��+������1�:=/�"!
�&���������:�����+(���*����������	'�13;F)�*���1�1�����=/�"!7�E���������:�(��+���	*$���	������'�1 ;0�'�����*�*�����=@�6!
�&���������:�����2�'���+����������(��1����,�����$�/�"!#�&����������:�(�$�	��1������8����1(����������9�"!
�&���������:�������'����(*�*������(��1����,�����$�/�"!#�&�������	'�1��	����2�2���������(��-�C3;�*���C������G=9�>!
�&�(�����	'�1�������2�2�(���������-�C3;H*���C�������I=/�"!7�E��������'�1��	����2�2�������������-�C ;�*���C�����J�=9�

user-code-pointer �K�L� I�GM�NM�OQP	N�R�S�T�U

parameter-change ����� �H��1���������1(�3�"!%�?�8�����������1(�3�
parameter-change-amount �����WV NM�R(X
parameter-bound �K�L�YV NM�R�X
alterable-tmw-parameter ������0Z�'��*��������,�����$��1�����������1��[�"!7�E��1(�����(C������\(�5�"!%�&��1������'�1����1�����2�������'��]�"!

�0���$��. ;?�(�������*�����,��$=/�"!#�0�����. ;�*$��:�
(����������$=@�"!%�H����
����������������������(*�����'��,�]�"!
���	��
�����(��)*(���$��1�:����'��,�]�"!%�^����_�����$�	'�+�������@;��	��1����,1(:�=@�"!
�`����_�������'�+(��������;?2�'���+���(�,1�:=9�>!%�`����_����$�	'�+������$�@;0)�*���1(1�����=@�6!
�`����_�������'�+(��������;0�'��8��*�*(����=@�6!7�4����(������'�1 ;?.�����-����
(�����
�'�*���=/�"!
�0�����������	'�13;F2��'�1����*��(��:��1������
(���$��
�'�*���=/�"!%�0�����(�����	'�15;F���������(��:���1�������
(�����
'�*���=@�"!
�0�����������	'�13;H'�-���������*��(����
(���$�,
'(*��=/�"!7�4��(��������'�13;�*���1���������.��1�:�����
������
'�*��=@�6!
�02�'���Z��������$�	��1��(�,1�:�������1�:��9�"!%�0���������$�	��1�����1�:�������1�:��5�"!
�02�'���Z��������$�	��1��(�,1�:��������a�"!%�4��(���������1����1�:��������9�A!#���	��1��(��1(:��������9�6!
�`��'����(*�*���1�:���������a�"!%�^��'��8��*(������	�������(�����H���a�"!#�`��'��8��*���-'�+�1���D;&*�'��(�����'�1=9�"!
�`��'����(*���-'�+(1���D;���)�������=9�"!%�^��'�����*(��-�'�+�1$���D;����(����*���������	'�1�=9�>!
�`��'����(*���-'�+(1���D;&'������1�������'�1�=/�"!#�&��'�1�2�*$��������(�����������'�1���
'�����\('�1]�"!
�&�('�1�2�*$�	��������$�	'�*�+����	'�1���(��)���
[�

parms-window-entry ����� recordable-parameter
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trace-parameter ��������	��
���������������������������������� ���!�"�#����$�%�������'&(� �����)�"�#�*� &��'���+�,�
�*� ��-��.�� ��
� �������$&��$���,�"�/����� .�
0�$��� ����1��2�/�*� �������'�%�'.�0�,�
�3
	�4���5�'&%���'6�7����%�$.+�"�#�8���'�	��� .�!�9����-�����$6%�������'���	�$�������)�,�
�*������� 741:�;1(���$���	���� �4�)�"�/�������'7	����� �����$�����$���� � �<�2�/���%���'7	���5�;1(���$�������� �4�)�<�
��.%����� ���-��������'=%�$.+�"�#��>���� ���	�$��&(�����'=%�$.+�"�#�����4��?�� @��'��1:���$.,�<�
��>%���'����� .��4���(�'>,�"����>����'���%�'.%���'>(� .(�'�	� �'�+�9���A
�;1:�����4�$��&������'=(�'.,�<�
�3
	�;1(����� .��'��.���� -(���!�B���A
�;1:�����;1���� �'.%�$>��'�(� =+�"�/�3
	�;1:����� .��(�����'7������$�,�+�
�3
	�;1(�������'C�>%���'�%�$�� �'�,�"�/�3
�(���5�'&��(���(� �'���<�B�/�3
�(���5�'&��(���$.%�����4��-(�;1��,�
�*���'=�� .��(�$7�>�>�.��(����� �'�,�"�/�*��� =�� .������'�	� �'.����&+�

A.2 Environment-level Declarations

environment-level-declarations �D���
InitialWorldTime �FE<� world-time
WorldTimeIncrement �GE<� world-time-increment
FogFactor �GE<� environment-factor
RainFactor �GEH� environment-factor
calculation-truncations

calculation-truncations �D���
DistanceTruncation �GEH� truncation-factor
SpeedTruncation �GEH� truncation-factor
AccelerationTruncation �FE<� truncation-factor
AngleTruncation �GEH� truncation-factor

world-time �D���JI:K;L�M�NM�O4PRQ5S�K'T�N
world-time-increment �D���JI:K;L%M$NM�O4PUQ�S%K'T�N
environment-factor ���V�WI(K�L�M$N	M$O(PXQ5S�K'T�NZY [)\F]
truncation-factor ���V�WI(K;L%M$N	M$O4PUQ�S%K'T�N

A.3 Entity-level Declarations

entity-level-declarations ���V�
entity-definition ^ ��_�� entity-definition `

entity-definition �����
agent-definition � environment-agent-definition �
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user-agent-definition � object-definition
agent-definition �����

AgentName ���	� agent-name
AgentProcessType �
�	� agent-process-type
AgentVector ���	� agent-vector
EntitySize �
��� entity-radius
agent-capability-declarations
control-rule-declarations
sensor-declarations
focus-of-attention-declarations
layer-R-declarations
layer-P-declarations
layer-M-declarations

environment-agent-definition ����
EnvironmentAgentName �
��� agent-name
AgentProcessType �
�	� agent-process-type
EnvironmentAgentVector �
��� environment-agent-vector
EnvironmentAgentAttributes ���	� environment-agent-attributes
EntitySize �
��� entity-radius
layer-P-declarations

user-agent-definition �����
UserAccelerationIncrement �
��� user-agent-increment
UserDecelerationIncrement �
��� user-agent-decrement
UserTurnLeftIncrement ���	� user-agent-decrement
UserTurnRightIncrement ���	� user-agent-increment
agent-vector
agent-capability-declarations

object-definition ����
ObjectName �
��� object-name
ObjectType �
��� object-type
ObjectLocation �
��� world-x-location ����� world-y-location
ObjectAttributes ���	� object-attributes
EntitySize �
��� entity-radius

agent-vector ����
start-time ����� world-x-location ����� world-y-location �����
agent-speed ����� agent-acceleration ����� agent-orientation �����
agent-communications

agent-capability-declarations �����
MaxSpeed �
��� agent-speed
MaxAcceleration �
��� agent-acceleration
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MaxDeceleration ����� agent-deceleration
MaxTurningRate ����� agent-orientation
CommsDeviceStatus ����� comms-device-status

control-rule-declarations ���	�
censor-control-rule 
���� censor-control-rule �
suppressor-control-rule 
����� suppressor-control-rule �

sensor-declarations ���	�
SensingAlgorithm ����� sensing-algorithm �������������� resources
ForwardSensingRange ����� sensing-range
RearSensingRange ����� sensing-range
ForwardSensingArc ����� sensing-arc
RearSensingArc ����� sensing-arc
SensingRate ����� sensing-rate

focus-of-attention-declarations ���	�
FocussingRules ����� focussing-rules
FocussingResources ����� resources
FocussingEntityCost ����� resources
FocussingFlagCost ����� resources

layer-R-declarations ���	�
initial-reactive-rules
KerbThreshold ����� separation
KerbAvoidanceAngle ����� agent-orientation
WallThreshold ����� separation
WallAvoidanceSpeed ����� agent-speed
FrontalAgentThreshold ����� separation
FrontalAvoidanceSpeed ����� agent-speed
RearAgentThreshold ����� separation
RearAvoidanceSpeed ����� agent-speed
ObstacleThreshold ����� separation
ObstacleAvoidanceAngle ����� agent-angle
LaneMarkingThreshold ����� separation
LaneMarkingAvoidanceAngle ����� agent-angle

layer-P-declarations ���	�
PlannerAlgorithm ����� planner-algorithm
PlannerResources ����� resources
PlannerTask ����� planner-task
SchemaRetrievalCost ����� resources
SchemaPlacingCost ����� resources
HasSchemas ����� schema-names
topological-world-map

layer-M-declarations �����
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ModellerAlgorithm ����� modeller-algorithm
ModellerResources ����� resources
ModelRetrievalCost ����� resources
ModellerFlagCost ����� resources
ConflictDetectionHorizon ����� conflict-detection-horizon
ConflictResolutionDepth ����� conflict-resolution-depth
ModellingRate ����� modelling-rate
ModelDiscardAfterTime ����� model-discard-after-time
ModelLocationBounds ����� model-bounds
ModelSpeedBounds ����� model-bounds
ModelAccelerationBounds ����� model-bounds
ModelOrientationBounds ����� model-bounds
HasModelTemplates ����� model-template-names
theorist-kbase-rules
space-time-projection-functions
conflict-resolution-rules

environment-agent-vector ���
	
start-time ���� world-x-location ���� world-y-location �����
environment-agent-type ���� stop-time ���� environment-communication

environment-agent-attributes ����	 traffic-light-attributes ���������
object-attributes ����	

wall-attributes � lane-marking-attributes � sign-attributes ���������

agent-communications ����	
����� agent-communication ������� agent-communication �������

censor-control-rule ���
	
CensorControlRule ����� rule-name �� !#"$�
censor-condition ����%'&�()� censor-condition �
�+*�,.-/&)� censor-action ���0%'&�(1� censor-action �

suppressor-control-rule ����	
SuppressorControlRule ����� rule-name �� !2"3�
suppressor-condition �4�5%'&�(1� suppressor-condition �
�+*�,.-/&)� suppressor-action �4�5%'&�()� suppressor-action �

focussing-rules ����	
focussing-rule �4���� focussing-rule �

initial-reactive-rules ���
	
reactive-rule �4���� reactive-rule �

planner-task ����	 plan-route-task � light-task � rain-task � fog-task
schema-names ����	

schema-name �4���� schema-name �
topological-world-map ����	
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path-definitions
junction-definitions

model-template-names �����
model-template-name ���	�
� model-template-name �

theorist-kbase-rules �����
theorist-kbase-rule ��
�	� theorist-kbase-rule �

space-time-projection-functions �����
space-time-projection-function ���	�	� space-time-projection-function �

conflict-resolution-rules �����
conflict-resolution-rule ��
�	� conflict-resolution-rule �

traffic-light-attributes �����
���
��������� �������! "�!#%$'&�(��*)	 +�	�-,�."�/��0
1�2�13�*,�04�*� traffic-light-orientation

wall-attributes �����+�65
��0	7
1	84��� �����9�: 3�:#%$'&�(9��)
 ;�	�<1
=	>9�?��� wall-type
lane-marking-attributes �����@�<>�2*1	84��� path-name �
�<1	=
>������ lane-marking-type
sign-attributes �����

�<19��A	14��� �/ 	B"�!C%DE�	�F>�2�1
8G�/� path-name �	�IH�J	09K�13��,�0L�/� junction-name

censor-condition �����M�-��0
1"�:1
=�N�� entity-name ��OQP@���*.�K
��>	13��,*0�R�S�J
T�T��*.��
censor-action �����

�<.9�:U",*V��
R%���*0���,*.�=�R:.��
K�,�.�WXN%� layer-name �
�Y��0	13�:1
=�N%� entity-name ��O
OZ�
suppressor-condition ����� action-command-spec [ agent-state-spec
suppressor-action �����

�<.9�:U",*V��
R	2	K*1���,*0�R	K�,:U
U�2�0�WXN%� layer-name �
�	� agent-action �\OZ�
focussing-rule �����

focussing-predicate ���<]L� focussing-predicate �
plan-route-task �����

��NI>�5	2*0�R
2	R�.9,:J	19�Z�_^	^`2�7��*0	1a�	� agent-name �<ba�	�
��^cT3�:0�2
5	R�W��%�d13�:0�2*1"�*,�0��
� destination �FbL�
�
��^c1
.�2�V9�	5
R�1"�\U3�e��� travel-time �<ba�	�
��^cf3�:1	83�:09R�W����!1�2:09K	�Z�	� distance �<b
b"OX�

light-task �����
��N\5%�:7
8	1a�g^
^I2�79��0
1L�	� agent-name �FbL�	�

�%^6�!0	19��.	V92	5h��� time-interval �FbL�	�
�%^I2!U%i9��.�R*1"�jU��e�	� time-interval �<bL�
�
�%^IK
,	5
,�J	.3�Z�_^/� colour �	�
� colour �	�
� colour �<b
b	b3OZ�

fog-task �����+��NIT�,�7a�g^
^cV3�	�	�!i"�/5%�d1	=9R:T�2�K*1�,:.L�
� environment-factor �<b
b"OZ�
rain-task �����M�/Nk.92%�:0a�g^
^cT
."��K*1"�/,�0�R�T92�K�19,:.L�	� environment-factor �Fb	b3OZ�
path-definitions �����

path-definition ���	l
� path-definition �
junction-definitions �����

junction-definition ���	l
� junction-definition �
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theorist-kbase-rule �����
TheoristKBaseEntry ����� theorist-kbase-entry

space-time-projection-function �����
SpaceTimeProjection �	�
� configuration ���� intention ����
timeperiod ����� projection

conflict-resolution-rule �����
ConflictResolutionRule ����� conflict-type ���� conflict-goal ����
conflict-resolution

path-definition �����
TouringWorldPath �	�
� path-name ���� path-width ���� junction-name ����
junction-name

junction-definition �����
TouringWorldJunction ���
� junction-name ����� world-x-location �����
world-y-location

configuration �����
������ world-x-location ���� world-y-location ��� agent-speed ����
agent-acceleration ���� agent-orientation ���� agent-communications �����

intention ����� schema-name
projection �����

����� agent-path ������ agent-path �������
conflict-goal ����� conflicting-goal  self-model-conflicting-goal
conflict-resolution ����� action-specification  task-specification

agent-name �����"!$#�%�&'(!*)+!,%�-
agent-process-type �����.��/10�243,50+6�7��8 9�:3,;2+3*5�0+67<�
agent-speed �����>=@?BA+!$'(!$C�%D)�E+?*F�'
agent-acceleration �����>=@?BA4!1'(!$C�%G)�E+?*F�'
agent-orientation �����H=I?BA4!1'J!1C�%K)�E+?*F�'MLONIPQSR	Q
entity-radius �����H=I?BA4!1'J!1C�%K)�E+?*F�'
agent-deceleration �����G&�%T�F�'J!1CI%U)�E+?,F'
agent-communication �����

�WV/1X�046�7Y�7�3*Z�2��� [��V�/$X�0+67�Y*5+/1X�\�2]�� [��Z47�6IV1\+Y*\+3�6�^I7�/1X�\2(V_�8 
��\4`,0�a4Y,\4`,5�0]�� 9��b�546,aJ/10�X]�c 9��\46Bd@6,5�^@Y�7I/eX�\�2+Vf�� [��Z4`,X4Y�7�/$X�\�2JV��

comms-device-status �����.�:`*a��g [�hZ+6,i47,2j��
rule-name �����k!1#�%�&�'J!,)+!*%�-
entity-name ����� agent-name  object-name
layer-name �����l�:7�6*j+3*5+Y,-]�� [�:76,j43,5+Y�=
�� [�m7�6*j+3,54Y,n]�
action-command-spec �����

�:6o,2(/�`,04Y�o�`$p�p(6*0�^q��� action-source ����� agent-action �W�srtF4o,2(/�`,04YBu�iZ�Z+315]�
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agent-state-spec ���������
	�������������������������
���� intention �����
sensing-algorithm � ���

�"!�##$�&%'��!#�#�
(�	������
)*���*�,+-�.%/��!#�#�!�0���!,+��1%
�"!�##��(	��������)����*�,+��!�0*�!�+2�.%'�"!�##��(	���������#�	*+��,+��1%
�"!�##��(	��������)����*�,+��!��+*�������#
	*+��,+-�.%/��!#�#�!�0���!,+*��(�	�*������#�	*+*�
+-�.%
�"!�##��!
0��!,+3��(	��*����
)�������+��!���+3�������#
	�+���+2�4% user-code-pointer

resources �����65�789�:7�;65�9<�=�>�:
sensing-range � ���@?*A�B�CD8EC�F*>6GH;�A�78
sensing-arc �����@?3A,B�CD8ECDF�>IGH;�A
7�8KJ L*M�NPOQN
sensing-rate � ���657�89�:7;R59�<�=�>�:
focussing-predicate �����@G3A,SH9�BB�C�5*TI?�:*>�UEC�S�7�8�>�V4% user-code-pointer

reactive-rule � ���
�W��	�#���3X�Y Z��
��(���!
)��*��+*!��*��[�\%/�]�	�#����^PY _�!�##��!
)�����+3!�����[�\%
�W��	�#���,L4Y `��������!
a��������!
)*����+�!
�����$�.%'�]�	�#����bcY ���!�����!
a�����*��!
)*����+3!
�*���$�.%
�W��	�#���d�Y �
(EeD��!��#����!
)���
+�!
�����$�.%'�]�	�#���MPY #!�����DfE!��ZE�g��a���!�)���
+�!������2�.%
�W��	�#���,h4Y +���������E�����*�,i3���������a��4% user-code-pointer

separation � �j�k?*A,B�C�8�C�F�>RG�;�A
7�8
planner-algorithm ��������#!
l��
���,?��4% user-code-pointer
schema-name � ���

�Wm�#!
���!��
����	����2�.%/�Q+*�����
�Hfn�D���������	���[�o%p�q+3�
������fr���������
��	��e���*egm�����+��.%
�W`��##��
_��
����	����2�.%/��!
����!��D���*e�m�����+2�o%p�Wa���������#���!��E�����s�.%p�qtH	����l��*e�m���
+��1%
�W��	����
����
��!��a����s�.%'�ue�����m����
)������
+���eg��!
�*���$�.%p�qtH	����l����
	���*�
���*�#����!��E�H���s�.%
�qtH	��
��l����
(�v3���
����#���!����������.%'�W`�����+3�
���!
�*�*e��*��Z*�
�(��\%p�W`���##��
_���m�!���0s�.%
�W`�����+3�
���!
���e�����#!������gfE!���ZE�g�a4�.%p�qt�	��
��l��
m�!
��0��o%p��eH�#���
����e�0�����*�*e��*�
����	�*�2�.%
�"��!#��	�#�!
����������	������,+���e���!������$�1%'�Wa����������
w����
vH	����
���H�
���.%
�W`��##��
_��!��m*!
��0��.%'�W���
m���!
���
`���#�#��
_������
	����$�.%p�qtH	����l���v�	������E�H������#����!
�����
���\%
�"��!#��	�#�!
�����e�m����,+2�\%/��!����#��
��!��*�$�.%'�Q+*�����
�Hfn�D������egm���
+3�!������#����!
���������.%
�"��0���*e����!�����#�����!��E�H�������*!
�*�$�1%'�q+*�����#�
��!
�*�2�.%'�"��0���*e����,+������#����!
�������*�
�*!����[�\%
�q+3�
������fr��������!�����#��
��!��E�H������m���������+2�o%p�"��!#��	�#�!
�����*e��*��m�mE����a��,+*��e��*!
�*���$�.%
�"��!#��	�#�!
�������	����E�g�a���!
��a*#�[�\%/�]�	�����������!
��a�#��$�.%'�Q+��E�D)����!#����a*��m�!��04�
��e���a��!#��#��`��s�.%'�ue�Da��!�#������a0��4�.%'�W`�#!*e�0���0���!�+*#��a�0��Eer�\%/�]0����Z���0�������\%
�W0�!,i*!���+3�#��Da�0��er�.%'�W`��
a���#��Da0��e��.%'��eD����m��!�����#*��a�0���\%
�W����!
`�`E�H��#*�ga0��*��eg����m��o%p�Wm��#�#�
����!�`�`E������#��ga�0��s�.%'�]_�!��D����`��
�����
0*!��a*�$�1%
��exfE!#�#��!�����#���*!
�*�$�1%'��e����
m��!
���
v�	��*�
�E�����s�.%p�Wm��#�#�,vH	���
�������*�!�a��
���s�1%
�W���!
����eD����������l��.%'��eD���
m��
(��
0E�g�*+��!�a*�
����\%p�W0�!�#
����
)��
�*��+���e���!������2�.%
�Wm��##���eD���
m�m*�,+3��!
a*�
�����o%p��eD��!�������
)������!�Z��$�.%p�W`������e�0����)������!�Z��[�\%
�"#*��a0��s�\%'�"#*��a0������
������`�`������gfE�e��.%'�"#*��a�0���*e��*!��	�e[�1%'�W��!*���4�o%
�W��!���������s�\%/�]��!��D�����
``4�.%'�W`��
a4�o%'�]`��
a�����s�.%
�W`��
a����
`�`s�\% user-code-pointer

y
TouringWorld focussing predicates are listed in Chapter 5, Figure 5.3.
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destination ����� object-name � junction-name
travel-time ������	��
������������������������� � � �"!�#�$ %&#�'(�)���������������������� �*�	+�,(��-�.���������/�0�����1�2� ��	3�$(������������������������ � � �"4 $5�6-�.���������/�0�����1�2�
distance ����� -�.�7�������/�0������� �
time-interval ����� ��������������0���7�1�2�
colour ���8� �"97�.:�� � �"429��2�1'(� � �	;�</=7�19(�
path-name ����� ��>/��?2�������1��@
path-width ����� -�.�7�������/�A���7�1� �
junction-name ����� ��>/��?2�������1��@
world-x-location ���8� ��.�7���&���/�A���7�1�2�
world-y-location ���8� ��.�7���&���/�A���7�1�2�
modeller-algorithm ����� �B3 ;1C7�197D1E(� � user-code-pointer
conflict-detection-horizon ���8� ? � �2F @2� �A? F E�G ��@
conflict-resolution-depth ����� ?2� � F2@ �2��?2F E/G2��@
modelling-rate ���8� ?2� � F2@ �2��?2F E/G2��@
model-discard-after-time ���8� ��������&�����0���7�1� �
model-bounds ���8� �IH�J2DK��-�.���������/�0�����1�2�
model-template-name ���8��ML�� 31,5� � �N$�+�O 9�#�' 47D�<�;�P�%�#�'7�Q� � �"$29�;1,2,�#�P D 3 #�4 %�$&LQ� ��",7+14(� � �N9�;�#�'(� � user-code-pointer
theorist-kbase-entry ���8��",7; P1$SR��UT�� �2F/� ��VW�2X � � �I:-�1,�;�O�3�$YR�� schema-name �Z��T��2� F�� �[�2X �
agent-path ����� ��\/� configuration � ] � timeperiod �_^Q�
timeperiod ����� -�.���������/�A������� �
conflict-type ���8��I`�O '�P�$�#�+1'�D2P�+ 323 # L�#�+�'�D ;�' :�D�'�+2D�9�#�4�% $�D�+�,�D1!7;�C(� ��I`�O '�P�$�#�+1'�D2P�+ 323 # L�#�+�'�D ;�' :�D�9�#�4�% $7D�+1,�D�!7;�C(� ��",29�+1'2$�;23 D P2+�3 3�#�L #�+1'7D�;1'�:2D1!�;1C7D # L�D�P 3 ��;�9�� ��",29�+1'2$�;23 D P2+�3 3�#�L #�+1'7D�;1'�:2D1!�;1C7D # L�D�'�+1$�D2P�3 �2;�9(� ��"97�.:�D�$ 97;1, ,&#�P D23 #�4�% $5� � �	+1$2%���9�D1$29�;�,�,�#�P�D23/#a42%�$�D P�+23 +�O29�� ��"O2'��1b2c��2P1$���:2D/L2#a4 '�; 323 #�'24�� � �"O2'��1b2c��2P1$��1:-D1=�97;�d�#�'�45� ��"O2'��1b2c��2P1$���:2D/L�c�� �1:�� � �"O '7�1b2c�� P�$��.:-D�+19�#���' $�;�$�#�+1'�� ��"'7�1!�D2�1'2$�#�$2C�� � user-code-pointer
conflicting-goal ���8��	;�e�+/#�:�D2P + 323 # L2#�+1'�LQ� � �	+�=���C�D197�142O�3�;1$�#�+1'�Lf� � self-model-conflicting-goal
self-model-conflicting-goal ���8� �"9��2; P�%�D.:-�/La$&#�'�;1$&#�+1'��
action-specification ����� ��g�� agent-action �2] � action-arguments �"h5�
task-specification ����� �/g�� intention � ]2� intention-arguments �"h5�

i
A
T��2� F�� �

is any formula in first order clausal form logic [PGA86].
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environment-agent-type ���������
	�������������������������������� ��!#"��$��%��&�
stop-time �'�(�*),+.-
/�0�/214365#7
+�8�0
environment-communication �'�(�

���
�4���9���:����	���;� colour
traffic-light-orientation �����

��<
	����
	�=>!���	�?&�@�A���
	�?
!�<�	����
	$=B�C���D"�E�����!������#%���C�A���>����%���!�"�E����&�

user-agent-increment ���(�*)�+#-�/20�/�1�3F5 7�+�8�0
user-agent-decrement �'�(�HG43�I#8�0�/�1�3F5 7�+�8�0

object-name ���(�J/�K�3#G�0�/�5
/�3 L
object-type �'�(�

�M	�<�N��
����"�EO�P����Q���"�"R�@����S�E���<�����T�2����	��#=>�����#	��
!4N#�2���&���
�ME�������U�����ME�V����9�@���D"�����E�!2=����#S����#�9�

wall-type �'�(�W��X�E������ ����"O�C�A��%
	�����Y�	�������"Z�
lane-marking-type �'�(�W�\[��4N2%�E#[&���:�]N#	�"���[^�

action-source ���(�W�M"���U
E���!�_���:�D"���U�E��
!.)^�C���M"���U�E���!�L�!��#`
"�E#!R��/�K�3#G�0>/�5
/�3#L
agent-action ���(�

�M��%�������E�!4N�?
E#E.[^�C�:�D��%
�����
E�!�	�����E��#�������#	��&���A�TN��2���
��"�!�"�E�����
�TN������
��"�!����2�#%��9�C�:����"��4N�%
!�%
E��.[�"��$��%���NZ�C����%�	���S�!�%�	��#�9�
��%
�.Y����4[,!�"4�2�#%��>Na�C�����
	���!�"4�2��%���Nb�

action-arguments �'�(�*) L�+�7�+.Ic7�/�-#0d-#0�L�e4f 0�e�L�3
intention-arguments �����g)#L
+�7�+#I67�/�-#0h-#0�L�e�f#0�e�L43i�Z� �
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