Technical Report RN

Number 155

Computer Laboratory

Computational morphology of English

S.G. Pulman, G.]. Russell, G.D. Ritchie,
A.W. Black

January 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1989 S.G. Pulman, G.]. Russell, G.D. Ritchie, A.W. Black

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Computational Morphology of English

S. G. Pulman, G. J. Russell,
Computer Laboratory,
Cambridge University.

G. D. Ritchie, A. W. Black,
Dept. of Artificial Intelligence,
Edinburgh University.

Introduction

This paper describes an implemented computer program which uses various
kinds of linguistic knowledge to analyse existing or novel word forms in terms
of their components. Three main types of knowledge are required (for English):
knowledge about spelling or phonological changes consequent upon affixation (no-
tice we are only dealing with isolated word forms); knowledge about the syntactic
or semantic properties of affixation (i.e. inflexional and derivational morphology),
and knowledge about the properties of the stored base forms of words (which in
our case are always themselves words, rather than more abstract entities). These
three types of information are stored as data files, represented in exactly the form
a linguist might employ. These data files are then compiled by the system to pro-
duce a run-time program which will analyse arbitrary word forms presented to it
in a way consistent with the original linguistic description.

The system can therefore be viewed as falling into two logically distinct parts:
a linguistic description, consisting of a set of spelling or phonological rules, word
grammar rules and the lexical entries themselves; and a set of mechanisms - a
spelling rule automaton driver, and a morpheme level parser - for applying this
description during the analysis or generation of word forms.

The current system contains two separate descriptions of English, one based on
Generalised Phrase Structure Grammar, (Gazdar, Klein, Pullum and Sag 1985),
and a second based on a more general type of unification grammar formalism,
adopting a more traditional approach to English morphology.

The linguistic theory implicit in some of the formalisms used is known to face
some problems of descriptive adequacy, but it is demonstrably capable of handling
most aspects of English morphology, and that of other languages, in a way that is
theoretically interesting. Furthermore, it has the merit that the formal properties
and intended interpretations of the notations used are well enough understood
that all their consequences can be inspected via the computational implementa-
tion of them. In contrast, there are reasonable grounds for suspicion that much
of current phonological and morphological theory is, as far as their formal ap-
paratus is concerned, playing with ‘notation without denotation’; that is to say,
the literature contains a wealth of proposed formalisms whose mathematical and
computational properties are, to say the least, obscure. This fact entails that the

1

proponents of theories couched in such notations quite literally do not know what
they are saying with them: there is no way that the linguistic consequences of
these notations can be systematically explored if their formal properties are not
known. Thus although what is described here deals only with written English
input, it should not be dismissed as mere ‘linguistic engineering’, but as, among
other things, a possible test-bed for experimentation with alternative theories of
morphophonology, where these prove to be specifiable with sufficient precisiomn.
The system is flexible enough as it stands to be able to encode in a direct form a
range of possible linguistic approaches to derivational and inflexional morphology.
Furthermore, it is quite within the spirit of our enterprise that the mechanisms we
have provided should be regarded, not as the final word in linguistic formalisms,
but as a kind of ‘assembly language’ into which different, more abstractly stated
proposals could be ‘compiled’.

1. Spelling Rules

To cope with the various spelling/phonological changes that occur when mor-
phemes are concatenated, we use a variant of the ’two level’ formalism originally
due to Koskenniemi (1983a,b). (For a short, clear exposition see Gazdar 1985).
The basic idea behind this approach is to regard graphological /phonological rules
as statements of possible correspondences between underlying and surface forms,
in common with most segmental level phonological formalisms. The difference is
that in the two level model, no intermediate levels of representation are allowed:
thus the formalism is in many ways much more constrained than traditional phono-
logical theories, which typically allow a sequence of rules to successively transform
an underlying to a surface representation via many intermediate stages.

Our own description is concerned with graphemic rather than phonemic rep-
resentations, as we are dealing with printed text. However, this is not an inherent
limitation of the formalism, which has been used to implement non-trivial phono-
logical descriptions, notably of Finnish (Koskenniemi, op. cit.)

An example of a two level rule is the following, which describes the process by
which an additional e is inserted when some nouns or verbs are suffixed with the
morpheme +s (notice that the morpheme boundary symbol is here regarded as
part of the lexical entry for the affix):

Epenthesis
+:e <=> { < 8:3 hth > 8:8 x:x z:z } --- 8:8
or < ¢c:¢ hth > ~--- g:3

The epenthesis rule states that ‘e’ must be inserted at a morpheme boundary if
and only if the boundary has to its left ‘sh’, %s’, %°, ‘2’ or ‘ch’ and to its right
‘s’. The interpretation of the rule is simple; character pairs (representing ’lexical
character:surface character’) form the actual change (the relation of a lexical ‘+’
to a surface ‘e’) in the contexts to the right of the arrow. Braces ({ , }) indicate

2

disjunction and angled brackets indicate a sequence. Alternative contexts may
also be specified using the word ‘or’. Thus a paraphrase of the rule might be ‘if
there is a lexical + preceded by ‘sh’, ‘s’, ‘x’, ‘z’, or ‘ch’ and followed by ‘s’, then
surface ‘e’ must appear, preceded by ‘sh’, 's’, ‘x’, ‘2’, or ‘ch’ and also followed by
‘s’, and vice versa’.

As well as « there are also the operators = (if) and < (only if). The inter-

pretation of these is:
a:b => LeftContext _ RightContext

‘If you’ve got a:b, then you must have LC ... RC’ - so the pair a:b will never
appear in other contexts, but other pairs can appear in this context.

a:b <= LeftContext _ RightContext

‘If you've got LC ... RC, and lexical a, then you must have a:b’ - so a:b could
appear in other contexts, but no other pairs with lexical a can appear in this
context. The <> operator combines these two, so:

a:b <=> LeftContext _ RightContext

means ‘if you’ve got a:b, you must have LC ... RC, and vice versa’. Most rules
use the <> operator, in practice.

Lexical and surface strings of unequal length can be matched by using the null
character ‘0’. A possible rule matching things like lexical ‘move+ed’ to surface

‘moved’ contains two occurrences:
e:0 <=> C:C --- < +:0 V:V >

The context in this rule is not specified solely in terms of concrete character pairs,
but rather with the symbols ‘C’ and ‘V’, which can be declared as standing for
the set of consonants and the set of vowels. This mechanism allows arbitrary
(preferably natural) classes of segments to be defined and thenceforward referred
to by a single identifier. This rule can be paraphrased ‘surface ‘e’ will match with
‘0’ in the lexicon (i.e. always match) when there is a consonant to its left and a
boundary symbol followed by a vowel to its right’. :

The computational interpretation of this rule formalism is as follows. Firstly,
the list of the base lexical forms of morphemes are (at compile time) made into a
character tree (cf Thorne, Bratley and Dewar 1969) of the form:

sea N

sell Vtrans
she Pro
shell N
shore N

etc.

/o_r_e_x*
/ /-1-1-%
...8-h-e-*
\e-a-*
\1-1-*

where the -* represents the leaves of the tree containing the syntactic or other

information stored with the base form. Secondly, the two level rules are compiled
into finite state transducers. A finite state transducer is best thought of as a famil-
iar finite state automaton, but which has two symbols on each transition, which
are inspected simultaneously. Thus two inputs are being inspected in parallel,
and the tranducer keeps them in step. Alternatively, one of these symbols can be
regarded as the input, and one the output. (In some cases, this choice may be
arbitrary, as the transducer will be reversible.) A move from one state to another
can be made only if both symbols are present in the two inputs, or under the
alternative construal, if the input symbol is present, then the transition can be
made, emitting the output symbol.

The compilation method used, and the resulting transducers, are different from
those described by Koskenniemi, and are similar to those in Bear (1986) (although
developed independently). Informally (and vastly simplified), what happens in this
phase is as follows:

First we find the set of ‘feasible pairs’ - all pairs of lezical:surface characters
that occur in the description, pairs of identical lezical:surface characters, and any
that have been specially declared as feasible pairs. These are used in expanding
out the values of declared set identifiers, and effectively constitute the alphabet of
the final automaton.

For rules of the form ‘pair = LC ... RC’ we construct a machine that recognises
sequences of the form ‘LC pair RC’.

For rules of the form ‘pair <= LC ... RC’ we construct a machine that recognises
sequences of the form ‘LC lezical: —~ surface RC’® - i.e. the set of sequences with
the appropriate contexts and lexical character but the wrong surface character.

For 4 rules we construct two automata like the preceding ones and merge the
left context part (which will be identical). For all three types various markings
are put on states of the automata to reflect whether they constitute provisional
acceptance (i.e. ‘ok so far, but we may still need to pass some other tests’, rejection
(i.e. recognition of an invalid sequence), or successful arrival at a final state.

Finally, transitions are added for all the feasible pairs that are not restricted by
any contextual requirements. The latter will all be marked ‘provisionally accept’,
and ‘final’.

As an example, the transducer corresponding to the Epenthesis rule above is
(roughly): '

si s2 82,83 83 83

s2 s3

s3 s4 s6

s4 sb prov acc
b final

86 reject

In fact, these transducers are also combined and optimised in various ways
such that the actual machines used may look rather different. The process of
attempting to recognise a word is now one of successively matching characters in
the input to the appropriate tape of the transducer, and simultaneously matching
the other tape of the transducer to the lexical character tree. We try to make
the input match one or more paths through the lexical tree via the transducer.
The transducer is restarted at each transition, and so we are in several states
simultaneously most of the time (the driving algorithm keeps track of this non-
determinism) so that unlike the Koskenniemi version it is not necessary in the
transducer itself to put in transitions going back to the initial state (this avoids
much complexity in the machines and the compilation process). At each stage in
the matching process the following must be true: at least one state we are in must
be a provisionally accepting state, and no state must be a rejecting state. When
we reach a final state in an automaton it is discarded from the current set of states.
If we get to the end with no provisional states pending we have a successful match
and a record of the transitions through the lexicon tree will constitute the set of
valid segmentations of the input string.

In Koskenniemi’s original system, there was a main lexicon, the leaves of which
pointed not just to information associated with a morpheme, but also to other
distinct sub-lexicons (and so on). Thus at the end of a free morpheme we might
have a pointer to the lexicon containing the class of suffixes that could follow
it. This has the effect of making all the inflexional and derivational morphology
implicit in the arrangement of sublexicons, and carries with it the claim that
this type of system is formally strictly finite state, a claim we reject, for English,
at least. In our system all morphemes are stored in one tree, and if there is
some input still to be consumed we simply start off again at the root of the tree.
This process is actually interleaved with the ‘word-syntax’ phase of analysis (see
below), in order to cut down the search space. If the segmentation were not
partially guided by these higher level requirements the result would be that this
phase of analysis would deliver a set of sequences of morphemes representing the
different possible ways a given sequence of input characters can be segmented
into morphemes without regard for their syntactic properties. Lack of syntactic
constraint can mean that the numbers here get rather large. For example, in our
current description there are over 400 ways of segmenting the word ‘assassin’ into

5

distinct sequences of valid English morphemes, (e.g. ass-ass-in, as-s-a-s-sin, etc)
although only one of these corresponds to a valid word. o

One great advantage of the use of transducers for this type of analysis is that
they are reversible. Thus our system, as well as being able to segment e.g. a
word like ‘denied’ into ‘deny+ed’ is also able to generate ‘denied’ from an input
sequence ‘deny+ed’.

2. Deficiencies in the two level approach.

There are several areas where the two level approach as it stands is known
to be inadequate. One - the finite state nature of derivational morphology - we
have already pointed to (in connection with Koskenniemi’s original system). Sec-
ondly, it is difficult, though not impossible, to represent syllable based prosodic
phenomena directly, as the formalism is essentially biased towards a segmental
view of phonology. To some extent, this can be got round by employing special
‘archiphoneme’ or other abstract characters that characters in the lexical forms of
words, which trigger various rules, but we have eschewed this method in our own
description of English, as being both open to abuse (abstract phonology) and prac-
tically undesirable (precluding the use of existing machine readable dictionaries as
part of our system).

A practical problem that we have encountered even within the relatively simple
domain of English graphemics concerns unexpected rule interactions. Consider the
two rules:

A-to-B

a:b <=> c:c _ d:d
or c:c _ e:e

F-deletion

£f:0 <=> c:c a:b _

The sequence permitted by the latter rule constitutes a context that the A-to-B
rule does not mention. Thus the pair a:b will never be allowed here and so the
F-deletion rule will fail ever to apply. The only way around this is to add another
context to the A-to-B rule to allow for exactly this possibility:

or c¢:c £f:0

It is not clear whether this type of thing should be regarded as stupidity on the
part of the rule writer, or a failure of the formalism. In practice, when rules have
far more complicated contexts than the artificial ones above, it happens quite often
and is very difficult to diagnose. One possible solution would be to include checks

6

in the compilation algorithm to detect this type of clash and either attempt to
resolve them, or issue appropriate warnings. (In the compiler developed at CSLI
for the D-Kimmo system, something similar to this has in fact been done. (Lauri
Karttunnen, p.c.)). In general, the fact that the rules cannot be looked at in
isolation, in the sense that it is the conjunction of them that defines the set of
possible transductions, makes debugging of them very difficult.

Phenomena involving discontinuous morphemes, as in the Semitic languages,
are impossible to handle with any degree of elegance in the basic formalism, though
a brute force solution is technically available. However, an extension of the basic
formalism so as to use transducers with more than two tapes is possible. One tape
will represent the consonantal root, a second the vocalic morpheme, and the third
the surface form combining the two. The resulting system is no longer two level
phonology, strictly speaking, but it is still finite state phonology (Kay 1987).

Another problem area concerns reduplication, which can be handled only clum-
sily, at best. It remains to be seen whether Kay’s suggestions can be used here as
well.

The assumption that we can always (as it were) do phonology first, then mor-
phology, is questionable for some languages (Anderson, this volume). If the data
and analysis presented by Anderson withstand scrutiny, this is a serious problem
for the framework (as for many others), and it is not clear how it could naturally
be extended to cope.

Barton, Berwick and Ristad (1987) have pointed out that the two level formal-
ism is NP-hard (i.e. - very informally - we can encode apparently simple problems
in the formalism which would take more time than there has ever been to solve).
If unrestricted null characters are allowed, the situation is even worse (PSPACE
hard). It is not clear what to make of this result, since in practice the descriptions
of various languages made within this formalism do not give rise to time or space
problems. It is perhaps best taken as an indication that more structure is required
in the theory to preclude the possibility of any formulation of the (linguistically)
unnatural problems that are used to demonstrate NP properties. Since no other
current theory has ever been formalised enough for such results to be forthcoming,
comparisons are not possible. However, since many early phonological notations
were reminiscent of context-sensitive rules, or explicitly claimed to be so, it may
be of interest to know that context-sensitive recognition is also PSPACE hard
(op. cit. 1987:64). And a cursory inspection of some of the notations offered as
phonological formalisms in recent work does not inspire any optimism that their
computational properties (if discoverable) will be particularly tractable - quite the
reverse, in fact. Thus two level morphology does not appear to be dismissable
solely on that account.

3. Lexical Entries

The actual entries for morphemes are stored in a simple format:

(citation-form, phonological-forms(s), syntactic-category,.
- semantic-entry, miscellaneous)

An example from the GPSG description of English might be
(walk /walk/ ((V +) (N -) (SUBCAT NULL)) WALK NIL)

The citation forms can of course be phonological representations if there is an
appropriate set of two level rules available. The syntactic category must obey
the conventions of GPSG categories (see below), but this is no inconvenience,
as a powerful system for defining aliases is available, in effect allowing almost
anything sensible to appear as a syntactic category. No restrictions are placed on
the semantic field: currently our entries contain the base form for most open class
items, and a complex expression of intensional logic for most closed class items.
The ‘miscellaneous’ field is currently the Lisp atom NIL: the intention is that a
user can put whatever other information is required here. It might, for example, be
the entire content of some existing machine readable dictionary’s entry for ‘walk’.

These entries can, if desired, be added to, or used to generate new entries,
by using two types of ‘lexical redundancy’ rules, which operate at compile time.
‘Completion rules’ add feature specifications to existing lexical entries. ‘Multipli-
cation rules’ create additional entries from existing ones. For example, the entry
for ‘walk’ (which represents the infinitival or base form) is fleshed out with many
other features by Completion rules:

(walk /walk/ ((V +) (N -) (CAT V) (FIX NOT) (INFL +) (REG +)
(AGR ((BAR |21) (V -) (N +) (NFORM NORM))) (PRD -)
(COMPOUND NOT) (BAR |0|) (AUX -) (INV -) (NEG -)
(FIN -) (VFORM BSE) (SUBCAT NULL))
WALK NIL)

From infinitival forms of verbs are created entries for 1st and 2nd person singu-
lar, and plural forms (this is necessary given the GPSG feature system, in which
negation and disjunction of feature specifications is not available). Here is the 2nd
person singular, to which Completion rules have also applied:

(walk /walk/ ((VFORM NOT) (FIN +) (INFL -) (PAST -)
(AGR ((N +) (V -) (BAR [2[) (NFORM NORM) (CASE NOM)
(PER {2]) (PLU -))) (V +) (N -) (CAT V) (FIX NOT)
(REG +) (PRD -) (COMPOUND NOT) (BAR |0]|) (AUX -)
(INV -) (NEG -) (SUBCAT NULL))
WALK NIL)

Those familiar with GPSG will notice that some features are there which do not
figure in syntax: e.g. REG and COMPOUND. These are used by the word gram-
mar rules to govern regular inflection and compound formation respectively, and

would be stripped out before the entry for a word was handed to a sentence level
parser.

The Completion and Multiplication rules mechanism allows concise entries to
be written and fleshed out automatically. They are simple and flexible, and it
is easy to implement a wide range of theories of lexical redundancy or feature
defaults using them.

4. Word Grammar

During the application of the spelling rule transducers, the results of morpheme
separation are recorded in a chart (Thompson and Ritchie 1984) and an attempt
is made to find a valid parse of the sequences of morphemes according to the
Word Grammar of the system. The Word Grammar is a set of rules describing
possible combinations of morphemes. The formalism within which these rules are
expressed is basically that of a context-free grammar enriched with features. A
feature consists of a pair (name, value). A category consists of a set of features.
A name is an atom; a value can be a constant, a variable, or a category. A
rule consists of a sequence of two or more categories, the first being the mother.
Various easily readable notations are provided so that these rules can be entered
in a perspicuous form.

Two methods of matching a category in a rule with a category in a lexical item
or parse tree are provided (this is an option in compiling the source code of the
actual system). The first, known as ‘graph unification’ is similar to that used in
systems such as PATR II (Shieber 1985). To compute the graph unification (U)
of two categories:

if (f v) is in one cat and not in the other, (f v} isin U
if (f v) is in one cat, and (f v’) is in the other,
then

if v=v’ and both are atomic, (f v) isin U

if v is a variable, then (f v’) is in U, (where v is consistently
replacable by v’)

if v and v’ are categories, and graph unify, then (f V) is in
U, where V is the graph unification of v and v’

(A variable is consistently replacable by some value if it has not already been,
and is not going to be, replaced by a conflicting value while computing the unifica-
tion.) The categories will not unify if any features do not fall under this definition.

Graph unification is order independent, in the sense that the ordering of fea-
tures within a category is irrelevant. It also does not require fully specified cate-
gories. Both properties distinguish it from the second type of matching, known as
‘term unification’. Here two categories will unify only if they have the same set of
features, appearing in the same order, where the only difference between them is
that one feature might have a variable as value where the other has a constant (or
a different variable). In the latter case the variable becomes bound (if this can be

9

done consistently, as before). This type of matching is based on directly on the
notion of unification familiar from theorem proving and some logic programming
languages.

Ultimately, there is no formal difference between these two types of unification,
but they differ in the styles of grammar writing they facilitate. Graph unification
encourages a style whereby rules and categories can be underspecified so as to
apply across a wide range of cases. However, some system of defaults may then be
needed in order to rule out unintended matches. For example, if nothing further
is said, a category like:

((cat det)(wh -))
will graph unify with a category like
((n +)(bar 2)(num sing) (count +))

(there are no conflicting feature values),
to yield

((cat det) (wh -)(n +)(bar 2)(num sing) (count +))

which may well not be what the grammarian had intended. The two categories
would not term unify, however, for obvious reasons.

The system incorporates several mechanisms for declaring default values for
features, (as well as those already seen) or default specifications for categories
which can be used so as to cause categories like those above not to unify. How-
ever, keeping track of the effects of default feature specifications in a large linguistic
description can be tricky in practice. Thus under some circumstances it is prefer-
able to use the term unification option, where all categories are fully specified, and
debugging is, in general, easier (‘what you see is what you get’). There are also
some implementational advantages to term unification: for example, we know in
advance that two categories of different lengths cannot unify, and for many gram-
mars, we can omit feature names in the internal representations of categories,
identifying values instead by their position, with consequent gains in efficiency.
Needless to say, each style of unification has proponents who refuse to see any
virtue in the other: both camps are catered for by our system.

5. Feature-Passing Conventions

The system also contains the option of using some ‘hard-wired’ feature passing
conventions along with the unrestricted unification mechanism, (although they
are not strictly necessary, as the mechanism of variable instantiation within rules
can be used to pass the values of features around within a tree in a completely
declarative and semantically well-founded fashion). Those in current use are tied in
closely with the Generalised Phrase Structure Grammar treatment of morphology
which is the main description of English provided by the system:.

10

There are three conventions built into the system at present, inspired by the
work of Selkirk (1982). Notice that the definitions of the feature passing con-
ventions themselves are not under the control of the lexicon-writer, although the
features that are affected by the conventions may be controlled, since the conven-
tions act on certain specific features or feature-classes, so the linguist can make use
of these conventions by defining certain features to lie within these named classes.
The system will then automatically apply the conventions to these features.

All three feature conventions act on what is called within GPSG terminology a
‘local tree’: a set of one mother node and its immediate daughters. The conventions
apply only to binary branching rules. They are written in terms of mother, left
daughter, and right daughter. The conventions are:

The Word-Head Convention: the set of WHead features in the mother
should be the same as the WHead features of the right daughter.

In the word parser, this is achieved, roughly speaking, by unifying the WHead
features of the right daughter and those of the mother when the daughter is at-
tached. From a linguistic point of view, the WHead features are typically those
that will be relevant to sentence-level syntax, and hence those that will be of
particular use to a sentence-parser which uses the dictionary. This convention is
a straightforward analogue of the simplest case of the Head Feature Convention
(Gazdar et al) (1985)). Its effect is to enforce identity of the relevant feature values
 between mother and the head daughter. Note that in the current system there
is no formal definition of ‘head’ to which the lexicon-writer has access (despite
the name given to this convention), since the right daughter always acts in this
head-like fashion within our treatment of English morphology. Other analyses may
deviate from this pattern, of course; different views of head may be implemented
using variables and unifi¢ation.

Assuming that N, V and Vform are in the set of WHead features, the Word-
Head Convention would allow the following trees:

((N +) (Vv =) (PLU +))
O
((BAR -1) (N +) (V -) (PLU +))

and

((N -) (Vv +) (VFORM ING))
(N =) (v +)
((BAR -1) (N -) (V +) (VFORM ING))

but not trees of the form:

((N +) (V +) (PLU +))
O
((BAR -1) (N +) (V -) (PLU +))

11

and

N =) (V)
O
((BAR -1) (N =) (V +) (VFORM EN))

since one of the trees has a clash in the V value for mother and right daughter,
and the other lacks a VFORM marking on the mother to match that on the right
daughter.

The Word-Daughter Convention: if any WDaughter features exist on
the right daughter then the WDaughter features on the mother should
be the same as the WDaughter features on the right daughter. If no
WDaughter features exist on the right daughter then the WDaughter
features on the mother should be the same as the WDaughter features
on the left daughter.

Again, this is ensured by carrying out unification of the appropriate feature mark-
ings during parsing. This convention is designed to capture the fact that the
subcategorization class of a word (in English) is not affected by inflectional affix-
ation, although it may be affected by derivation.

Assuming the feature TAKES to be the only WDaughter feature, this conven-
tion allows trees such as:

((TAKES XNP))
(v +) (x -0
((TAKES NP))
((TAKES NP))
((TAKES NP))
((VFORM ING))

but not

((TAKES NP))
(v +) (¥ -))
((TAKES VP))
((TAKES XNP))
((TAKES VP))
((VFORM ING))

In the first example the right daughter is specified for a TAKES value, and the
mother has the same specification; in the second example, the right daughter has
no specification for TAKES and so the second part of the WDaughter convention
applies. The third example is illegal because the values of TAKES on the right
daughter and mother differ, and the fourth is illegal because, under the second
part of the convention, the left daughter and mother WDaughter features must be
identical when there are no WDaughter features in the right daughter.

12

The Word-Sister Convention: when one daughter (either left or right)
has the feature STEM, the category of the other daughter must be an
extension (superset) of the category value of STEM.

This third convention enables affixes to be subcategorized for the type of stem
to which they attach. Notice that this convention is not defined in terms of any
feature-classes, but is defined using just one built-in feature (STEM). Hence, the
way that the lexicon-writer makes use of this convention is not by declaring the
extent of feature-classes (as for the other two conventions), but by adding STEM
specifications to the features in morphemes in the lexicon, thereby indicating the
combination possibilities for each affix. The following example trees follow the
convention

0O
(N =) (v +)
((STEM ((N -) (V +))))
QO
((v +) (N -) (INFL +))
((STEM ((N =) (V +) (INFL +))))

These various feature-passing conventions allow very general rules to be written
for affixation, when used in combination with other mechanisms which can declare
valid ranges for variables, and the variable binding mechanism itself. The current
description, for example, has a single rule for the attachment of prefixes to stems.

(PREFIXES
[(BAR O, CAT 7maj] ->
(FIX PRE, CAT NONE],
(BAR O, CAT 7majl)

and a single rule for the attachment of suffixes to stems.

(SUFFIXES
[BAR O, CAT ?7majl ->
[(BAR O, CAT 7cat],
[FIX SUF, CAT ?maj])

In both a suitable declaration of possible values for the ?cat and ?maj variables
prevents unwanted categories appearing as stems, and the feature conventions,
unrestricted unification and variable binding make sure that information is passed
up from the daughter categories to the mother in the appropriate way. (A term
unification description would have to explicitly list all the possible features for
each category). It is instructive to compare the succinctness of the rule with the
size of the categories (like those for ‘walk’ above’) to which it will apply.

6. Summary

13

We have described a system for morphological analysis which seems to us a
reasonable compromise between linguistic elegance and practical usefulress. The
various grammatical formalisms provided with the system, with the possible ex-
ception of the two level rules, do not themselves constitute a linguistic theory in
their own right. The correct way to think of them is as part of a linguistically mo-
tivated programming language within which quite a wide range of approaches to
morphological description (or, indeed, syntax) could be implemented. The feasi-
bility of this has been demonstrated with our GPSG description of English, which
is a fairly full treatment of inflexion and derivation, faithful to the principles of
GPSG. This system analyses complex words at the rate of three or four per second
under optimal conditions {on a 4 mb Sun 3). We also have a much simpler de-
scription of English delivering only major category information. This parses words
many times faster: between 10 and 20 per second. Thus the system is fast enough
to be practically useful in real applications.

Acknowledgement
This work was carried out under SERC/Alvey Grant GR/C/79114.
References

Anderson, S. 1987 paper in this volume

Barton, E., Berwick, R., and Ristad E. (1987) Computational Complexity and
Linguistic Theory, Cambridge, Mass: MIT Press '

Bear, J. (1986) A morphological recogniser with syntactic and Phonological
Rules, Proceedings of 11th International Conference on Computational Linguistics,
Bonn, West Germany: 272-276

Gazdar, G. (1985) Finite State Morphology, Linguistics, 23, 597-607

Gazdar, G, Klein, E., Pullum, G. K., and Sag I. A. (1985) Generalized Phrase
Structure Grammar , Oxford, Blackwells.

Karttunen, L. (1983) KIMMO - A General Morphological Processor, in Texas
Linguistic Forum 22 , 165 - 186) Department of Linguistics, University of Texas,
Austin, Texas.

Kay, M. (1987) Nonconcatenative Finite State Morphology, Invited Lecture,
Association for Computational Linguistics, European meeting, Copenhagen.

Koskenniemi, K. (1983a) Two-level model for morphological analysis, in Pro-
ceedings of the Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe , 683 - 685.

Koskenniemi, K. (1983b) Two-level Morphology: a general computational model
for word-form recognition and production, Publication No. 11, University of
Helsinki, Finland

Koskenniemi, K. (1985) Compilation of Automata from Two-level Rules, talk
given at the Workshop on Finite-State Morphology, CSLI, Stanford, July, 1985.

Ritchie, G.D., Pulman, S.G., Black, A.W. and Russell G.J. (forthcoming) A
Computational Framework for Lexical Description, Computational Linguistics.

14

Selkirk, E. (1982) The Syntax of Words, Cambridge, Mass: MIT Press.

Shieber, S. (1985) Criteria for designing computer facilities for linguistic anal-
ysis, Linguistics 23, 189-211.

Thompson, H. and G.D. Ritchie (1984) Implementing Natural Language Parsers,
in T. O’Shea and M. Eisenstadt (eds.) Artificial Intelligence: Tools, Techniques
and Applications, New York: Harper and Row.

Thorne, J.P., P. Bratley, and H. Dewar (1968) The syntactic analysis of English
by machine, in D. Michie (ed). Machine Intelligence 3, Edinburgh: Edinburgh
University Press.

15

