COMPUTER SCIENCE TRIPOS Part II - 2023 - Paper 8

6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op command, sequential composition $C_{1} ; C_{2}$, loops while B do C for Boolean expressions B, conditionals if B then C_{1} else C_{2}, assigment $X:=E$ for program variables X and arithmetic expressions E, heap allocation $X:=\operatorname{alloc}\left(E_{1}, \ldots, E_{n}\right)$, heap assignment $\left[E_{1}\right]:=E_{2}$, heap dereference $X:=[E]$, and heap location disposal dispose (E). Assume null $=0$, and predicates for lists and partial lists:

$$
\begin{aligned}
& \operatorname{list}(t,[])=(t=\operatorname{null}) \wedge e m p \\
& \operatorname{list}(t, h:: \alpha)=\exists y \cdot(t \mapsto h) *((t+1) \mapsto y) * \operatorname{list}(y, \alpha) \\
& \operatorname{plist}\left(t_{1},[], t_{2}\right)=\left(t_{1}=t_{2}\right) \wedge e m p \\
& \operatorname{plist}\left(t_{1}, h:: \alpha, t_{2}\right)=\exists y \cdot\left(t_{1} \mapsto h\right) *\left(\left(t_{1}+1\right) \mapsto y\right) * \operatorname{plist}\left(y, \alpha, t_{2}\right)
\end{aligned}
$$

In the following, all triples are linear separation logic triples.
(a) Explain why a command C of your choice satisfies the following triple, or explain why no such C exists: $\{$ null $\mapsto 5\} C\{\top\}$.
[2 marks]
(b) Explain why a command C of your choice satisfies the following triple (i.e. moves v to a different location): $\{x \mapsto v \wedge X=x\} C\{Y \mapsto v \wedge Y \neq x\}$. [2 marks]
(c) Give a loop invariant that would serve to prove the following triple, for a command that creates a reversed copy of a list (no proof outline required).
$\{\operatorname{list}(X, \alpha)\}$
Y := null; C := X;
while $C \neq$ null do (V := [C]; Y := alloc(V,Y); C := [C+1])
$\{\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \operatorname{rev} \alpha)\}$
[4 marks]
(d) Adjust the program in (c) with a new loop body C_{L}, so it (still) terminates and $\{\operatorname{list}(X, \alpha)\}$ Y $:=$ null; C $:=\mathrm{X}$; while $\mathrm{C} \neq$ null do $C_{L}\{\operatorname{list}(Y$, rev $\alpha)\}$ holds (no proof, loop invariant, or termination argument required). [2 marks]
(e) Consider an unsound extension of the separation-logic proof system with the rule $\left\{E_{1}>0 \wedge \mathrm{emp}\right\}$ allochere $\left(E_{1}, E_{2}\right)\left\{E_{1} \mapsto E_{2}\right\}$ for a new command allochere $\left(E_{1}, E_{2}\right)$. Explain in detail, with reference to the proof rules, how $\{\mathrm{emp}\} C\{\perp\}$ is derivable, for a non-looping C of your choice. [4 marks]
(f) Give a loop invariant that would serve to prove the following triple, for a command that creates a list of the Fibonacci numbers up to n (no proof outline required). Assume fibs $(i, j)=[\mathrm{fib} i, \ldots, \mathrm{fib} j]$ for $i \leq j$ and [] otherwise.
$\{\operatorname{emp} \wedge(N=n \wedge n>2)\}$
II := alloc(1,null); I := alloc(0,II); X := I; C := 2;
 $\{\operatorname{list}(X, \operatorname{fibs}(0, n))\}$
[6 marks]

