COMPUTER SCIENCE TRIPOS Part II – 2023 – Paper 8

6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op command, sequential composition $C_1; C_2$, loops while B do C for Boolean expressions B, conditionals if B then C_1 else C_2 , assignment X := E for program variables X and arithmetic expressions E, heap allocation $X := \operatorname{alloc}(E_1, \ldots, E_n)$, heap assignment $[E_1] := E_2$, heap dereference X := [E], and heap location dispose (E). Assume null = 0, and predicates for lists and partial lists:

$$list(t, []) = (t = null) \land emp$$

$$list(t, h :: \alpha) = \exists y.(t \mapsto h) * ((t+1) \mapsto y) * list(y, \alpha)$$

$$plist(t_1, [], t_2) = (t_1 = t_2) \land emp$$

$$plist(t_1, h :: \alpha, t_2) = \exists y. (t_1 \mapsto h) * ((t_1 + 1) \mapsto y) * plist(y, \alpha, t_2)$$

In the following, all triples are linear separation logic triples.

- (a) Explain why a command C of your choice satisfies the following triple, or explain why no such C exists: $\{null \mapsto 5\} C \{\top\}$. [2 marks]
- (b) Explain why a command C of your choice satisfies the following triple (i.e. moves v to a different location): $\{x \mapsto v \land X = x\} \ C \ \{Y \mapsto v \land Y \neq x\}$. [2 marks]
- (c) Give a loop invariant that would serve to prove the following triple, for a command that creates a reversed copy of a list (no proof outline required). {list(X, α)} Y := null; C := X; while C \neq null do (V := [C]; Y := alloc(V,Y); C := [C+1]) {list(X, α) * list($Y, \operatorname{rev} \alpha$)} [4 marks]
- (d) Adjust the program in (c) with a new loop body C_L , so it (still) terminates and $\{\text{list}(X,\alpha)\}$ Y := null; C := X; while C \neq null do C_L $\{\text{list}(Y, \text{rev } \alpha)\}$ holds (no proof, loop invariant, or termination argument required). [2 marks]
- (e) Consider an unsound extension of the separation-logic proof system with the rule $\{E_1 > 0 \land emp\}$ alloc_here (E_1, E_2) $\{E_1 \mapsto E_2\}$ for a new command alloc_here (E_1, E_2) . Explain in detail, with reference to the proof rules, how $\{emp\} C \{\bot\}$ is derivable, for a non-looping C of your choice. [4 marks]
- (f) Give a loop invariant that would serve to prove the following triple, for a command that creates a list of the Fibonacci numbers up to n (no proof outline required). Assume fibs $(i, j) = [\text{fib } i, \dots, \text{fib } j]$ for $i \leq j$ and [] otherwise. $\{ \exp \land (N = n \land n > 2) \}$ II := alloc(1,null); I := alloc(0,II); X := I; C := 2; while C \leq N do $\begin{pmatrix} IV := [I]; IIV := [II]; I := II; \\ II := alloc(IV+IIV,null); [I+1] := II; C := C+1 \end{pmatrix}$ $\{ \text{list}(X, \text{fibs}(0, n)) \}$ [6 marks]