
6

COMPUTER SCIENCE TRIPOS Part II – 2023 – Paper 8

Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op
command, sequential composition C1;C2, loops while B do C for Boolean ex-
pressions B, conditionals if B then C1 else C2, assigment X := E for program
variables X and arithmetic expressions E, heap allocation X := alloc(E1,. . . ,En),
heap assignment [E1] := E2, heap dereference X := [E], and heap location
disposal dispose(E). Assume null = 0, and predicates for lists and partial lists:

list(t, []) = (t = null) ∧ emp
list(t, h :: α) = ∃y.(t 7→ h) ∗ ((t+ 1) 7→ y) ∗ list(y, α)

plist(t1, [], t2) = (t1 = t2) ∧ emp
plist(t1, h :: α, t2) = ∃y. (t1 7→ h) ∗ ((t1 + 1) 7→ y) ∗ plist(y, α, t2)

In the following, all triples are linear separation logic triples.

(a) Explain why a command C of your choice satisfies the following triple, or explain
why no such C exists: {null 7→ 5} C {>}. [2 marks]

(b) Explain why a command C of your choice satisfies the following triple (i.e. moves
v to a different location): {x 7→ v ∧X = x} C {Y 7→ v ∧ Y 6= x}. [2 marks]

(c) Give a loop invariant that would serve to prove the following triple, for a
command that creates a reversed copy of a list (no proof outline required).
{list(X,α)}
Y := null; C := X;

while C 6= null do (V := [C]; Y := alloc(V,Y); C := [C+1])

{list(X,α) ∗ list(Y, rev α)} [4 marks]

(d) Adjust the program in (c) with a new loop body CL, so it (still) terminates and
{list(X,α)} Y := null; C := X; while C 6= null do CL {list(Y, rev α)}
holds (no proof, loop invariant, or termination argument required). [2 marks]

(e) Consider an unsound extension of the separation-logic proof system with the
rule {E1 > 0 ∧ emp} alloc here(E1, E2) {E1 7→ E2} for a new command
alloc here(E1, E2). Explain in detail, with reference to the proof rules, how
{emp} C {⊥} is derivable, for a non-looping C of your choice. [4 marks]

(f ) Give a loop invariant that would serve to prove the following triple, for a
command that creates a list of the Fibonacci numbers up to n (no proof outline
required). Assume fibs(i, j) = [fib i, . . . , fib j] for i ≤ j and [] otherwise.
{emp ∧ (N = n ∧ n > 2)}
II := alloc(1,null); I := alloc(0,II); X := I; C := 2;

while C ≤ N do

(
IV := [I]; IIV := [II]; I := II;

II := alloc(IV+IIV,null); [I+1] := II; C := C+1

)
{list(X, fibs(0, n))} [6 marks]

1


