COMPUTER SCIENCE TRIPOS Part II — 2023 — Paper 8
6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C' consisting of the skip no-op
command, sequential composition C;Cs, loops while B do C for Boolean ex-
pressions B, conditionals if B then () else (), assigment X := E for program
variables X and arithmetic expressions F, heap allocation X := alloc(FE,...,E,),
heap assignment [F;] := F,, heap dereference X := [E], and heap location
disposal dispose(F£). Assume null = 0, and predicates for lists and partial lists:

list(¢,[]) = (t = null) A emp

list(t,h :: ) =3y.(t = h) * ((t + 1) — y) *list(y, )

plist(t1, [], t2) = (t1 = ta) Aemp

plist(t1,h :: a,tz) = Jy. (t1 = h) = ((t1 + 1) — y) * plist(y, , t2)

In the following, all triples are linear separation logic triples.

(a) Explain why a command C' of your choice satisfies the following triple, or explain
why no such C' exists: {null — 5} C' {T}. [2 marks]

(b) Explain why a command C' of your choice satisfies the following triple (i.e. moves
v to a different location): {z m vAX =2} C{Y — v AY #z}. [2 marks|

(¢) Give a loop invariant that would serve to prove the following triple, for a
command that creates a reversed copy of a list (no proof outline required).
{list(X, a) }

Y := null; C := X;
while C # null do (V := [C]; Y := alloc(V,Y); C := [C+1])
{list (X, ) * list (Y, rev «)} [4 marks]

(d) Adjust the program in (c¢) with a new loop body Cp, so it (still) terminates and
{list(X, )} Y := null; C := X; while C # null do Cp {list(Y,rev «a)}
holds (no proof, loop invariant, or termination argument required). [2 marks]

(e) Consider an unsound extension of the separation-logic proof system with the
rule {E; > 0 A emp} alloc here(Ei, Ey) {E; — Es} for a new command
alloc_here(FE;, F»). Explain in detail, with reference to the proof rules, how
{emp} C {1} is derivable, for a non-looping C' of your choice. [4 marks]

(f) Give a loop invariant that would serve to prove the following triple, for a
command that creates a list of the Fibonacci numbers up to n (no proof outline
required). Assume fibs(i, j) = [fib 4,...,fib j] for i < j and [] otherwise.
{emp A (N =nAn>2)}

IT := alloc(1,null); I := alloc(0,II); X :=1I; C :

IV := [I]; IIV := [II]; I := II;
IT := alloc(IV+IIV,null); [I+1] II; C := C+1>
{list (X, fibs(0,n)) } [6 marks]

2;
while C < N do



