COMPUTER SCIENCE TRIPOS Part IB – 2023 – Paper 7

2 Artificial Intelligence (sbh11)

You have a supervised learning problem involving *classification*: a vector \mathbf{x} is to be assigned to one of K classes. To do this you proceed in the usual way: you have a training set \mathbf{s} containing m pairs $(\mathbf{x}_i, \mathbf{y}_i)$. However the labels \mathbf{y}_i are now vectors in $\{0, 1\}^K$ containing a single 1 representing the target class. So for example if there are 5 classes and some \mathbf{x}_i should be assigned to class 2 then $\mathbf{y}_i = (0, 1, 0, 0, 0)$. To do this, it is proposed that you use K neural networks. The *i*th network has parameters \mathbf{w}_i and computes the function $h(\mathbf{w}_i, \mathbf{x})$. You may make no further assumptions regarding the function h.

(a) You aim to treat the output of the *i*th network as an estimate of the probability $\Pr(\mathbf{x} \in \text{class } i | \mathbf{x}, \mathbf{w})$ that \mathbf{x} should be in the *i*th class, where \mathbf{w} collects together all the K vectors $\mathbf{w}_1, \ldots, \mathbf{w}_K$. It is proposed that to do this you should modify the setup described to compute

$$\Pr(\mathbf{x} \in \text{class } i | \mathbf{x}, \mathbf{w}) = \operatorname{prob}(i, \mathbf{x})$$
$$= \frac{\exp(h(\mathbf{w}_i, \mathbf{x}))}{\sum_{j=1}^{K} \exp(h(\mathbf{w}_j, \mathbf{x}))}$$

Explain why this modification is required, and how it achieves the stated aim. [4 marks]

(b) It is proposed that to train your networks, you should maximize the probability $\Pr(\mathbf{s}|\mathbf{w})$ that a given collection of weights would produce the data in \mathbf{s} . (You may consider the training inputs fixed.) Denote by $y_{i,j}$ the *j*th element of \mathbf{y}_i . Show that training can be achieved by minimizing

$$E(\mathbf{w}) = -\sum_{i=1}^{m} \sum_{j=1}^{K} y_{i,j} \log \operatorname{prob}(j, \mathbf{x}_i).$$

State any assumptions that you make.

[6 marks]

(c) You have previously applied the backpropagation algorithm for training the networks $h(\mathbf{w}_i, \mathbf{x})$ and as a result of this you know how to compute derivatives $\partial h(\mathbf{w}_i, \mathbf{x}) / \partial w_{i,j}$ where $w_{i,j}$ is the *j*th element of \mathbf{w}_i . Explain what further steps are necessary to use this knowledge to obtain derivatives of $E(\mathbf{w})$ with respect to the relevant weights. [10 marks]