COMPUTER SCIENCE TRIPOS Part IB – 2023 – Paper 4

1 Compiler Construction (jdy22)

- (a) Describe the inputs and outputs of a lexer and parser. [2 marks]
- (b) Here are three grammars for languages with branching, sequencing and variables:

Grammar 1: $E \rightarrow if E$ then E else E $E \rightarrow E$ then E end $E \rightarrow id$ Grammar 2: $E \rightarrow if E$ then E else E end $E \rightarrow E$ then E end $E \rightarrow id$ Grammar 3: $E \rightarrow if E$ then E else E $E \rightarrow do E$ then E $E \rightarrow id$

- (i) For each grammar, state whether it is ambiguous, giving an example if it is. [3 marks]
- (*ii*) For each grammar, state whether it is in LL(1), giving a reason if it is not. [3 marks]
- (c) Explain the roles of the ACTION and GOTO tables in the LR parsing algorithm, describing the entries and indexes for each table. [4 marks]
- (d) Compilers sometimes simplify expressions to make type checking easier or to generate more efficient code. Here are two potential Slang simplifications:

expression	simplifies to	expression	
if true then e_1 else e_2	\rightarrow	e_1	
(fun (x:t) -> e_1) e_2	\rightarrow	$\{e_2/x\}e_1$	(substitution)

A simplification $e_1 \rightarrow e_2$ is correct for type checking if e_1 and e_2 have the same type (or are both ill-typed), and correct for optimization if e_1 and e_2 have equivalent behaviour.

- (i) For each simplification, explain under what circumstances it is correct for type checking. [4 marks]
- (*ii*) For each simplification, explain under what circumstances it is correct for optimization. [4 marks]