COMPUTER SCIENCE TRIPOS Part IA - 2023 - Paper 2

8 Discrete Mathematics (mpf23)

(a) (i) Show that $(x-1)$ divides $\left(x^{n}-1\right)$ for all positive integers x and n.
(ii) A positive integer n is said to be composite whenever there are positive integers a and b greater than 1 such that $n=a \cdot b$.

Prove that, for all positive integers x greater than 1, if a positive integer n is composite then so is $x^{n}-1$.
[Hint: Consider the instance of the above statement for $x=2$.]
(b) Prove that, for all natural numbers $n, 24 \mid\left(2 \cdot 7^{n}-3 \cdot 5^{n}+1\right)$.
[Hint: Note that $7^{2} \equiv 1(\bmod 24)$ and $5^{2} \equiv 1(\bmod 24)$. Consider using the principle of strong mathematical induction.]
(c) Say whether each of the following statements is true or false, and prove your claim.
(i) For all sets A and B, and all functions f and g from A to $\mathcal{P}(B)$,

$$
[\forall a \in A . \exists x \in A . f(a) \subseteq g(x)] \Rightarrow \bigcup_{a \in A} f(a) \subseteq \bigcup_{x \in A} g(x)
$$

[4 marks]
(ii) For all sets A and B, and all functions f and g from A to $\mathcal{P}(B)$,

$$
\bigcup_{a \in A} f(a) \subseteq \bigcup_{x \in A} g(x) \Rightarrow[\forall a \in A . \exists x \in A . f(a) \subseteq g(x)]
$$

