COMPUTER SCIENCE TRIPOS Part IA – 2023 – Paper 2

8 Discrete Mathematics (mpf23)

(a) (i) Show that (x-1) divides (x^n-1) for all positive integers x and n.

[3 marks]

(*ii*) A positive integer n is said to be composite whenever there are positive integers a and b greater than 1 such that $n = a \cdot b$.

Prove that, for all positive integers x greater than 1, if a positive integer n is composite then so is $x^n - 1$. [3 marks]

[*Hint*: Consider the instance of the above statement for x = 2.]

(b) Prove that, for all natural numbers $n, 24 \mid (2 \cdot 7^n - 3 \cdot 5^n + 1)$. [6 marks]

[*Hint*: Note that $7^2 \equiv 1 \pmod{24}$ and $5^2 \equiv 1 \pmod{24}$. Consider using the principle of strong mathematical induction.]

- (c) Say whether each of the following statements is true or false, and prove your claim.
 - (i) For all sets A and B, and all functions f and g from A to $\mathcal{P}(B)$,

$$\left[\forall a \in A. \ \exists x \in A. \ f(a) \subseteq g(x) \right] \Rightarrow \bigcup_{a \in A} f(a) \subseteq \bigcup_{x \in A} g(x)$$

[4 marks]

(*ii*) For all sets A and B, and all functions f and g from A to $\mathcal{P}(B)$,

$$\bigcup_{a \in A} f(a) \subseteq \bigcup_{x \in A} g(x) \Rightarrow \left[\forall a \in A. \exists x \in A. f(a) \subseteq g(x) \right]$$

[4 marks]