COMPUTER SCIENCE TRIPOS Part IA - 2023 - Paper 2

2 Digital Electronics (ijw24)

(a) D type flip-flops are to be used to implement a synchronous counter having an output sequence $0,1,2,3,4,5,0, \ldots$ (decimal).
(i) Determine the next state combinational logic required for the D type flip-flops.
(ii) Show whether or not the counter self-starts.
(b) A finite state machine is represented by the following state table:

Current state (Q)	Next state $\left(Q^{\prime}\right)$					Output (Z)
	$X Y=$	00	01	10	11	
A	A	F	C	B	0	
B	A	B	D	H	1	
C	G	B	C	D	0	
D	C	F	D	D	1	
E	G	A	E	D	1	
F	F	F	G	B	0	
G	G	B	G	E	0	
H	F	B	E	H	1	

(i) Determine the equivalent states using the state equivalence/implication table approach.
(ii) Show the reduced state table.
(c) Consider two D type flip-flops operating in a synchronous configuration. The input of the second flip-flop, D_{2}, is connected to the output of a combinational logic block, and one of the inputs to the combinational logic block is connected to the output, Q_{1}, of the first flip-flop.

For both flip-flops, the minimum set-up time $t_{s u, \text { min }}=20 \mathrm{~ns}$, the minimum hold time $t_{h, \min }=5 \mathrm{~ns}$, and the maximum propagation delay $t_{p c, \max }=40 \mathrm{~ns}$. The maximum propagation delay of the combinational logic block from Q_{1} to D_{2} is $t_{p d, \max }=49 \mathrm{~ns}$.
(i) Determine the maximum clock frequency for this circuit.
(ii) How could this be increased without changing the flip-flops?

