
5

COMPUTER SCIENCE TRIPOS Part IB – 2022 – Paper 4

Programming in C and C++ (djg11)

(a) A FIFO is implemented in C using a singly-linked list that maintains global head
and tail pointers. These are initialised to represent the empty FIFO as follows:

struct fifo_entry *head_ptr = 0;

struct fifo_entry **tail_ptr = &head_ptr;

The entries in the FIFO use a union to store either an integer or a double-
precision floating point number. A further field records which is stored. Give
syntactically-accurate C code that defines fifo_entry and either a function
enqueue_int or a function enqueue_double enqueuing a new value into the
FIFO. [5 marks]

(b) To avoid repetitive reallocation of memory, suppose now that FIFO entries
that are no longer in use are to be saved in an auxiliary linked list. Give
syntactically-accurate code that implements this approach and then discuss two
other approaches for store management. [5 marks]

(c) The C code in part (a) suffers from a lack of encapsulation – variables like
head_ptr are visible to the the rest of the program. Write C++ defining
a class FIFO which maintains a single FIFO implemented using elements
fifo_entry as defined in your answer above, but which only exports member
functions enqueue_int, enqueue_double, isempty and

void dequeue(void do_I(int), void do_D(double));

It should not be possible to create an instance of class FIFO and storage
allocation/deallocation should use C++ mechanisms rather than those of C.
Your C++ is not required to be syntactically accurate, but should capture the
main concepts. It is not necessary to give full code for the above four member
functions – focusing on allocation and deallocation of fifo_entry elements
suffices. [Note: do_I and do_D are user-provided processing functions to be
applied to the dequeued value.] [6 marks]

(d) The following lines approximate (e.g. omitting access qualifiers) analogous
generic/templated class definitions in Java and C++. Explain which types X
are valid for use in Gen<X> and Tem<X>.

[Java]: class Gen<T> { T v; Gen() { v = 1; } };
[C++]: template<typename T> class Tem { T v; Tem() { v = 1; } };

[4 marks]

1

