COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

9 Discrete Mathematics (mpf23)

(a) For sets A and B, recall that $A \Rightarrow B$ denotes the set of all functions from A to B and that $f: A \rightarrow B$ states that f is a function from A to B.
(i) Let R be a set.

For a set X define $\eta_{X}: X \rightarrow((X \Rightarrow R) \Rightarrow R)$ by

$$
\eta_{X}(x)(f)=f(x)
$$

and define $F:(((X \Rightarrow R) \Rightarrow R) \Rightarrow R) \rightarrow(X \Rightarrow R)$ by

$$
F(\varphi)(x)=\varphi\left(\eta_{X}(x)\right)
$$

Prove that F is surjective. [Hint: F is actually a retraction.]
(ii) Using the above, or otherwise, prove that for all sets X and R, if there is a surjection from X to $(((X \Rightarrow R) \Rightarrow R) \Rightarrow R)$ then R is a singleton. You may use standard results provided that you state them clearly. [4 marks]
(b) For sets Σ and A, let $a \in A$ and $f: \Sigma \times \Sigma^{*} \times A \rightarrow A$. Let R be the subset of $\Sigma^{*} \times A$ inductively defined by the axiom

$$
\overline{(\varepsilon, a)}
$$

and the rule

$$
\frac{(w, x)}{(s w, f(s, w, x))} \quad\left(s \in \Sigma, w \in \Sigma^{*}, x \in A\right)
$$

Prove that:
(i) R is total; that is, $\forall w \in \Sigma^{*} . \exists x \in A .(w, x) \in R$.
(ii) R is functional; that is, $\forall(w, x) \in R . \forall y \in A .(w, y) \in R \Rightarrow y=x$.

