COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 2

9 Discrete Mathematics (mpf23)

- (a) For sets A and B, recall that $A \Rightarrow B$ denotes the set of all functions from A to B and that $f: A \rightarrow B$ states that f is a function from A to B.
 - (i) Let R be a set.

For a set X define $\eta_X : X \to ((X \Rightarrow R) \Rightarrow R)$ by

$$\eta_X(x)(f) = f(x)$$

and define $F: ((X \Rightarrow R) \Rightarrow R) \Rightarrow R) \to (X \Rightarrow R)$ by

$$F(\varphi)(x) = \varphi(\eta_X(x))$$

Prove that F is surjective. [*Hint:* F is actually a retraction.] [6 marks]

- (*ii*) Using the above, or otherwise, prove that for all sets X and R, if there is a surjection from X to $(((X \Rightarrow R) \Rightarrow R) \Rightarrow R)$ then R is a singleton. You may use standard results provided that you state them clearly. [4 marks]
- (b) For sets Σ and A, let $a \in A$ and $f : \Sigma \times \Sigma^* \times A \to A$. Let R be the subset of $\Sigma^* \times A$ inductively defined by the axiom

$$(\varepsilon, a)$$

and the rule

$$\frac{(w, x)}{(sw, f(s, w, x))} \qquad (s \in \Sigma, w \in \Sigma^*, x \in A)$$

Prove that:

- (i) R is total; that is, $\forall w \in \Sigma^*$. $\exists x \in A$. $(w, x) \in R$. [4 marks]
- (*ii*) R is functional; that is, $\forall (w, x) \in R$. $\forall y \in A$. $(w, y) \in R \Rightarrow y = x$. [6 marks]