COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 2

8 Discrete Mathematics (mpf23)

- (a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a, b, c, if gcd(b, c) = 1 then $gcd(a, b \cdot c) = gcd(a, b) \cdot gcd(a, c)$. [4 marks]
- (b) Let k be a fixed integer.

Set $p_0 = q_0 = 1$ and, for $n \in \mathbb{N}$, let $p_{n+1} = p_n + k q_n$ and $q_{n+1} = p_n + q_n$.

For $n \in \mathbb{N}$, define

$$r_n = |k(q_n)^2 - (p_n)^2|$$

- (i) For $n \in \mathbb{N}$, give a closed-form expression s_n defined in terms of k and n such that $s_n = r_n$. [3 marks]
- (*ii*) Prove that $s_n = r_n$ for all $n \in \mathbb{N}$. [5 marks]
- (c) Fix sets A and B.

Consider a set P together with functions $p: P \to A$ and $q: P \to B$ such that for all sets X and for all functions $f: X \to A$ and $g: X \to B$ there exists a unique function $u\langle f, g \rangle : X \to P$ satisfying $p \circ u\langle f, g \rangle = f$ and $q \circ u\langle f, g \rangle = g$.

- (i) Define a function from P to the product $A \times B$. [1 mark]
- (*ii*) Define a function from the product $A \times B$ to P. [1 mark]
- (*iii*) Prove that $u\langle p,q\rangle: P \to P$ is the identity function. [2 marks]
- (*iv*) Prove that P and the product $A \times B$ are isomorphic. [4 marks]