COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

8 Discrete Mathematics (mpf23)

(a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a, b, c, if $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a, b \cdot c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)$.
(b) Let k be a fixed integer.

Set $p_{0}=q_{0}=1 \mathrm{and}$, for $n \in \mathbb{N}$, let $p_{n+1}=p_{n}+k q_{n}$ and $q_{n+1}=p_{n}+q_{n}$.
For $n \in \mathbb{N}$, define

$$
r_{n}=\left|k\left(q_{n}\right)^{2}-\left(p_{n}\right)^{2}\right|
$$

(i) For $n \in \mathbb{N}$, give a closed-form expression s_{n} defined in terms of k and n such that $s_{n}=r_{n}$.
(ii) Prove that $s_{n}=r_{n}$ for all $n \in \mathbb{N}$.
(c) Fix sets A and B.

Consider a set P together with functions $p: P \rightarrow A$ and $q: P \rightarrow B$ such that for all sets X and for all functions $f: X \rightarrow A$ and $g: X \rightarrow B$ there exists a unique function $u\langle f, g\rangle: X \rightarrow P$ satisfying $p \circ u\langle f, g\rangle=f$ and $q \circ u\langle f, g\rangle=g$.
(i) Define a function from P to the product $A \times B$.
(ii) Define a function from the product $A \times B$ to P.
(iii) Prove that $u\langle p, q\rangle: P \rightarrow P$ is the identity function.
(iv) Prove that P and the product $A \times B$ are isomorphic.

