COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 2

7 Discrete Mathematics (mpf23)

- (a) Fix positive integers m and n.
 - (i) For $k \in \mathbb{Z}$, define $[k]_m$ to be the unique element of \mathbb{Z}_m congruent to k modulo m.

Prove that: $\forall k, \ell \in \mathbb{Z}$. $[k]_m = [\ell]_m \Leftrightarrow k \equiv \ell \pmod{m}$. [3 marks]

- (*ii*) Let $f : \mathbb{Z}_m \to \mathbb{Z}_m$ be the function defined by $f(k) = [nk]_m$ and let $+_m : \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m$ be the function defined by $k +_m \ell = [k + \ell]_m$.
 - (A) Prove that: $\forall k, \ell \in \mathbb{Z}_m$. $f(k +_m \ell) = f(k) +_m f(\ell)$. [3 marks]
 - (B) Prove that f is a bijection if, and only if, gcd(m, n) = 1. [6 marks]
- (b) Recall that $\operatorname{Bij}(X, Y)$ denotes the set of bijections from a set X to a set Y and that, for $n \in \mathbb{N}$, the set [n] is defined as $\{i \in \mathbb{N} \mid i < n\}$.
 - (i) Given a set A such that $0 \notin A$, describe without proof a bijection

 $\operatorname{Bij}(\{0\} \cup A, \{0\} \cup A) \to (\{0\} \cup A) \times \operatorname{Bij}(A, A)$

[*Hint:* For $f \in \text{Bij}(\{0\} \cup A, \{0\} \cup A)$ consider both f(0) and $f^{-1}(0)$.] [4 marks]

(*ii*) Using the above or otherwise, prove that: $\forall n \in \mathbb{N}$. Bij $([n], [n]) \cong [n!]$. [4 marks]