COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

7 Discrete Mathematics (mpf23)

(a) Fix positive integers m and n.
(i) For $k \in \mathbb{Z}$, define $[k]_{m}$ to be the unique element of \mathbb{Z}_{m} congruent to k modulo m.

Prove that: $\forall k, \ell \in \mathbb{Z} \cdot[k]_{m}=[\ell]_{m} \Leftrightarrow k \equiv \ell(\bmod m)$.
(ii) Let $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ be the function defined by $f(k)=[n k]_{m}$ and let $+_{m}: \mathbb{Z}_{m} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ be the function defined by $k+_{m} \ell=[k+\ell]_{m}$.
(A) Prove that: $\forall k, \ell \in \mathbb{Z}_{m} . f\left(k+_{m} \ell\right)=f(k)+_{m} f(\ell)$.
(B) Prove that f is a bijection if, and only if, $\operatorname{gcd}(m, n)=1$.
(b) Recall that $\operatorname{Bij}(X, Y)$ denotes the set of bijections from a set X to a set Y and that, for $n \in \mathbb{N}$, the set $[n]$ is defined as $\{i \in \mathbb{N} \mid i<n\}$.
(i) Given a set A such that $0 \notin A$, describe without proof a bijection

$$
\operatorname{Bij}(\{0\} \cup A,\{0\} \cup A) \rightarrow(\{0\} \cup A) \times \operatorname{Bij}(A, A)
$$

[Hint: For $f \in \operatorname{Bij}(\{0\} \cup A,\{0\} \cup A)$ consider both $f(0)$ and $f^{-1}(0)$.]
(ii) Using the above or otherwise, prove that: $\forall n \in \mathbb{N}$. $\operatorname{Bij}([n],[n]) \cong[n!]$.
[4 marks]

