COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

2 Digital Electronics (ijw24)

(a) A (fictional) edge-triggered $U V$ flip-flop has inputs U and V and output Q. Its state-transition table is given by:

Current state (Q)	Next state $\left(Q^{\prime}\right)$				
	$U V=$	00	01	10	11
0	0	1	0	1	
1	0	0	0	1	

(i) Draw the state-transition diagram for the Q output.
(ii) For an implementation based on a D-type flip-flop, determine the simplified Boolean equation in sum-of-products form for the next-state (Q^{\prime}) logic.
[2 marks]
(b) Consider the following state machine:

(i) Assuming that the machine starts in state S_{0} and that the input data sequence at input (X) is appropriately synchronised with the state machine clock, determine the next-state and output sequences for the input sequence 0101011011011. What operation does the machine perform? [5 marks]
(ii) For an implementation based on two D-type flip-flops (labelled A and B), determine simplified Boolean expressions for the next-state and output combinational logic, assuming the state assignment $S_{0}=00, S_{1}=01$ and $S_{2}=10$ is used, where a state is labelled $Q_{A} Q_{B}$ in terms of the flip-flop outputs.
(iii) For an alternative one-hot implementation based on D-type flip-flops, determine expressions for the next-state and output logic.
[4 marks]
(iv) What feature, inherent in the proposed state-machine design, may give rise to problems at the output Y ? How might this be addressed?
[2 marks]

