COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 2

2 Digital Electronics (ijw24)

(a) A (fictional) edge-triggered UV flip-flop has inputs U and V and output Q. Its state-transition table is given by:

Current state (Q)	Next state (Q')					
	UV =	00	01	10	11	
0		0	1	0	1	
1		0	0	0	1	

- (i) Draw the state-transition diagram for the Q output. [3 marks]
- (*ii*) For an implementation based on a D-type flip-flop, determine the simplified Boolean equation in sum-of-products form for the next-state (Q') logic.

[2 marks]

(b) Consider the following state machine:

- (i) Assuming that the machine starts in state S_0 and that the input data sequence at input (X) is appropriately synchronised with the state machine clock, determine the next-state and output sequences for the input sequence 0101011011011. What operation does the machine perform? [5 marks]
- (*ii*) For an implementation based on two D-type flip-flops (labelled A and B), determine simplified Boolean expressions for the next-state and output combinational logic, assuming the state assignment $S_0 = 00$, $S_1 = 01$ and $S_2 = 10$ is used, where a state is labelled $Q_A Q_B$ in terms of the flip-flop outputs. [4 marks]
- (*iii*) For an alternative one-hot implementation based on D-type flip-flops, determine expressions for the next-state and output logic. [4 marks]
- (*iv*) What feature, inherent in the proposed state-machine design, may give rise to problems at the output Y? How might this be addressed? [2 marks]