COMPUTER SCIENCE TRIPOS Part IA - 2022 - Paper 2

1 Digital Electronics (ijw24)

(a) Show using Boolean algebra
(i) $\bar{X} . Y \oplus X . \bar{Y}=\bar{X} . Y+X . \bar{Y}$
(ii) $\bar{X} . \bar{Y} \oplus X . Y=\bar{X} . \bar{Y}+X . Y$
(b) Using the results in Part (a) or otherwise, express the four-variable function

$$
F(A, B, C, D)=\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \cdot C \cdot D+A \cdot B \cdot \bar{C} \cdot D+A \cdot C \cdot \bar{D}+A \cdot \bar{B} \cdot C
$$

as the Exclusive OR of three 2-variable AND terms, i.e., $F=X_{1} \cdot X_{2} \oplus X_{3} \cdot X_{4} \oplus$ $X_{5} \cdot X_{6}$ where each X_{i} is either one of the four variables or its complement.
(c) (i) Simplify the four-variable function

$$
G(A, B, C, D)=\sum(0,2,6,7,8,9,10,13,15)
$$

using the Quine-McCluskey (Q-M) method. The numbers in the summation are the decimal representations of the minterms of G (where A represents the most-significant bit of the equivalent binary representation).
(ii) How many equal-complexity solutions exist in total? Justify your answer.

