
15

COMPUTER SCIENCE TRIPOS Part II – 2021 – Paper 9

Types (nk480)

(a) In a simply-typed lambda calculus augmented with first-class continuations,
booleans, a list type and its iterator (i.e., fold, but not full recursion), write a
function

every : (X → Bool) → ListX → Bool

such that every p xs returns true if every element of xs satisfies p, and false
otherwise. This function should also stop iterating over the list as soon as it
finds a false element. You may use SML- or OCaml-style notation if desired,
but explain any notation used beyond the basic lambda calculus.

[4 marks]

(b) In the monadic lambda calculus with state, suppose we change the typing rule
for reading locations to not cause a monadic effect: If we suggest changing the
monadic lambda calculus to permit treating reads as pure:

l : X ∈ Σ

Σ; Γ ` !l : X

(i) Is this rule still typesafe? Informally but carefully justify your answer.
[2 marks]

(ii) Is the following common subexpression elimination transformation sound?
Either give an argument why it is, or supply a counterexample and explain
why it shows it is not. [6 marks]

let x = return e1; let x = return e1;

let y = e2; =====> let y = e2;

let z = return e1; [z/x]e3

e3

(c) In System F augmented with existential types, give an existential type for the
interface of the natural numbers, and give an implementation for it. [8 marks]

1


