COMPUTER SCIENCE TRIPOS Part IA 75\%, Part IB 50\% - 2021 - Paper 3

3 Introduction to Graphics (rkm38)

You are provided with a 2D triangle mesh defined by a set of vertices $V[k]=$ $\left(x_{k}, y_{k}, a_{k}\right)$ for $k=1, \ldots, N$, and a triangle index table T of dimension $M \times 3$, where M is the number of triangles. x_{k} and y_{k} are the coordinates of vertex k and a_{k} is its scalar attribute. An example of such a triangle mesh is shown below.

(a) Write down the triangle index table of the mesh shown in the figure above. Ensure that all triangles are forward-facing.
[4 marks]
(b) Write pseudocode for a function $a=$ lookup_a (x, y, V, T), which returns the value of the linearly interpolated attribute at the point (x, y) when the point lies on the mesh and -1 otherwise. Use square brackets to index vertex ($V[i]$) and triangle $(T[i, j])$ tables. The pseudocode should include the formulas needed to compute the interpolated attribute value and to check whether the point is inside the triangles.
[10 marks]
(c) Suppose that now vertices also include a depth, so that $V[k]=\left(x_{k}, y_{k}, z_{k}, a_{k}\right)$, and triangles overlap and occlude one another. How do you need to modify the pseudocode to return the attribute of the visible triangle that has the lowest z-value at a given point? Due to memory limitations, you cannot use the Z-buffer algorithm.

