COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 2

7 Discrete Mathematics (mpf23)

(a) Without using the Fundamental Theorem of Arithmetic, prove that

$$
\operatorname{gcd}(c, a b)=1 \Longleftrightarrow(\operatorname{gcd}(c, a)=1 \wedge \operatorname{gcd}(c, b)=1)
$$

for all positive integers a, b, c.
(b) Let $P(n)$ be a statement for n ranging over the set of positive integers \mathbb{N}^{+}.
(i) Prove that if

$$
\forall m \in \mathbb{N}^{+} . P(m+1) \Longrightarrow P(m)
$$

then

$$
\forall n \in \mathbb{N}^{+} . P(n+1) \Longrightarrow\left(\forall k \in \mathbb{N}^{+} . k \leq n+1 \Longrightarrow P(k)\right)
$$

(ii) Prove that if
$P(2) \wedge\left(\forall m \in \mathbb{N}^{+} . P(m) \Rightarrow P(2 m)\right) \wedge\left(\forall m \in \mathbb{N}^{+} . P(m+1) \Rightarrow P(m)\right)$ then

$$
\forall n \in \mathbb{N}^{+} . P(n)
$$

(c) Let $I=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$.

In each case below define a function from I to I that satisfies the stated properties. Your answer should justify that the criteria are met.
(i) Injective but not bijective.
(ii) Surjective but not bijective.
(iii) Bijective but not the identity.

