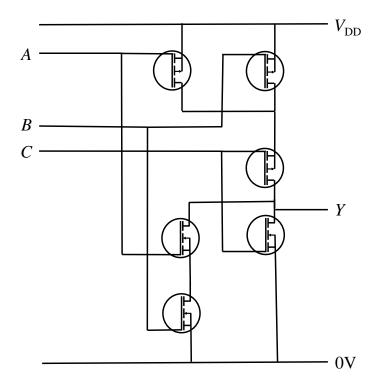

COMPUTER SCIENCE TRIPOS Part IA – 2021 – Paper 2

2 Digital Electronics (ijw24)


The figure below shows a circuit using an N-channel MOSFET, along with a table giving the relationship between $V_{\rm DS}$ and $I_{\rm DS}$ for various values of $V_{\rm DS}$, at $V_{\rm DD}=4~{\rm V}$ and $V_{\rm GS}=4~{\rm V}$.

- (a) Calculate the value of resistor R and the power dissipated in it when $V_{\rm DS} = 160 \; {\rm mV}.$ [4 marks]
- (b) A capacitor C is connected between the source and drain terminals of the MOSFET. After the MOSFET turns OFF at t=0, the output signal V_2 as a function of time t is given by $V_2=V_{\rm DD}(1-e^{-t/CR})$. Assume that prior to t=0, the MOSFET is ON and $V_2=0$ V.
 - (i) Determine an expression for the time taken t_r , for the output signal V_2 to rise from 20% to 80% of its maximum value.
 - (ii) What is the rise time t_r , if $C = 0.1 \mu F$ and R takes the value calculated in Part (a)?
 - (iii) The value of R is changed so as to reduce the rise time to half that in Part (b)(ii). What is the new value of R?
 - (iv) Using the value of R calculated in Part (b)(iii), what is the power dissipated in R when the MOSFET is ON (i.e., when $V_{\rm GS}=4$ V), and assuming that $V_2=320$ mV?
 - (v) Explain how the problem of high static power consumption seen in the N-channel MOSFET circuit can be eliminated. [9 marks]

[continued ...]

(c) The logic gate in the following figure has 3 inputs, A, B, and C, and a single output Y. Determine the truth-table for the gate input to output function, and then determine a simplified Boolean expression for output Y in terms of A, B, and C.

[7 marks]