COMPUTER SCIENCE TRIPOS Part IA - 2021 - Paper 2

10 Discrete Mathematics (fms27)

(a) Consider the following $\mathrm{NFA}^{\varepsilon}$, whose input alphabet is $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.

(i) For each of the two strings abc and bba, state whether the automaton accepts it, with justification.
(ii) Using the subset construction, produce the full unoptimized state transition table of an equivalent DFA, listing its states in lexicographic order (important!) and indicating the starting and accepting states. [6 marks]
(iii) Give a regular expression, no longer than six symbols (metacharacters included), that describes the strings accepted by the automaton, together with an intuitive explanation for it. [Hint: Part (a)(ii) helps.] [4 marks]
(b) Consider language L_{1} of strings over alphabet $\{0,1\}$, defined inductively as follows.

$$
\overline{00}(0) \quad \frac{w}{1 w}(1) \quad \frac{w}{w 1}(2)
$$

(i) Draw the diagram of a DFA that recognizes L_{1} in no more than four states.
(ii) Considering the words in L_{1} as unsigned binary numerals, let language L_{2} of strings over $\{0,1\}$ be the set of all and only the binary numerals obtained by adding 1 to any numeral in L_{1} and removing any leading zeros. NB: "adding" here means arithmetic addition, not string concatenation. Produce a regular expression no longer than 11 symbols that recognizes L_{2}, with a clear and convincing explanation of how you derived it. [4 marks]

