COMPUTER SCIENCE TRIPOS Part II – 2020 – Paper 9

15 Types (nk480)

- (a) Consider System F extended with existential types, products, and a natural number type.
 - (i) Give an existential type corresponding to an abstract type of booleans with constructors for true and false, as well as a conditional test (if-then-else) operation.
 [3 marks]
 - (*ii*) Give an implementation of this type, using the natural numbers as the representation of booleans. [4 marks]
- (b) Suppose we extend the simply-typed lambda calculus with the ability to raise exceptions with the fail construct, and the ability to catch exceptions with the try e_0 except e_1 construct. Suppose also that we track exceptions monadically, with the type Exn A representing possibly-failing computations of A.
 - (*i*) Give a typing rule for signalling an error with fail. [2 marks]
 - (*ii*) Give a typing rule for trapping an error with $\operatorname{try} e_0 \operatorname{except} e_1$. Does your type for this term have an effect? Justify your design. [5 marks]
- (c) Consider the simply-typed lambda calculus extended with natural numbers and reference types, but without monadic effect tracking.
 - (i) Give an expression of type $1 \to \mathbb{N}$, which evaluates to a function which counts the number of times it has been called. [2 marks]
 - (ii) Without using explicit recursion, give an expression and its type in the simply-typed lambda calculus with references whose execution never halts.
 [4 marks]