COMPUTER SCIENCE TRIPOS Part IB - 2020 - Paper 6

10 Logic and Proof (lp15)

(a) From n distinct propositional letters, each of which may be negated or not, 2^{n} distinct clauses can be created. Present a satisfying interpretation of this set of 2^{n} clauses or demonstrate that none exists.
(b) Sketch the operation of the DPLL algorithm when provided with the set of clauses described above, including an estimate of its time complexity as a function of n.
(c) For each of the following formulas, present either a proof in the sequent calculus, or a falsifying interpretation. The modal logic is S4.
(i) $\square(P \vee Q) \rightarrow(\square \diamond \neg P \rightarrow \diamond \square Q)$
(ii) $\exists x P(f(x)) \wedge \forall x[P(x) \rightarrow Q(g(x))] \rightarrow \exists y Q(y)$
(iii) $\exists x(P(x) \rightarrow Q(x)) \rightarrow[\exists x P(x) \rightarrow \exists x Q(x)]$

