COMPUTER SCIENCE TRIPOS Part IA 75\%, Part IB 50\% - 2020 - Paper 3

4 Introduction to Graphics (rkm38)

(a) Phong's reflection model is given by the equation

$$
I=I_{a} k_{a}+\sum_{i} I_{i} k_{d}\left(\mathbf{L}_{\mathbf{i}} \cdot \mathbf{N}\right)+\sum_{i} I_{i} k_{s}\left(\mathbf{R}_{\mathbf{i}} \cdot \mathbf{V}\right)^{n}
$$

(i) Draw a schematic diagram showing a flat surface, two point-light sources, a camera, a ray-intersection point on the surface and all relevant vectors. Label each vector using the symbols from the equation above. Use indices 1 and 2 for the point lights.
(ii) Explain what type of reflection is modelled by the diffuse term and what parameter(s) control it.
(iii) Explain what type of reflection is modelled by the specular term and what parameter(s) control it.
[2 marks]
(iv) Explain what type of reflection is modelled by the ambient term and what parameter(s) control it.
(v) What does the dot product $\mathbf{L}_{\mathbf{i}} \cdot \mathbf{N}$ represent and what physical property does it model?
(vi) How does the distribution of microfacets differ on the surface of diffuse, imperfect specular and perfect specular materials?
(b) A ray originates at point A, hits a perfectly specular plane with normal N_{1} at point B, gets reflected and hits point C on the plane defined by normal N_{2} and point D. Refer to the figure below. Use vector algebra to find the coordinates of point C given all the other points and vectors listed in the figure. [6 marks]

