COMPUTER SCIENCE TRIPOS Part IB - 2019 - Paper 6

10 Logic and Proof (lp15)

(a) For each of the following formulas, present either a formal resolution proof or a falsifying interpretation. Note that a and b are constants.
$\forall x[Q(x) \rightarrow R(x)] \wedge \neg R(a) \wedge \forall x[\neg R(x) \wedge \neg Q(x) \rightarrow P(b) \vee Q(b)] \rightarrow P(b) \vee R(b)$

$$
\exists x[\forall y z[(P(y) \rightarrow Q(z)) \rightarrow(P(x) \rightarrow Q(x))]]
$$

(b) For each of the following formulas, present a proof in a sequent or tableau calculus, or alternatively, a falsifying interpretation. In Part (b)(iii) the modal logic is S 4 .
(i) $\exists y \forall x P(x, y) \rightarrow \exists z P(z, z)$
(ii) $\forall x[P(x) \wedge \exists y \neg P(y)] \rightarrow Q$
(iii) $(\square \diamond P \wedge \square \diamond Q) \rightarrow \square \diamond(P \wedge Q)$

