COMPUTER SCIENCE TRIPOS Part IA - 2019 - Paper 2

7 Discrete Mathematics (gw104)

(a) Let n be a positive natural number. Show $x \equiv y(\bmod n)$ determines an equivalence relation between integers x and y.
[3 marks]
(b) Describe the extended Euclid algorithm which given a pair of positive natural numbers (m, n) returns not only their $\operatorname{gcd}, \operatorname{gcd}(m, n)$, but also its expression as a linear combination, $j . m+k . n$, for integers j and k.
(c) Assume positive natural numbers m and n are coprime, $\operatorname{sog} \operatorname{gcd}(m, n)=1$ with associated linear combination $j . m+k . n=1$, for integers j and k.
(i) Show that for any natural numbers r and s there is a solution to

$$
x \equiv r(\bmod m) \wedge x \equiv s(\bmod n) .
$$

[Hint: Take $x=$ s.j. $m+$ r.k.n.]
(ii) Show the solution is unique $\bmod m . n$, i.e. $x \equiv y(\bmod m . n)$ for any two solutions x and y.

