COMPUTER SCIENCE TRIPOS Part IA - 2019 - Paper 2

2 Digital Electronics (ijw24)

(a) (i) Briefly describe the ways in which sequential logic differs from combinational logic.
(ii) Describe the main features that differentiate synchronous from asynchronous sequential logic.
(b) A synchronous 3-bit counter implemented using D-type Flip-Flops has a mode control input M. When $M=0$, the counter output sequence represented in decimal form is $0,1,2,3,4,5,6,7$, and repeat. When $M=1$, the counter output sequence represented in decimal form is $0,1,3,2,6,7,5,4$, and repeat. The Flip-Flop outputs are $\left\{Z_{2} Z_{1} Z_{0}\right\}$ where Z_{0} represents the least significant bit of the counter output.
(i) Draw a state diagram that describes this counter.
(ii) Write down the state transition table corresponding with the state diagram in Part $(b)(i)$.
(iii) Determine the excitation combinational logic in sum of products form for D-type Flip-Flop input D_{0}, i.e., the input of the Flip-Flop that represents the least significant bit of the counter. Show that the required combinational logic can be implemented using a 2 -input XNOR gate plus some other combinational logic gates.
(c) Use row matching to reduce the number of states required to represent the single input (X), single output (Z), Mealy finite state machine described in the following state transition table:

Current State	Next State		Output (Z)	
	$X=0$	$X=1$	$X=0$	$X=1$
A	B	C	1	0
B	F	D	0	0
C	D	E	1	1
D	F	E	0	1
E	A	D	0	0
F	B	C	1	0

Draw the resulting state diagram.

