COMPUTER SCIENCE TRIPOS Part IA – 2019 – Paper 2

2 Digital Electronics (ijw24)

(a) (i) Briefly describe the ways in which sequential logic differs from combinational logic.

[2 marks]

(*ii*) Describe the main features that differentiate synchronous from asynchronous sequential logic.

[4 marks]

- (b) A synchronous 3-bit counter implemented using D-type Flip-Flops has a mode control input M. When M = 0, the counter output sequence represented in decimal form is 0, 1, 2, 3, 4, 5, 6, 7, and repeat. When M = 1, the counter output sequence represented in decimal form is 0, 1, 3, 2, 6, 7, 5, 4, and repeat. The Flip-Flop outputs are $\{Z_2Z_1Z_0\}$ where Z_0 represents the least significant bit of the counter output.
 - (i) Draw a state diagram that describes this counter.

[4 marks]

(*ii*) Write down the state transition table corresponding with the state diagram in Part (b)(i).

[2 marks]

(*iii*) Determine the excitation combinational logic in sum of products form for D-type Flip-Flop input D_0 , i.e., the input of the Flip-Flop that represents the least significant bit of the counter. Show that the required combinational logic can be implemented using a 2-input XNOR gate plus some other combinational logic gates.

[3 marks]

(c) Use row matching to reduce the number of states required to represent the single input (X), single output (Z), Mealy finite state machine described in the following state transition table:

Current State	Next State		Output (Z)		
	X = 0	X = 1	X = 0	X = 1	
A	В	С	1	0	
В	F	D	0	0	
\mathbf{C}	D	Ε	1	1	
D	F	Ε	0	1	
${ m E}$	A	D	0	0	
\mathbf{F}	В	\mathbf{C}	1	0	
	I		I		

Draw the resulting state diagram.

[5 marks]