COMPUTER SCIENCE TRIPOS Part IA – 2019 – Paper 2

10 Discrete Mathematics (fms27)

Consider formal languages $L_{(x)}$ over the alphabet $\Sigma = \{0, 1\}$.

- (a) $L_{(a)} \subset \Sigma^*$ consists of all and only the strings with an even number of 0s.
 - (i) Build a regular expression for $L_{(a)}$. [2 marks]
 - (*ii*) Draw the transition graph of a deterministic finite automaton (DFA) for $L_{(a)}$. [2 marks]
- (b) $L_{(b)} \subset \Sigma^*$ is defined by the following axiom and rules:

$$\begin{array}{c} u \\ \hline 0 \\ \hline$$

where u and w are string variables in Σ^* while 0 and 1 are literals.

- (i) State a property P_1 enjoyed by all strings in $L_{(b)}$ but by none of the following strings: 01011, 1, 111, 1111100001100, 10101. [2 marks]
- (*ii*) Prove that all strings in $L_{(b)}$ enjoy the property P_1 you defined in your answer to Part (b)(i). [3 marks]
- (*iii*) Either prove the following statement or provide a counterexample: "There is no string in $L_{(b)}$ with two consecutive 1s". [4 marks]
- (c) Language $L_{(c)} \subset \Sigma^*$ consists of the strings that enjoy the following four properties simultaneously:
 - P_2 : "having a number of 0s divisible by three";
 - P_3 : "including the 11011 substring";
 - P_4 : "having at least four 0s";
 - P_5 : "having no more than five 1s".
 - (i) Give three minimum-length strings in $L_{(c)}$. [1 mark]
 - (*ii*) For each of the properties P_2-P_5 , draw the transition diagram for a matching DFA. [4 marks]
 - (*iii*) Describe how to build a DFA for $L_{(c)}$ by combining the ones you built for Part (c)(ii). [2 marks]