COMPUTER SCIENCE TRIPOS Part IA - 2019 - Paper 2

10 Discrete Mathematics (fms27)

Consider formal languages $L_{(x)}$ over the alphabet $\Sigma=\{0,1\}$.
(a) $L_{(a)} \subset \Sigma^{*}$ consists of all and only the strings with an even number of 0 s.
(i) Build a regular expression for $L_{(a)}$.
(ii) Draw the transition graph of a deterministic finite automaton (DFA) for $L_{(a)}$.
(b) $\quad L_{(b)} \subset \Sigma^{*}$ is defined by the following axiom and rules:

$$
\overline{0} \quad \frac{u}{001 u} \quad \frac{w 10 u}{w u}
$$

where u and w are string variables in Σ^{*} while 0 and 1 are literals.
(i) State a property P_{1} enjoyed by all strings in $L_{(b)}$ but by none of the following strings: $01011,1,111,11111100001100,10101$.
(ii) Prove that all strings in $L_{(b)}$ enjoy the property P_{1} you defined in your answer to Part $(b)(i)$.
(iii) Either prove the following statement or provide a counterexample: "There is no string in $L_{(b)}$ with two consecutive 1s".
(c) Language $L_{(c)} \subset \Sigma^{*}$ consists of the strings that enjoy the following four properties simultaneously:

- P_{2} : "having a number of 0 s divisible by three";
- P_{3} : "including the 11011 substring";
- P_{4} : "having at least four 0 s ";
- P_{5} : "having no more than five 1 s ".
(i) Give three minimum-length strings in $L_{(c)}$.
(ii) For each of the properties $P_{2}-P_{5}$, draw the transition diagram for a matching DFA.
[4 marks]
(iii) Describe how to build a DFA for $L_{(c)}$ by combining the ones you built for Part (c)(ii).

