COMPUTER SCIENCE TRIPOS Part IA - 2019 - Paper 1

8 Algorithms (fms27)

(a) Consider a Binary Search Tree. Imagine inserting the keys $0,1,2, \ldots, n$ (in that order) into the data structure, assumed initially empty.
(i) Draw a picture of the data structure after the insertion of keys up to $n=9$ included.
(ii) Clearly explain, with a picture if helpful, how the data structure will evolve for arbitrary n, and derive the worst-case time complexity for the whole operation of inserting the $n+1$ keys.
(b) Repeat $(a)(i)$ and $(a)(i i)$ for a 2-3-4 tree, with some scratch work showing the crucial intermediate stages.
(c) \ldots and for a B-tree with $t=3$, again showing the crucial intermediate stages.
(d) \ldots and for a hash table of size 7 that resolves collisions by chaining.
[2+2 marks]
(e) \ldots and for a binary min-heap.
[$2+2$ marks]

