COMPUTER SCIENCE TRIPOS Part II – 2017 – Paper 9

- 5 Denotational Semantics (MPF)
 - (a) (i) Give the grammar defining the PCF expressions that are values.

[2 marks]

- (ii) Prove or disprove that, for every PCF type τ , there is a closed PCF expression that is not a value of type τ . [2 marks]
- (b) (i) Define the contextual-equivalence relation $M \cong_{\text{ctx}} N : \tau$ for pairs of closed PCF expressions M, N and a PCF type τ . [2 marks]
 - (ii) Prove or disprove that

$$(\mathbf{fn}\ n: nat.\ n) \cong_{\mathsf{ctx}} \big(\mathbf{fn}\ n: nat.\ \mathbf{succ}(\mathbf{pred}(n))\big): nat \to nat$$

[2 marks]

(c) For every pair of closed PCF expressions M, N of type nat, let $F_{M,N}$ be the closed PCF expression of type $(nat \rightarrow nat) \rightarrow (nat \rightarrow nat)$ given by

fn
$$f: nat \rightarrow nat$$
. fn $n: nat$.
if $zero(n)$ then M
else if $zero(pred(n))$ then N
else $succ(f(pred(n)))$

- (i) Give an explicit description of $\llbracket \mathbf{fix}(F_{M,N}) \rrbracket \in (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp})$ in terms of $\llbracket M \rrbracket, \llbracket N \rrbracket \in \mathbb{N}_{\perp}$. Justify your answer. [8 marks]
- (ii) Prove or disprove that there are closed PCF expressions M, N of type nat such that $\mathbf{fix}(F_{M,N}) \cong_{\mathsf{ctx}} (\mathbf{fn} \ n : nat. \mathbf{pred}(n)) : nat \to nat$. You may use any standard results provided that you state them clearly. [4 marks]