1 Databases (TGG)

(a) Consider the following Entity-Relationship (ER) diagram.

Suppose we wish to implement this diagram in a relational database using three tables, \(S(sid, A) \), \(T(tid, C) \), and \(R(\cdots) \). Describe the schema you would use for \(R \) depending on the cardinality of the relationship.

(i) When \(R \) is a many-to-many relationship between \(S \) and \(T \). [2 marks]

(ii) When \(R \) is a one-to-many relationship between \(S \) and \(T \). [2 marks]

(iii) When \(R \) is a many-to-one relationship between \(S \) and \(T \). [2 marks]

(iv) When \(R \) is a one-to-one relationship between \(S \) and \(T \). [2 marks]

(b) Suppose \(R \) is a many-to-one relationship. Rather than implementing a new table for \(R \), can we modify one of the tables representing \(S \) or \(T \) to implement this relationship? Discuss the advantages and disadvantages of such a representation. [4 marks]

(c) Suppose that we add the following diagram to our ER model.

Note that this implicitly defines a relationship between \(S \) and \(U \) resulting from the composition of relationships \(R \) and \(Q \). Discuss the difficulties that you might encounter in attempting to implement this derived relationship directly in a table \(W \). For example, would the results of evaluating this SQL

```
select sid, tid, B, D
from R
join Q on R.tid = Q.tid
```

always be equivalent to the contents of such a \(W \)? [8 marks]