This question is about Binary Search Trees (BSTs) and Red-Black Trees (RBTs).

(a) Using a diagram, explain what a BST rotation is and its purpose. [3 marks]

(b) Consider the following buggy pseudocode.

```python
def mystery(x):
    y = x.r
    x.r = y.l
    if y.l != null:
        y.l.p = x
    x.p = y.p
    if x == x.p.l:
        x.p.l = y
    else:
        x.p.r = y
    y.l = x
```

(i) Explain what it intends to do, give it a meaningful name, describe all the identifiers used (x, y, r, l, p) and the (intended) precondition and postcondition of the routine. [4 marks]

(ii) Identify, explain and fix the bugs, one by one, referring to a diagram if useful. Finally, give a fully corrected version of the code. [8 marks]

(c) State, with a proof or counterexample as appropriate, whether each of the following statements is true or false.

(i) In an RBT with more than one node, at least one node is red. [2 marks]

(ii) In a BST with n nodes, exactly $n - 1$ rotations are possible. [3 marks]