11 Security II (MGK)

(a) Why does the formal security definition for collision-resistant hash functions require a key \(s \) and a security parameter \(n \), even though most commonly used standard secure hash functions lack such input parameters? [4 marks]

(b) If \(h_s : \{0, 1\}^* \rightarrow \{0, 1\}^{\ell(n)} \) is a collision-resistant hash function, do the following constructions \(H_s \) also provide collision-resistant hash functions? Explain your answers. [2 marks each]

(i) \(H_s(x) = h_s(x) \parallel x \) (i.e. append \(x \))

(ii) \(H_s(x) = h_s(x) \parallel \text{LSB}(x) \) (i.e. append least significant bit of \(x \))

(iii) \(H_s(x) = h_s(x \mid 1) \) (bitwise-or, i.e. set least significant bit of \(x \) to 1)

(c) Use Euler’s theorem to calculate \(5^{-1} \mod 8 \). [4 marks]

(d) The standard Digital Signature Algorithm (DSA) uses a cyclic subgroup \(\mathbb{G} \subset \mathbb{Z}_p^* \) of the integers modulo a prime \(p \), with prime order \(q \), where \(q \) divides \(p - 1 \).

(i) Give two advantages of using a multiplicative subgroup of prime order, as opposed to just using \(\mathbb{Z}_p^* \), in cryptographic schemes based on the Discrete Logarithm problem. [2 marks]

(ii) Why is it possible to choose \(q \) substantially smaller than \(p \), and what is an advantage of doing so? [4 marks]