This question considers a language \(L \) which has integer variables \(V \), arithmetic expressions \(E \) and boolean expressions \(B \), along with commands \(C \) of the forms \(V := E \) (assignment), \(C; C' \) (sequencing), \(\text{IF} \ B \ \text{THEN} \ C \ \text{ELSE} \ C' \) (conditional) and \(\text{WHILE} \ B \ \text{DO} \ C \) (iteration).

\((a)\) Explain the syntax of the Hoare-logic partial-correctness formula \(\{P\} \ C \ \{Q\} \) and give a careful definition in English of when it is valid, that is, when \(\models \{P\} \ C \ \{Q\} \). [2 marks]

\((b)\) How does the definition of validity for the total-correctness formula \([P] \ C \ [Q] \) differ? [1 mark]

\((c)\) Preconditions and postconditions in \(\{P\} \ C \ \{Q\} \) often make use of logical or auxiliary variables \(v \) in addition to program variables \(V \). Explain why this is useful illustrating your answer with a command \(C \) which satisfies \(\{T\} \ C \ \{R := X + Y\} \) but not \(\{X = x \land Y = y\} \ C \ \{R := x + y\} \). [3 marks]

\((d)\) Give the axioms and rules of an inference system \(\vdash \{P\} \ C \ \{Q\} \) for Hoare logic. [4 marks]

\((e)\) Are your rules sound? To what extent are they complete? [2 marks]

\((f)\) Give a formal proof, using your inference system, of
\[\{X = x \land Y = 3\} \ X := X + 1 \ \{X - 1 = x \land Y < 10\} \]. [2 marks]

\((g)\) Consider the command \(C \) given by \(\text{WHILE} \ X > 0 \ \text{DO} \ (X := X - 1; \ Y := Y + 3) \), and let \(P \) be the precondition \(X = x \land Y = y \land x \geq 0 \). Give the strongest postcondition \(Q \) that you can establish. Give any invariant necessary to prove \(\{P\} \ C \ \{Q\} \) for your \(Q \). Explain briefly how the structure of the proof relates to the structure of \(C \). [6 marks]