8 Hoare Logic and Model Checking (AM)

This question considers a language \mathcal{L} which has integer variables V, arithmetic expressions E and boolean expressions B, along with commands C of the forms $V := E$ (assignment), $C; C'$ (sequencing), IF B THEN C ELSE C' (conditional) and WHILE B DO C (iteration).

(a) Explain the syntax of the Hoare-logic partial-correctness formula $\{P\} C \{Q\}$ and give a careful definition in English of when it is valid, that is, when $\models \{P\} C \{Q\}$. [2 marks]

(b) How does the definition of validity for the total-correctness formula $[P] C [Q]$ differ? [1 mark]

(c) Preconditions and postconditions in $\{P\} C \{Q\}$ often make use of logical or auxiliary variables v in addition to program variables V. Explain why this is useful illustrating your answer with a command C which satisfies $\{T\} C \{R = X + Y\}$ but not $\{X = x \land Y = y\} C \{R = x + y\}$. [3 marks]

(d) Give the axioms and rules of an inference system $\vdash \{P\} C \{Q\}$ for Hoare logic. [4 marks]

(e) Are your rules sound? To what extent are they complete? [2 marks]

(f) Give a formal proof, using your inference system, of $\{X = x \land Y = 3\} X := X + 1 \{X - 1 = x \land Y < 10\}$. [2 marks]

(g) Consider the command C given by WHILE $X > 0$ DO $(X := X - 1; Y := Y + 3)$, and let P be the precondition $X = x \land Y = y \land x \geq 0$. Give the strongest postcondition Q that you can establish. Give any invariant necessary to prove $\{P\} C \{Q\}$ for your Q. Explain briefly how the structure of the proof relates to the structure of C. [6 marks]