9 Discrete Mathematics (MPF)

(a) Let p and m be positive integers such that $p > m$.

(i) Prove that $\gcd(p, m) = \gcd(p, p - m)$.

(ii) Without using the Fundamental Theorem of Arithmetic, prove that if $\gcd(p, m) = 1$ then $p \mid \binom{p}{m}$. You may use any other standard results provided that you state them clearly.

(b) Let A^* denote the set of strings over a set A.

For a function $h : X \to Y$, let $\text{map}_h : X^* \to Y^*$ be the function inductively defined by

\[
\begin{align*}
\text{map}_h(\varepsilon) &= \varepsilon \\
\text{map}_h(x \omega) &= (h(x)) (\text{map}_h(\omega)) \quad (x \in X, \omega \in X^*)
\end{align*}
\]

Prove that, for functions $f : A \to B$ and $g : B \to C$,

\[
\text{map}_g \circ \text{map}_f = \text{map}_{g \circ f}
\]

Note: You may use the following Principle of Structural Induction for properties $P(\omega)$ of strings $\omega \in A^*$:

\[
(P(\varepsilon) \land \forall \omega \in A^*, P(\omega) \implies \forall a \in A. P(a \omega)) \implies \forall \omega \in A^*. P(\omega)
\]

(c) We say that a relation $T \subseteq A \times B$ is a total cover whenever $\text{id}_A \subseteq T^{\text{op}} \circ T$ and $\text{id}_B \subseteq T \circ T^{\text{op}}$. (Recall that $T^{\text{op}} \subseteq B \times A$ denotes the opposite, or dual, of the relation $T \subseteq A \times B$.)

For a relation $R \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$ ($m, n \in \mathbb{N}$), we define a new relation $R \Rightarrow$ between strings over a set X as follows: for all $u, v \in X^*$,

\[
u R \Rightarrow v \iff R \text{ is a total cover and } u = a_1 \ldots a_m, v = b_1 \ldots b_n, \text{ and } a_i = b_j \text{ for all } (i, j) \in R
\]

(i) Prove that for $R = \text{id}_{\{1, \ldots, m\}}$, we have that $u R \Rightarrow u$ for all $u = a_1 \ldots a_m$.

(ii) Prove that $u R \Rightarrow v$ implies $v R^{\text{op}} \Rightarrow u$.

(iii) Prove that $u R \Rightarrow v$ and $v S \Rightarrow w$ imply $u S_{\text{op}} \Rightarrow w$.

(iv) Prove that the further relation \sim on X^* defined by

\[
u \sim v \iff \exists R. u R \Rightarrow v
\]

is an equivalence relation.