COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 1

8 Algorithms (FMS)

(a) Transform the following recurrence

$$f(x) = f(\sqrt{x}) + c$$

into a closed-form expression for the function f (that is, an expression that does not contain f). Having done that, give the asymptotic complexity of f using big-O notation. [4 marks]

- (b) (i) Explain the programming technique known as *memoization*, detailing the cases to which it applies. [4 marks]
 - (*ii*) In a few lines of pseudocode, write a memoized recursive function to compute the *i*th Fibonacci number F(i), with $i \in \mathbb{N} \setminus \{0\}$. Recall that $F(1) = 1, F(2) = 1, \dots$ [4 marks]
- (c) Computing a recursive function f on arrays, when called on an array of size n, results in 2^n recursive calls to f. After memoizing f, on an array of a specific size n_0 we observe that about 90% of the calls to f return a memoized result rather than invoking f recursively. Is either of the following statements correct? Justify your answers.
 - (i) "The number of recursive calls goes down by a factor of ten; so it will take 1/10 of the time it used to, that is, it will run 10 times faster." [2 marks]
 - (*ii*) "Previously, the function did 2^n recursive calls. Now it does $0.9 \cdot c_1 + 0.1 \cdot 2^n$ recursive calls. That is still $O(2^n)$, so the asymptotic complexity of the function is still the same (even after memoization)." [2 marks]
- (d) Some implementations of the Quicksort algorithm select the pivot at random, rather than taking the last entry in the input array.
 - (i) Discuss the advantages and disadvantages of such a choice. [1 mark]
 - (ii) How would you construct an input to trigger quadratic running time for this randomised Quicksort, without having access to the state of the random number generator?[3 marks]