2 Foundations of Computer Science (LCP)

(a) A prime number sieve is an algorithm for finding all prime numbers up to a given limit n. The algorithm maintains a list, which initially holds the integers from 2 to n. The following step is then repeated: remove the head of this list, which will be a prime number, and remove all its multiples from the list. Write code for the algorithm above as an ML function of type \texttt{int -> int list}.

[4 marks]

(b) Consider the problem of eliminating all duplicates from a list of strings. Write code for a function of type \texttt{string list -> string list} such that the output contains the same elements as the input, possibly reordered, but where every element occurs exactly once. The worst-case performance must be better than quadratic in the length of the list.

[6 marks]

(c) Consider the task of determining whether a given word (a string) can be expressed by joining together various chunks (non-empty strings). If the chunks are \texttt{abra}, \texttt{cad} and \texttt{hal}, then the word \texttt{abracadabra} can be expressed as \texttt{abra|cad|abra}. Note that if the available chunks are \texttt{ab}, \texttt{bra}, \texttt{cad} and \texttt{abra}, then the first two are no good for expressing \texttt{abracadabra}, and yet a solution can be found using \texttt{cad} and \texttt{abra}. The chunks can be used any number of times and in any order.

Write code for a function that takes a list of chunks along with a word, and returns a list of chunks that yield the word when concatenated. For the examples above, the result should be \texttt{["abra", "cad", "abra"]}. Exception \texttt{Fail} should be raised if no solution exists.

[10 marks]

Note: You are given a function \texttt{delPrefix} for removing an initial part of a string. For example, \texttt{delPrefix ("abra", "abracadabra")} returns \texttt{"cadabra"}, but \texttt{delPrefix ("bra", "abracadabra")} raises exception \texttt{Fail}.

All ML code must be explained clearly and should be free of needless complexity. Well-known utility functions may be assumed to be available.